Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 24(1): 560, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877388

ABSTRACT

BACKGROUND: The generation of new eggplant (Solanum melongena L.) cultivars with drought tolerance is a main challenge in the current context of climate change. In this study, the eight parents (seven of S. melongena and one of the wild relative S. incanum L.) of the first eggplant MAGIC (Multiparent Advanced Generation Intercrossing) population, together with four F1 hybrids amongst them, five S5 MAGIC recombinant inbred lines selected for their genetic diversity, and one commercial hybrid were evaluated in young plant stage under water stress conditions (30% field capacity; FC) and control conditions (100% FC). After a 21-day treatment period, growth and biomass traits, photosynthetic pigments, oxidative stress markers, antioxidant compounds, and proline content were evaluated. RESULTS: Significant effects (p < 0.05) were observed for genotype, water treatments and their interaction in most of the traits analyzed. The eight MAGIC population parental genotypes displayed a wide variation in their responses to water stress, with some of them exhibiting enhanced root development and reduced foliar biomass. The commercial hybrid had greater aerial growth compared to root growth. The four F1 hybrids among MAGIC parents differed in their performance, with some having significant positive or negative heterosis in several traits. The subset of five MAGIC lines displayed a wide diversity in their response to water stress. CONCLUSION: The results show that a large diversity for tolerance to drought is available among the eggplant MAGIC materials, which can contribute to developing drought-tolerant eggplant cultivars.


Subject(s)
Antioxidants , Dehydration , Solanum melongena , Solanum melongena/genetics , Solanum melongena/growth & development , Solanum melongena/physiology , Solanum melongena/metabolism , Antioxidants/metabolism , Hybridization, Genetic , Genotype , Droughts , Hybrid Vigor/genetics , Proline/metabolism , Biomass
2.
Sci Rep ; 14(1): 14903, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38942825

ABSTRACT

Remote sensing has been increasingly used in precision agriculture. Buoyed by the developments in the miniaturization of sensors and platforms, contemporary remote sensing offers data at resolutions finer enough to respond to within-farm variations. LiDAR point cloud, offers features amenable to modelling structural parameters of crops. Early prediction of crop growth parameters helps farmers and other stakeholders dynamically manage farming activities. The objective of this work is the development and application of a deep learning framework to predict plant-level crop height and crown area at different growth stages for vegetable crops. LiDAR point clouds were acquired using a terrestrial laser scanner on five dates during the growth cycles of tomato, eggplant and cabbage on the experimental research farms of the University of Agricultural Sciences, Bengaluru, India. We implemented a hybrid deep learning framework combining distinct features of long-term short memory (LSTM) and Gated Recurrent Unit (GRU) for the predictions of plant height and crown area. The predictions are validated with reference ground truth measurements. These predictions were validated against ground truth measurements. The findings demonstrate that plant-level structural parameters can be predicted well ahead of crop growth stages with around 80% accuracy. Notably, the LSTM and the GRU models exhibited limitations in capturing variations in structural parameters. Conversely, the hybrid model offered significantly improved predictions, particularly for crown area, with error rates for height prediction ranging from 5 to 12%, with deviations exhibiting a more balanced distribution between overestimation and underestimation This approach effectively captured the inherent temporal growth pattern of the crops, highlighting the potential of deep learning for precision agriculture applications. However, the prediction quality is relatively low at the advanced growth stage, closer to the harvest. In contrast, the prediction quality is stable across the three different crops. The results indicate the presence of a robust relationship between the features of the LiDAR point cloud and the auto-feature map of the deep learning methods adapted for plant-level crop structural characterization. This approach effectively captured the inherent temporal growth pattern of the crops, highlighting the potential of deep learning for precision agriculture applications.


Subject(s)
Crops, Agricultural , Deep Learning , Crops, Agricultural/growth & development , Remote Sensing Technology/methods , Vegetables/growth & development , India , Agriculture/methods , Solanum lycopersicum/growth & development , Solanum lycopersicum/anatomy & histology , Solanum melongena/growth & development , Solanum melongena/anatomy & histology
3.
Plant Physiol Biochem ; 211: 108678, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714126

ABSTRACT

The consistently increasing use of zinc oxide nanoparticles (ZnONPs) in crop optimization practices and their persistence in agro-environment necessitate expounding their influence on sustainable agro-environment. Attempts have been made to understand nanoparticle-plant beneficial bacteria (PBB)- plant interactions; the knowledge of toxic impact of nanomaterials on soil-PBB-vegetable systems and alleviating nanotoxicity using PBB is scarce and inconsistent. This study aims at bio-fabrication of ZnONPs from Rosa indica petal extracts and investigates the impact of PBB on growth and biochemical responses of biofertilized eggplants exposed to phyto-synthesized nano-ZnO. Microscopic and spectroscopic techniques revealed nanostructure, triangular shape, size 32.5 nm, and different functional groups of ZnONPs and petal extracts. Inoculation of Pseudomonas fluorescens and Azotobacter chroococcum improved germination efficiency by 22% and 18% and vegetative growth of eggplants by 14% and 15% under NPs stress. Bio-inoculation enhanced total chlorophyll content by 36% and 14 %, increasing further with higher ZnONP concentrations. Superoxide dismutase and catalase activity in nano-ZnO and P. fluorescens inoculated eggplant shoots reduced by 15-23% and 9-11%. Moreover, in situ experiment unveiled distortion and accumulation of NPs in roots revealed by scanning electron microscope and confocal laser microscope. The present study highlights the phytotoxicity of biosynthesized ZnONPs to eggplants and demonstrates that PBB improved agronomic traits of eggplants while declining phytochemicals and antioxidant levels. These findings suggest that P. fluorescens and A. chroococcum, with NPs ameliorative activity, can be cost-effective and environment-friendly strategy for alleviating NPs toxicity and promoting eggplant production under abiotic stress, fulfilling vegetable demands.


Subject(s)
Metal Nanoparticles , Solanum melongena , Zinc Oxide , Zinc Oxide/pharmacology , Solanum melongena/drug effects , Solanum melongena/metabolism , Solanum melongena/growth & development , Solanum melongena/microbiology , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Pseudomonas fluorescens/drug effects , Pseudomonas fluorescens/metabolism , Azotobacter/drug effects , Azotobacter/metabolism , Stress, Physiological/drug effects , Chlorophyll/metabolism , Nanoparticles/chemistry
4.
Genes (Basel) ; 15(4)2024 03 26.
Article in English | MEDLINE | ID: mdl-38674350

ABSTRACT

Seed dormancy is a life adaptation trait exhibited by plants in response to environmental changes during their growth and development. The dormancy of commercial seeds is the key factor affecting seed quality. Eggplant seed dormancy is controlled by quantitative trait loci (QTLs), but reliable QTLs related to eggplant dormancy are still lacking. In this study, F2 populations obtained through the hybridization of paternally inbred lines with significant differences in dormancy were used to detect regulatory sites of dormancy in eggplant seeds. Three QTLs (dr1.1, dr2.1, and dr6.1) related to seed dormancy were detected on three chromosomes of eggplant using the QTL-Seq technique. By combining nonsynonymous sites within the candidate regions and gene functional annotation analysis, nine candidate genes were selected from three QTL candidate regions. According to the germination results on the eighth day, the male parent was not dormant, but the female parent was dormant. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression of nine candidate genes, and the Smechr0201082 gene showed roughly the same trend as that in the phenotypic data. We proposed Smechr0201082 as the potential key gene involved in regulating the dormancy of eggplant seeds. The results of seed experiments with different concentrations of gibberellin A3 (GA3) showed that, within a certain range, the higher the gibberellin concentration, the earlier the emergence and the higher the germination rate. However, higher concentrations of GA3 may have potential effects on eggplant seedlings. We suggest the use of GA3 at a concentration of 200-250 mg·L-1 to treat dormant seeds. This study provides a foundation for the further exploration of genes related to the regulation of seed dormancy and the elucidation of the molecular mechanism of eggplant seed dormancy and germination.


Subject(s)
Germination , Plant Dormancy , Quantitative Trait Loci , Seeds , Solanum melongena , Solanum melongena/genetics , Solanum melongena/growth & development , Quantitative Trait Loci/genetics , Plant Dormancy/genetics , Seeds/genetics , Seeds/growth & development , Germination/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Chromosome Mapping , Phenotype , Genes, Plant/genetics
5.
Biol Futur ; 72(2): 187-199, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34554472

ABSTRACT

The genus Solanum exhibits a wide range of variability in morphology, flavor, and tolerance to biotic and abiotic stresses. Phenotypic and genetic variability using ISSR and RAPD markers of Solanum incanum distributed in Al-Baha province of the Kingdom of Saudi Arabia is assessed. Thirty samples are representing three different locations: Baljershy, Aqeeq, and Tohama, besides twenty-five samples representing five different commercial cultivars tested. Growth type, the number of leaves per plant, fruit size (phenotypic traits), crude protein, carbohydrates, digestive organic matter, and Mg, Ca, P were the principal contributors in the PCA. Molecular analysis showed that 114 ISSR and 80 RAPD alleles with a 100% polymorphism were recorded. The polymorphism information content (PIC) values ranged from 0.84 to 0.91 for ISSR and from 0.59 to 0.89 for RAPD data. Similarity values ranged from 0.16 to 1.00, with an average of 0.47 for ISSR and from 0.01 to 0.97, with an average of 0.36 for RAPD. It resulted in a positive and significant correlation between morphological, molecular, nutritional, and chemical analysis of fruits using Mantel analysis. UPGMA and PCA for morphological traits and molecular data discriminated commercial cultivars and wild relatives. Solanum incanum was more diverse than commercial varieties. This study revealed a wide genetic diversity among and within collected eggplant accessions and may use in breeding programs of eggplants. There is a need to increase the present eggplant collection to widen the genetic diversity of cultivated eggplant varieties in Saudi Arabia.


Subject(s)
Solanum melongena/growth & development , Solanum melongena/physiology , Genetic Variation/genetics , Genetic Variation/physiology , Polymorphism, Genetic/genetics , Polymorphism, Genetic/physiology , Random Amplified Polymorphic DNA Technique/methods , Saudi Arabia , Solanum melongena/genetics
6.
Methods Mol Biol ; 2288: 235-250, 2021.
Article in English | MEDLINE | ID: mdl-34270015

ABSTRACT

Eggplant is one of the five important, worldwide-distributed solanaceous crops. The use of anther culture technology to produce pure, 100% homozygous doubled haploid lines for hybrid seed production is possible since 1982, where the first protocol of wide application to different eggplant materials was published. From then on, different improvements and adaptations to different materials have been made. In parallel, protocols to implement isolated microspore culture technology in eggplant have been developed principally in the last decade, which opens the door for a more efficient DH production in this species. In this chapter, two protocols, one for anther and other for isolated microspore culture in eggplant, are described. Some steps and materials are common to both approaches. A detailed description of each step from is provided.


Subject(s)
Plant Breeding/methods , Solanum melongena/growth & development , Solanum melongena/genetics , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Crops, Agricultural/physiology , Culture Media/chemistry , Diploidy , Flowers/genetics , Flowers/growth & development , Fluorescent Dyes , Haploidy , Homozygote , Indoles , Molecular Biology/methods , Ploidies , Pollen/genetics , Pollen/growth & development , Regeneration/genetics , Solanum melongena/physiology , Staining and Labeling , Tissue Culture Techniques
7.
PLoS One ; 16(6): e0252866, 2021.
Article in English | MEDLINE | ID: mdl-34086839

ABSTRACT

The intensity damages caused by nutritional deficiency in growing plants can vary with nutrients. The effects caused by nutrient omission in the plant nutritional efficiency in relation to the absorption and use of the missing nutrient, and the reasons why these damages reflect in other nutrients have not yet been reported in the culture of scarlet eggplant. A better understanding of the nutritional mechanisms involved may clarify why certain nutrients cause greater limitations than other during plants growth. Thus, this study was designed with the aim of evaluating the damages caused by macronutrients deficiency in the culture of scarlet eggplant in the accumulation of these nutrients, nutritional deficiency, plants growth and in visual symptoms. The experiment was carried out in a controlled environment where plants were cultivated in a hydroponic system. Treatments consisted of supplying a complete Hoagland and Arnon solution (CS), and other nutrient solutions with individual omissions of nitrogen (-N), phosphorus (-P), potassium (-K), calcium (-Ca), magnesium (-Mg) and sulphur (-S). When a nutrient deficiency arose, nutritional analyses, growth and visual symptoms were analyzed. The omissions of N, S and K in the nutrient solution resulted in lower accumulation of all macronutrients in both the above and below ground biomass. Individual omissions resulted in nutritional imbalances with reflexes in the absorption efficiencies and use of the missing nutrient, as well as of other nutrients, revealing that the metabolism involves multiple nutritional interactions. Losses of nutritional efficiencies of macronutrients caused detrimental effects on plants growth, with reduced height, stem diameter, number of leaves, leaf area, and biomass production in above ground and below ground. From the losses in production in above ground biomass, the order of macronutrients limitation was N, S, K, Ca, Mg, and P, with reductions of 99, 96, 94, 76, 51 and 46%, respectively, in comparison to plants cultivated in CS. The most limiting nutrients were N, S, and K, seen that its deficiencies affected the metabolism of all other nutrients. This study demonstrates the importance of an adequate nutritional management of N, S, and K in the cultivation of scarlet eggplant.


Subject(s)
Malnutrition/pathology , Nutrients/analysis , Nutrients/metabolism , Plant Leaves/growth & development , Solanum melongena/growth & development , Magnesium/analysis , Nitrogen/analysis , Phosphorus/analysis , Plant Leaves/metabolism , Potassium/analysis , Solanum melongena/metabolism , Sulfur/analysis
8.
Plant J ; 107(2): 579-596, 2021 07.
Article in English | MEDLINE | ID: mdl-33964091

ABSTRACT

Eggplant (Solanum melongena L.) is an important horticultural crop and one of the most widely grown vegetables from the Solanaceae family. It was domesticated from a wild, prickly progenitor carrying small, round, non-anthocyanic fruits. We obtained a novel, highly contiguous genome assembly of the eggplant '67/3' reference line, by Hi-C retrofitting of a previously released short read- and optical mapping-based assembly. The sizes of the 12 chromosomes and the fraction of anchored genes in the improved assembly were comparable to those of a chromosome-level assembly. We resequenced 23 accessions of S. melongena representative of the worldwide phenotypic, geographic, and genetic diversity of the species, and one each from the closely related species Solanum insanum and Solanum incanum. The eggplant pan-genome contained approximately 51.5 additional megabases and 816 additional genes compared with the reference genome, while the pan-plastome showed little genetic variation. We identified 53 selective sweeps related to fruit color, prickliness, and fruit shape in the nuclear genome, highlighting selection leading to the emergence of present-day S. melongena cultivars from its wild ancestors. Candidate genes underlying the selective sweeps included a MYBL1 repressor and CHALCONE ISOMERASE (for fruit color), homologs of Arabidopsis GLABRA1 and GLABROUS INFLORESCENCE STEMS2 (for prickliness), and orthologs of tomato FW2.2, OVATE, LOCULE NUMBER/WUSCHEL, SUPPRESSOR OF OVATE, and CELL SIZE REGULATOR (for fruit size/shape), further suggesting that selection for the latter trait relied on a common set of orthologous genes in tomato and eggplant.


Subject(s)
Domestication , Genome, Plant/genetics , Plant Breeding , Solanum melongena/genetics , Chromosome Mapping , Genes, Plant/genetics , Genetic Variation , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable , Solanum melongena/growth & development , Whole Genome Sequencing
9.
Genes (Basel) ; 12(3)2021 02 25.
Article in English | MEDLINE | ID: mdl-33668977

ABSTRACT

Eggplant is one of the most important vegetables worldwide. Prickles on the leaves, stems and fruit calyxes of eggplant may cause difficulties during cultivation, harvesting and transportation, and therefore is an undesirable agronomic trait. However, limited knowledge about molecular mechanisms of prickle morphogenesis has hindered the genetic improvement of eggplant. In this study, we performed the phenotypic characterization and transcriptome analysis on prickly and prickleless eggplant genotypes to understand prickle development at the morphological and molecular levels. Morphological analysis revealed that eggplant prickles were multicellular, lignified and layered organs. Comparative transcriptome analysis identified key pathways and hub genes involved in the cell cycle as well as flavonoid biosynthetic, photosynthetic, and hormone metabolic processes during prickle development. Interestingly, genes associated with flavonoid biosynthesis were up-regulated in developing prickles, and genes associated with photosynthesis were down-regulated in developing and matured prickles. It was also noteworthy that several development-related transcription factors such as bHLH, C2H2, MYB, TCP and WRKY were specifically down- or up-regulated in developing prickles. Furthermore, four genes were found to be differentially expressed within the Pl locus interval. This study provides new insights into the regulatory molecular mechanisms underlying prickle morphogenesis in eggplant, and the genes identified might be exploited in breeding programs to develop prickleless eggplant cultivars.


Subject(s)
Gene Expression Profiling/methods , Plant Proteins/genetics , Solanum melongena/growth & development , Fruit/genetics , Gene Expression Regulation, Plant , Phenotype , Photosynthesis , Plant Breeding , Plant Leaves/genetics , Sequence Analysis, RNA , Solanum melongena/genetics , Transcription Factors/genetics
10.
Methods Mol Biol ; 2264: 197-206, 2021.
Article in English | MEDLINE | ID: mdl-33263912

ABSTRACT

The use of antimitotic agents such as colchicine has been common to obtain polyploid organisms. However, this approach entails certain problems, from its toxicity to the operators for being carcinogenic compounds to the instability of the individuals obtained, and the consequent reversion to its original ploidy because the individuals obtained in most cases are chimeric. In vitro culture allows taking advantage of the full potential offered by the cellular totipotence of plant organisms. Based on this, we present a new in vitro culture protocol to obtain polyploid organisms using zeatin riboside (ZR) and eggplant as a model organism. Flow cytometry is used to identify tetraploid regenerants. The regeneration of whole plants from the appropriate tissues using ZR allowed developing polyploid individuals in eggplant, a crop that tends to be recalcitrant to in vitro organogenesis. Thanks to the use of the polysomatic pattern of the explants, we have been able to develop a methodology that allows to obtain stable non-chimeric polyploid individuals from organogenic processes.


Subject(s)
Organogenesis, Plant , Plant Breeding/methods , Ploidies , Solanum melongena/growth & development , Solanum melongena/genetics
11.
Biomed Res Int ; 2020: 8812157, 2020.
Article in English | MEDLINE | ID: mdl-33204720

ABSTRACT

The valorization of Crocus sativus L. by-products has become important given its interesting content of bioactive molecules. In the present study, aqueous tepal extract (ATE) studied eggplant seedling's growth and physiology under a plastic tunnel. ATE was foliage sprayed 3 times every 15 days, with various concentrations (1 mg/mL, 2 mg/mL, 3 mg/mL) in addition to a treatment containing 2 mg/mL of tepals and 0.6 mg/mL of stigmas (T+S). The concentration of 2 mg/L ATE significantly (p ≤ 0.05) increased the plant's height, the chlorophyll content, and decreased antioxidant activity and MDA (malondialdehyde). However, the concentration 3 mg/mL inhibited the plant growth; increased the content of ascorbic acid and polyphenol; and resulted in lipid peroxidation and antioxidant activities increases, indicating oxidative stress (p ≤ 0.05). On the other hand, T+S significantly influenced some parameters analyzed. Our findings demonstrate that ATE can act as a biostimulant at 2 mg/mL to enhance eggplant growth in plastic tunnel production and used in plant stress situations.


Subject(s)
Antioxidants/metabolism , Crocus/chemistry , Plant Extracts/pharmacology , Solanum melongena/drug effects , Agriculture/methods , Antioxidants/analysis , Ascorbic Acid/metabolism , Chlorophyll/metabolism , Lipid Peroxidation/drug effects , Malondialdehyde/metabolism , Morocco , Oxidative Stress/drug effects , Plant Extracts/chemistry , Plant Leaves/drug effects , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism , Solanum melongena/growth & development , Solanum melongena/metabolism
12.
J Agric Food Chem ; 68(43): 11920-11927, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-32970426

ABSTRACT

Pesticide residue analysis is critically important for ensuring food safety and regulating international trade. In a greenhouse setting, we assessed pesticide residue and exposure patterns using liquid chromatography-mass spectrometry and Allura Red tracer analysis. Our results show significant effects of eggplant canopy position and spray concentration on deposition parameters. Specifically, spray coverage, spray density, deposition, and residue were generally greater for leaves in the higher canopy. Deposition and residue, unlike spray coverage and spray density, linearly correlated with spray concentration. Pesticide residues on leaves linearly correlated with depositions on artificial targets, and a correction factor was constructed to estimate residues from tracer depositions. This comparative analysis suggests that tracer analysis using Allura Red in combination with artificial targets is a time- and cost-saving alternative to conventional residue analysis for assessing spray parameters under high-volume spraying scenarios. A better understanding of pesticide residue and spray patterns will not only enhance the safety of our food supply chain but also improve pest control efficacy within the sustainable integrated pest management framework.


Subject(s)
Agriculture/methods , Pesticide Residues/analysis , Solanum melongena/growth & development , Fruit/chemistry , Fruit/drug effects , Plant Leaves/chemistry , Plant Leaves/drug effects , Solanum melongena/chemistry , Solanum melongena/drug effects
13.
Sci Rep ; 10(1): 2322, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32047172

ABSTRACT

Currently, the application of deep learning in crop disease classification is one of the active areas of research for which an image dataset is required. Eggplant (Solanum melongena) is one of the important crops, but it is susceptible to serious diseases which hinder its production. Surprisingly, so far no dataset is available for the diseases in this crop. The unavailability of the dataset for these diseases motivated the authors to create a standard dataset in laboratory and field conditions for five major diseases. Pre-trained Visual Geometry Group 16 (VGG16) architecture has been used and the images have been converted to other color spaces namely Hue Saturation Value (HSV), YCbCr and grayscale for evaluation. Results show that the dataset created with RGB and YCbCr images in field condition was promising with a classification accuracy of 99.4%. The dataset also has been evaluated with other popular architectures and compared. In addition, VGG16 has been used as feature extractor from 8th convolution layer and these features have been used for classifying diseases employing Multi-Class Support Vector Machine (MSVM). The analysis depicted an equivalent or in some cases produced better accuracy. Possible reasons for variation in interclass accuracy and future direction have been discussed.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Machine Learning , Neural Networks, Computer , Plant Diseases/classification , Plant Leaves/growth & development , Solanum melongena/growth & development , Plant Leaves/immunology , Solanum melongena/immunology , Support Vector Machine
14.
BMC Plant Biol ; 20(1): 6, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31906864

ABSTRACT

BACKGROUND: Efficient organogenesis induction in eggplant (Solanum melongena L.) is required for multiple in vitro culture applications. In this work, we aimed at developing a universal protocol for efficient in vitro regeneration of eggplant mainly based on the use of zeatin riboside (ZR). We evaluated the effect of seven combinations of ZR with indoleacetic acid (IAA) for organogenic regeneration in five genetically diverse S. melongena and one S. insanum L. accessions using two photoperiod conditions. In addition, the effect of six different concentrations of indolebutyric acid (IBA) in order to promote rooting was assessed to facilitate subsequent acclimatization of plants. The ploidy level of regenerated plants was studied. RESULTS: In a first experiment with accessions MEL1 and MEL3, significant (p < 0.05) differences were observed for the four factors evaluated for organogenesis from cotyledon, hypocotyl and leaf explants, with the best results obtained (9 and 11 shoots for MEL1 and MEL3, respectively) using cotyledon tissue, 16 h light / 8 h dark photoperiod conditions, and medium E6 (2 mg/L of ZR and 0 mg/L of IAA). The best combination of conditions was tested in the other four accessions and confirmed its high regeneration efficiency per explant when using both cotyledon and hypocotyl tissues. The best rooting media was R2 (1 mg/L IBA). The analysis of ploidy level revealed that between 25 and 50% of the regenerated plantlets were tetraploid. CONCLUSIONS: An efficient protocol for organogenesis of both cultivated and wild accessions of eggplant, based on the use of ZR, is proposed. The universal protocol developed may be useful for fostering in vitro culture applications in eggplant requiring regeneration of plants and, in addition, allows developing tetraploid plants without the need of antimitotic chemicals.


Subject(s)
Isopentenyladenosine/analogs & derivatives , Organogenesis, Plant/physiology , Solanum melongena/growth & development , Cotyledon/drug effects , Cotyledon/growth & development , Hypocotyl/drug effects , Hypocotyl/growth & development , In Vitro Techniques , Indoleacetic Acids/pharmacology , Isopentenyladenosine/pharmacology , Organogenesis, Plant/drug effects , Plant Growth Regulators/pharmacology , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Shoots/drug effects , Plant Shoots/growth & development , Ploidies , Regeneration/drug effects , Solanum melongena/metabolism
15.
Methods Mol Biol ; 2122: 283-293, 2020.
Article in English | MEDLINE | ID: mdl-31975310

ABSTRACT

For a long time, conventional breeding methods have been used to obtain pure, 100% homozygous lines for hybrid seed production in crops of agronomic interest. However, by doubled haploid technology, it is possible to produce 100% homozygous plants derived from precursors of male gametophytes (androgenesis), to accelerate the production of pure lines, which implies important time and cost savings. In this chapter, a protocol for anther culture in eggplant is described, from donor plant growth conditions to regeneration and acclimation of doubled haploid plants, as well as a description of how to analyze ploidy levels of regenerated plants.


Subject(s)
Solanum melongena/growth & development , DNA, Plant/genetics , Haploidy , Plant Breeding/methods , Plant Development , Ploidies , Pollen/genetics , Pollen/growth & development , Solanum melongena/genetics , Tissue Culture Techniques/methods
16.
Ecotoxicol Environ Saf ; 191: 110213, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31978764

ABSTRACT

To study the effects of indole-3-acetic acid (IAA) on cadmium (Cd) accumulation and the physiological responses of the Cd hyperaccumulator Solanum nigrum and non-hyperaccumulator Solanum melongena, a pot experiment was conducted in soil containing 2 mg kg-1 Cd in which different concentrations of IAA (0, 10, 20, or 40 mg L-1) were sprayed on plant leaves. The results showed that Cd accumulation in shoots of S. nigrum was significantly increased by 30% after the addition of 10 mg L-1 IAA under 2 mg kg-1 Cd stress compared to that in the control, but shoot Cd accumulation showed no significant change in S. melongena after this IAA treatment. Additionally, the growth and the proline content in the two species were significantly increased by 20 mg L-1 IAA. The activities of peroxidase and catalase in leaves of S. nigrum and the activity of superoxide dismutase (SOD) in S. melongena were significantly increased and their malondialdehyde content was significantly decreased compared to those in the control. The root activity of S. nigrum was significantly improved after 10 and 20 mg L-1 IAA treatments, but no significant difference was observed in S. melongena. The correlation analysis results showed that the Cd concentration in leaves of S. nigrum was significantly and positively correlated with the carotenoid and proline contents, and there was also a significant positive correlation between the Cd concentration and SOD activity in leaves of S. melongena. Therefore, S. nigrum is an ideal plant for the phytoextraction of Cd-contaminated soil assisted by IAA. IAA promotes Cd accumulation in plant shoots by enhancing the accumulation of carotenoids and proline in S. nigrum and maintaining a high leaf SOD activity in S. melongena.


Subject(s)
Cadmium/metabolism , Indoleacetic Acids/pharmacology , Soil Pollutants/metabolism , Solanum melongena/metabolism , Solanum nigrum/metabolism , Antioxidants/metabolism , Biodegradation, Environmental , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism , Solanum melongena/drug effects , Solanum melongena/growth & development , Solanum nigrum/drug effects , Solanum nigrum/growth & development , Species Specificity
17.
Sci Rep ; 9(1): 19373, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31853094

ABSTRACT

Scarcity of fresh water in arid and semi-arid regions means that we must use more saline waters for irrigation and develop tools to improve crop salt tolerance. The objectives of our study were to (1) Evaluate fruit production, salt tolerance and ion composition of eggplant cv Angela, both nongrafted and when grafted on tomato cv Maxifort rootstock and (2) Evaluate eggplant specific toxicity effect of Cl- and Na+ ions under saline conditions. We salinized the irrigation water with either a Na+-Ca2+- Cl- composition typical of coastal Mediterranean ground waters as well as a mixed Na+-Ca2+-SO42- Cl- type water, a composition more typical of interior continental basin ground. For each water type we evaluated 5 different salinity (osmotic) levels of -0.003 (control), -0.15, -0.30, -0.45 and -0.60 MPa. There were no statistically significant differences in the fruit yield relative to the water type, indicating that Cl- ion toxicity is not a major factor in eggplant yield associated with salinity. This conclusion was confirmed by the determination that leaf Cl content was not correlated with relative yield. The electrical conductivity of the saturation extract (ECe) at which yield is predicted to be reduced by 50% was 4.6 dS m-1 for the grafted plants vs. 1.33 dS m-1 for the nongrafted plants. The relative yield was very well correlated to leaf Na concentrations regardless of grafting status, indicating that Na is the toxic ion responsible for eggplant yield loss under saline conditions. The increased salt tolerance of cv Angela eggplant when grafted onto tomato Maxifort rootstock is attributed to a reduced Na uptake and increased Ca and K uptake with Maxifort rootstock.


Subject(s)
Fruit/growth & development , Saline Waters/pharmacology , Solanum melongena/growth & development , Water/chemistry , Agricultural Irrigation/methods , Crop Production/methods , Fruit/metabolism , Humans , Osmosis/drug effects , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Roots/drug effects , Plant Roots/growth & development , Saline Waters/chemistry , Salinity , Salt Tolerance/drug effects , Sodium/chemistry , Soil/chemistry , Solanum melongena/metabolism
18.
PLoS One ; 14(10): e0223581, 2019.
Article in English | MEDLINE | ID: mdl-31596886

ABSTRACT

DNA methylation through the activity of cytosine-5-methyltransferases (C5-MTases) and DNA demethylases plays important roles in genome protection as well as in regulating gene expression during plant development and plant response to environmental stresses. In this study, we report on a genome-wide identification of six C5-MTases (SmelMET1, SmelCMT2, SmelCMT3a, SmelCMT3b, SmelDRM2, SmelDRM3) and five demethylases (SmelDemethylase_1, SmelDemethylase_2, SmelDemethylase_3, SmelDemethylase_4, SmelDemethylase_5) in eggplant. Gene structural characteristics, chromosomal localization and phylogenetic analyses are also described. The transcript profiling of both C5-MTases and demethylases was assessed at three stages of fruit development in three eggplant commercial F1 hybrids: i.e. 'Clara', 'Nite Lady' and 'Bella Roma', representative of the eggplant berry phenotypic variation. The trend of activation of C5-MTases and demethylase genes varied in function of the stage of fruit development and was genotype dependent. The transcription pattern of C5MTAses and demethylases was also assessed in leaves of the F1 hybrid 'Nite Lady' subjected to salt and drought stresses. A marked up-regulation and down-regulation of some C5-MTases and demethylases was detected, while others did not vary in their expression profile. Our results suggest a role for both C5-MTases and demethylases during fruit development, as well as in response to abiotic stresses in eggplant, and provide a starting framework for supporting future epigenetic studies in the species.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Salt Tolerance , Solanum melongena/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Droughts , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Gene Expression Regulation, Developmental , Plant Development , Plant Proteins/metabolism , Solanum melongena/enzymology , Solanum melongena/growth & development , Solanum melongena/metabolism , Transcriptome
19.
Ying Yong Sheng Tai Xue Bao ; 30(9): 3175-3182, 2019 Sep.
Article in Chinese | MEDLINE | ID: mdl-31529893

ABSTRACT

The effects of red/blue=3/1 [R/B=3/1(9/3), as control, CK1], white light (W, as control, CK2), and combined light of red, blue and white [R/B/W=3/1/1 (9/3/3), T1; R/B/W=9/3/8, T2; R/B/W=3/1/6 (9/3/18), T3; R/B/W=3/1/16 (9/3/48), T4] on the growth, root development, quality and yield of eggplants were examined to provide theoretical and technical support for intensive and high-efficient light supplement and eggplant seedlings cultivation, using LED to accurately regulate light environment and 'Gailiangdalong' eggplant, based on the previous findings of the benefits of R/B=3/1 to the cultivation of eggplant seedlings. The results showed that R/B/W=9/3/8 treatment significantly increased plant height, stem diameter, seedling index, shoot dry weight, root dry weight, root development, anthocyanins and flavonoids content in eggplant peels and early yield. Root/shoot, total phenolic content in eggplant peels and soluble sugar content in pulps under R/B/W=3/1/1 treatment were significantly higher than those of other treatments. Total leaf area and free amino acid content in pulps were higher under R/B/W=3/1/6 treatment. The soluble protein content in pulps was higher under R/B/W=3/1/16 treatment. In summary, combined LED light of red, blue and white could improve the quality of eggplant seedlings and the yield and quality of eggplant fruits, with R/B/W=9/3/8 treatment being the best one in our study.


Subject(s)
Light , Solanum melongena/growth & development , Fruit , Photosynthesis , Seedlings
20.
J Hazard Mater ; 373: 212-223, 2019 07 05.
Article in English | MEDLINE | ID: mdl-30921572

ABSTRACT

To reduce pressure of toxic metals on crop plants, several strategies are being employed of which nutrient management is gaining much importance. Moreover, whether nitric oxide (NO), has any role in nutrients-mediated management/amelioration of metal toxicity is still not known. Therefore, the role of Ca and S in managing Cr(VI) toxicity was investigated in tomato and brinjal with an emphasis on possible involvement of NO. Cr(VI) reduced growth in both vegetables which was accompanied by increased accumulation of Cr(VI), lignin and reactive oxygen species (ROS), and altered cell cycle dynamics and photochemistry of photosynthesis. However, external addition of either Ca or S reversed these effects and hence improved growth noticed in both vegetables. Cr(VI) toxicity was further increased by NG-nitro-l-arginine methyl ester even with additional Ca and S while sodium nitroprusside either restored growth up to the control level or increased it in both vegetables, even in the presence of L-NAME, suggesting that NO might have a positive role in nutrients-mediated management/amelioration of Cr(VI) toxicity. In this study, role of Ca, S and NO with reference to Cr(VI) and NO accumulation, components of phenylpropanoid pathway, cell cycle dynamics, photosynthesis, ROS and antioxidant potential in managing Cr(VI) toxicity is discussed.


Subject(s)
Calcium/pharmacology , Chromium/toxicity , Nitric Oxide/metabolism , Solanum lycopersicum/drug effects , Solanum melongena/drug effects , Sulfur/pharmacology , Cell Cycle/drug effects , Crops, Agricultural/drug effects , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Photosynthesis/drug effects , Reactive Oxygen Species/metabolism , Solanum melongena/growth & development , Solanum melongena/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL