Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 744
Filter
1.
BMC Plant Biol ; 24(1): 386, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724922

ABSTRACT

BACKGROUND: Potato serves as a major non-cereal food crop and income source for small-scale growers in Punjab, Pakistan. Unfortunately, improper fertilization practices have led to low crop yields, worsened by challenging environmental conditions and poor groundwater quality in the Cholistan region. To address this, we conducted an experiment to assess the impact of two fertilizer application approaches on potato cv. Barna using plant growth-promoting bacteria (PGPB) coated biofertilizers. The first approach, termed conventional fertilizer application (CFA), involved four split applications of PGPB-coated fertilizers at a rate of 100:75 kg acre-1 (N and P). The second, modified fertilizer application (MFA), employed nine split applications at a rate of 80:40 kg acre-1. RESULTS: The MFA approach significantly improved various plant attributes compared to the CFA. This included increased plant height (28%), stem number (45%), leaf count (46%), leaf area index (36%), leaf thickness (three-folds), chlorophyll content (53%), quantum yield of photosystem II (45%), photosynthetically active radiations (56%), electrochromic shift (5.6%), proton flux (24.6%), proton conductivity (71%), linear electron flow (72%), photosynthetic rate (35%), water use efficiency (76%), and substomatal CO2 (two-folds), and lowered non-photochemical quenching (56%), non-regulatory energy dissipation (33%), transpiration rate (59%), and stomatal conductance (70%). Additionally, the MFA approach resulted in higher tuber production per plant (21%), average tuber weight (21.9%), tuber diameter (24.5%), total tuber yield (29.1%), marketable yield (22.7%), seed-grade yield (9%), specific gravity (9.6%), and soluble solids (7.1%). It also reduced undesirable factors like goli and downgrade yields by 57.6% and 98.8%, respectively. Furthermore, plants under the MFA approach exhibited enhanced nitrogen (27.8%) and phosphorus uptake (40.6%), with improved N (26.1%) and P uptake efficiency (43.7%) compared to the CFA approach. CONCLUSION: The use of PGPB-coated N and P fertilizers with a higher number of splits at a lower rate significantly boosts potato production in the alkaline sandy soils of Cholistan.


Subject(s)
Fertilizers , Nitrogen , Phosphorus , Solanum tuberosum , Fertilizers/analysis , Phosphorus/metabolism , Solanum tuberosum/growth & development , Nitrogen/metabolism , Pakistan , Soil/chemistry , Bacteria/metabolism , Bacteria/growth & development
2.
New Phytol ; 242(6): 2541-2554, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38197194

ABSTRACT

In potato, maturity is assessed by leaf senescence, which, in turn, affects yield and tuber quality traits. Previously, we showed that the CYCLING DOF FACTOR1 (StCDF1) locus controls leaf maturity in addition to the timing of tuberization. Here, we provide evidence that StCDF1 controls senescence onset separately from senescence progression and the total life cycle duration. We used molecular-biological approaches (DNA-Affinity Purification Sequencing) to identify a direct downstream target of StCDF1, named ORESARA1 (StORE1S02), which is a NAC transcription factor acting as a positive senescence regulator. By overexpressing StORE1S02 in the long life cycle genotype, early onset of senescence was shown, but the total life cycle remained long. At the same time, StORE1S02 knockdown lines have a delayed senescence onset. Furthermore, we show that StORE1 proteins play an indirect role in sugar transport from source to sink by regulating expression of SWEET sugar efflux transporters during leaf senescence. This study clarifies the important link between tuber formation and senescence and provides insight into the molecular regulatory network of potato leaf senescence onset. We propose a complex role of StCDF1 in the regulation of potato plant senescence.


Subject(s)
Gene Expression Regulation, Plant , Plant Leaves , Plant Proteins , Plant Senescence , Solanum tuberosum , Solanum tuberosum/genetics , Solanum tuberosum/physiology , Solanum tuberosum/growth & development , Solanum tuberosum/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Senescence/genetics , Plants, Genetically Modified , Time Factors , Plant Tubers/genetics , Plant Tubers/growth & development , Plant Tubers/physiology , Sugars/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Biological Transport
3.
Molecules ; 27(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35208975

ABSTRACT

1H NMR and LC-MS, commonly used metabolomics analytical platforms, were used to annotate the metabolites found in potato (Solanum tuberosum L.) irrigated with four different treatments based on FA to AMD ratios, namely: control (0% AMD; tap water), 1:1 (50% AMD), 3:1 (75% AMD is 75% FA: AMD), and 100% AMD (untreated). The effects of stress on plants were illustrated by the primary metabolite shifts in the region from δH 0.0 to δH 4.0 and secondary metabolites peaks were prominent in the region ranging from δH 4.5 to δH 8.0. The 1:3 irrigation treatment enabled, in two potato cultivars, the production of significantly high concentrations of secondary metabolites due to the 75% FA: AMD content in the irrigation mixture, which induced stress. The findings suggested that 1:1 irrigation treatment induced production of lower amounts of secondary metabolites in all crops compared to crops irrigated with untreated acid mine drainage treatment and with other FA-treated AMD solutions.


Subject(s)
Agricultural Irrigation , Coal Ash/pharmacology , Coal Mining , Metabolomics , Solanum tuberosum/metabolism , Solanum tuberosum/growth & development
4.
PLoS One ; 17(2): e0263633, 2022.
Article in English | MEDLINE | ID: mdl-35202433

ABSTRACT

Fundamental issues in sustainable development of competitive potato production in Indonesia are production and distribution inefficiencies. This study aims to examine the potato production competitiveness through competitive and comparative analyses as well as evaluating the impacts of government policy on potato production. This study employs Policy Analysis Matrix (PAM) to analyse the cross-section data collected from six regencies in Indonesia. Potato production in Indonesia was profitable privately and socially. The highest value of competitive advantage was indicated by PCR value in the dry season in Wonosobo Regency, Central Java Province. The lowest values were found in Bandung Regency. Highest comparative advantage was revealed in Tanah Karo Regency, North Sumatra Province, during the rainy season. Highest comparative advantage was found in Bandung Regency, West Java Province, in the dry season. However, the social profit was lower than the private profit indicating the potato farmers dealt with disincentives due to imperfect market. It implies that increasing domestic potato production will be more profitable rather than import. The policy makers need to evaluate the recent policies on input and output markets as well as the supply chain of potato to cope with imperfect markets in order to increase farmers' income.


Subject(s)
Agriculture/economics , Crops, Agricultural/growth & development , Solanum tuberosum/growth & development , Crops, Agricultural/economics , Farmers , Humans , Indonesia , Rain , Seasons , Solanum tuberosum/economics
5.
Molecules ; 27(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35164131

ABSTRACT

Starch is a natural polysaccharide for which the technological quality depends on the genetic basis of the plant and the environmental conditions of the cultivation. Growing plants under cover without soil has many advantages for controlling the above-mentioned conditions. The present research focuses on determining the effect of under cover hydroponic potato cultivation on the physicochemical properties of accumulated potato starch (PS). The plants were grown in the hydroponic system, with (greenhouse, GH) and without recirculation nutrient solution (foil tunnel, FT). The reference sample was PS isolated from plants grown in a tunnel in containers filled with mineral soil (SO). The influence of the cultivation method on the elemental composition of the starch molecules was noted. The cultivation method also influenced the protein and amylose content of the PS. Considering the chromatic parameters, PS-GH and PS-FT were brighter and whiter, with a tinge of blue, than PS-SO. PS-SO was also characterized by the largest average diameters of granules, while PS-GH had the lowest crystallinity. PS-SO showed a better resistance to the combined action of elevated temperature and shear force. There was a slight variation in the gelatinization temperature values. Additionally, significant differences for enthalpy and the retrogradation ratio were observed. The cultivation method did not influence the glass transition and melting.


Subject(s)
Amylose , Hydroponics , Plant Tubers/growth & development , Solanum tuberosum/growth & development , Amylose/chemistry , Amylose/isolation & purification , Amylose/metabolism
6.
PLoS One ; 17(1): e0259403, 2022.
Article in English | MEDLINE | ID: mdl-35085256

ABSTRACT

Boron (B) deficiency is a widespread problem in alkaline soils which affects yield and quality of potato but is often ignored by the growers. That's why, we compared the impact of different methods of boron application (foliar spray, fertigation and soil dressing) along with control on boron use efficiency (BUE), quality and yield of potato in alkaline soils. Boron (0.5 kg ha-1) applied as a foliar spray had significantly increased plant height, tuber per plant, tuber volume and enhanced the quality in terms of vitamin C, starch and B content of potato compared to other methods. Moreover, foliar applied B significantly improved B uptake and it use efficiency over other application methods. B concentration in tubers were strongly correlated with vitamin C and starch contents. The application methods were ranked as foliar spray>fertigation>soil dressing in term of their effectiveness towards potato yield and quality improvement. Thus, for optimum production of good quality potato, B should be applied as foliar spray at the rate of 0.5 kg B ha-1 in existing agro-climatic conditions.


Subject(s)
Boron/pharmacology , Solanum tuberosum/growth & development , Crops, Agricultural/drug effects , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Plant Tubers/drug effects , Plant Tubers/growth & development , Plant Tubers/metabolism , Soil/chemistry , Solanum tuberosum/drug effects , Solanum tuberosum/metabolism
7.
J Microbiol ; 60(2): 156-166, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34994959

ABSTRACT

Intensive potato continuous cropping (IPCC) results in low potato yields compared with non-intensive potato continuous cropping (PCC) and potato-maize rotation (PMRC). However, it is still unclear whether the degree of potato continuous cropping obstacle is related to the soil environment formed by the previous crop. To investigate the effect of planting potatoes and planting maize after harvesting the spring potatoes on soil chemical properties and soil microbial community structure, an experiment was carried out in the same origin soil environment over a period of seven years: (a) PCC, i.e., spring planting; (b) IPCC, i.e., autumn and spring planting (IPCC); (c) PMRC, i.e., spring potatoes and summer maize (PMRC), and (d) fallow (CK). We confirmed that the potato yield under PMRC was significantly higher than that under PCC and IPCC. Under IPCC, soil total phosphorus content was significantly higher than other treatments, whereas ammonium nitrogen content was the lowest. Compared with PCC and IPCC, PMRC had a higher ammonium nitrogen content and lower total phosphorus content. The significantly different fungal taxa in IPCC (Glomerellales, Plectosphaerella, Thelebolales) may threaten the health of the plant and positive correlated with soil total phosphorus, while other microbial taxa in PMRC (Bacillales, Polythrincium, Helotiales) can mainly promotes plant nitrogen uptake and protects plants against diseases. The PMRC-promoting taxa were positively correlated with the ammonium nitrogen content and negative correlated with soil total phosphorus content. In summary, the cropping systems might have affected potato yields by changed soil microorganism community structures - especially fungal community structures - and by the chemical properties of the soils that also depends on microbes.


Subject(s)
Bacteria , Fungi , Microbiota , Soil Microbiology , Soil/chemistry , Solanum tuberosum/growth & development , Solanum tuberosum/microbiology , Agriculture/methods , Crop Production/methods , Crops, Agricultural/growth & development , Crops, Agricultural/microbiology , DNA, Bacterial , DNA, Fungal , Nitrogen/metabolism , Phosphorus , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Zea mays/chemistry , Zea mays/growth & development , Zea mays/microbiology
8.
J Sci Food Agric ; 102(3): 1233-1244, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34355399

ABSTRACT

BACKGROUND: Improving potato productivity and quality plays an important role in enhancing global food security and human health. However, inappropriate fertilizer management negatively affects potato growth and tuber development, especially in developing countries where there are large numbers of smallholders without modern soil testing equipment. Nutrient Expert (NE), a new and convenient fertilization decision system, was evaluated in the present study by conducting four site-years field experiments in Northeast China, aiming to determine its effectiveness and applicability for potato production relative to local farmers' practice (FP) and fertilizer recommendation based on soil testing (ST). RESULTS: The excessive fertilization at planting promoted seedling growth for potato plants in FP. Nevertheless, superior plant growth and tuber development were observed in NE at the middle and later growing stages, by optimizing fertilizer input and implementing split fertilization. Overall, compared to FP, the NE system increased total and marketable tuber yields by 12-15% and 16-26%, respectively, at the same time as obtaining 19-31% higher net returns and enhanced fertilizer use efficiencies. Moreover, NE improved tuber quality by increasing the contents of starch, soluble protein and vitamin C and decreasing reducing sugar content relative to FP, as well as increasing starch yields by 23-52%. The ST method also showed comprehensive improvements in potato performances compared to FP, although it did not show any advantages compared to NE system. CONCLUSION: The NE system improved potato productivity and tuber quality by optimizing fertilization management, which is an effective and promising alternative to the ST method for potato production in China and other developing countries. © 2021 Society of Chemical Industry.


Subject(s)
Fertilizers/analysis , Nutrients/metabolism , Plant Tubers/chemistry , Plant Tubers/growth & development , Solanum tuberosum/metabolism , Agriculture , China , Expert Systems , Food Quality , Nitrogen/metabolism , Plant Tubers/metabolism , Soil/chemistry , Solanum tuberosum/chemistry , Solanum tuberosum/growth & development , Starch/metabolism
9.
Gene ; 812: 146089, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34896520

ABSTRACT

The Nuclear Factor-Y (NF-Y) transcription factor (TF), which includes three distinct subunits (NF-YA, NF-YB and NF-YC), is known to manipulate various aspects of plant growth, development, and stress responses. Although the NF-Y gene family was well studied in many species, little is known about their functions in potato. In this study, a total of 37 potato NF-Y genes were identified, including 11 StNF-YAs, 20 StNF-YBs, and 6 StNF-YCs. The genetic features of these StNF-Y genes were investigated by comparing their evolutionary relationship, intron/exon organization and motif distribution pattern. Multiple alignments showed that all StNF-Y proteins possessed clearly conserved core regions that were flanked by non-conserved sequences. Gene duplication analysis indicated that nine StNF-Y genes were subjected to tandem duplication and eight StNF-Ys arose from segmental duplication events. Synteny analysis suggested that most StNF-Y genes (33 of 37) were orthologous to potato's close relative tomato (Solanum lycopersicum L.). Tissue-specific expression of the StNF-Y genes suggested their potential roles in controlling potato growth and development. The role of StNF-Ys in regulating potato responses to abiotic stress (ABA, drought and salinity) was also confirmed: twelve StNF-Y genes were up-regulated and another two were down-regulated under different abiotic treatments. In addition, genes responded differently to pathogen challenges, suggesting that StNF-Y genes may play distinct roles under certain biotic stress. In summary, insights into the evolution of NF-Y family members and their functions in potato development and stress responses are provided.


Subject(s)
CCAAT-Binding Factor/genetics , Gene Duplication , Genomics/methods , Solanum tuberosum/growth & development , Bacterial Proteins/genetics , Chromosome Mapping , Evolution, Molecular , Gene Expression Regulation, Plant , Multigene Family , Sequence Alignment , Solanum tuberosum/genetics , Stress, Physiological , Tissue Distribution
10.
J Plant Physiol ; 269: 153603, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34959218

ABSTRACT

Which sugar transporter regulates sugar accumulation in tubers is largely unknown. Accumulation of reducing sugar (RS) in potato (Solanum tuberosum L.) tubers negatively affects the quality of tubers undergoing the frying process. However, little is known about the genes involved in regulating RS content in tubers at harvest. Here, we have identified two tonoplast sugar transporter (TST) 3-type isoforms (StTST3.1 and StTST3.2) in potato. Quantitative real-time PCR results indicate that StTST3.1 and StTST3.2 possess distinct expression patterns in various potato tissues. StTST3.2 was found to be the expressed TST3-type isoform in tubers. Further subcellular localization analysis revealed that StTST3.2 was targeted to the tonoplast. Silencing of StTST3.2 in potato by stable transformation resulted in significantly lower RS content in tubers at harvest or after room temperature storage, suggesting StTST3.2 plays an important role in RS accumulation in tubers. Accordingly, compared with the unsilenced control, potato chips processed from StTST3.2-silenced tubers exhibited lighter color and dramatically decreased acrylamide production at harvest or after room temperature storage. In addition, we demonstrated that silencing of StTST3.2 has no significant effect on potato growth and development. Thus, suppression of StTST3.2 could be another effective approach for improving processing quality and decreasing acrylamide content in potato tubers.


Subject(s)
Carbohydrate Metabolism , Food Quality , Plant Proteins/metabolism , Plant Tubers/metabolism , Solanum tuberosum/metabolism , Sugars/metabolism , Vacuoles/metabolism , Acrylamide/metabolism , Carbohydrate Metabolism/genetics , Dietary Carbohydrates , Plant Proteins/genetics , Plant Tubers/genetics , Solanum tuberosum/cytology , Solanum tuberosum/genetics , Solanum tuberosum/growth & development
11.
PLoS One ; 16(12): e0261215, 2021.
Article in English | MEDLINE | ID: mdl-34914734

ABSTRACT

Dehydration Responsive Element Binding (DREB) regulates the expression of numerous stress-responsive genes, and hence plays a pivotal role in abiotic stress responses and tolerance in plants. The study aimed to develop a complete overview of the cis-acting regulatory elements (CAREs) present in S. tuberosum DREB gene promoters. A total of one hundred and four (104) cis-regulatory elements (CREs) were identified from 2.5kbp upstream of the start codon (ATG). The in-silico promoter analysis revealed variable sets of cis-elements and functional diversity with the predominance of light-responsive (30%), development-related (20%), abiotic stress-responsive (14%), and hormone-responsive (12%) elements in StDREBs. Among them, two light-responsive elements (Box-4 and G-box) were predicted in 64 and 61 StDREB genes, respectively. Two development-related motifs (AAGAA-motif and as-1) were abundant in StDREB gene promoters. Most of the DREB genes contained one or more Myeloblastosis (MYB) and Myelocytometosis (MYC) elements associated with abiotic stress responses. Hormone-responsive element i.e. ABRE was found in 59 out of 66 StDREB genes, which implied their role in dehydration and salinity stress. Moreover, six proteins were chosen corresponding to A1-A6 StDREB subgroups for secondary structure analysis and three-dimensional protein modeling followed by model validation through PROCHECK server by Ramachandran Plot. The predicted models demonstrated >90% of the residues in the favorable region, which further ensured their reliability. The present study also anticipated pocket binding sites and disordered regions (DRs) to gain insights into the structural flexibility and functional annotation of StDREB proteins. The protein association network determined the interaction of six selected StDREB proteins with potato proteins encoded by other gene families such as MYB and NAC, suggesting their similar functional roles in biological and molecular pathways. Overall, our results provide fundamental information for future functional analysis to understand the precise molecular mechanisms of the DREB gene family in S. tuberosum.


Subject(s)
Promoter Regions, Genetic/genetics , Solanum tuberosum/genetics , Transcription Factors/genetics , Arabidopsis/genetics , Dehydration/genetics , Droughts , Gene Expression/genetics , Gene Expression Regulation, Plant/genetics , Genome-Wide Association Study/methods , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Protein Interaction Mapping/methods , Protein Interaction Maps/genetics , Salt Stress/genetics , Sequence Homology, Nucleic Acid , Solanum tuberosum/growth & development , Stress, Physiological/genetics , Transcription Factors/metabolism
12.
Int J Mol Sci ; 22(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34769436

ABSTRACT

New promising manganese-containing nanobiocomposites (NCs) based on natural polysaccharides, arabinogalactan (AG), arabinogalactan sulfate (AGS), and κ-carrageenan (κ-CG) were studied to develop novel multi-purpose trophic low-dose organomineral fertilizers. The general toxicological effects of manganese (Mn) on the vegetation of potatoes (Solanum tuberosum L.) was evaluated in this study. The essential physicochemical properties of this trace element in plant tissues, such as its elemental analysis and its spectroscopic parameters in electron paramagnetic resonance (EPR), were determined. Potato plants grown in an NC-containing medium demonstrated better biometric parameters than in the control medium, and no Mn accumulated in plant tissues. In addition, the synthesized NCs demonstrated a pronounced antibacterial effect against the phytopathogenic bacterium Clavibacter sepedonicus (Cms) and were proved to be safe for natural soil microflora.


Subject(s)
Anti-Bacterial Agents/pharmacology , Clavibacter/drug effects , Manganese/toxicity , Micronutrients/pharmacology , Nanocomposites/chemistry , Polysaccharides/chemistry , Solanum tuberosum/growth & development , Carrageenan/chemistry , Galactans/chemistry , Micronutrients/chemistry , Solanum tuberosum/drug effects , Solanum tuberosum/metabolism , Solanum tuberosum/microbiology , Trace Elements/pharmacology
13.
Int J Mol Sci ; 22(21)2021 Nov 06.
Article in English | MEDLINE | ID: mdl-34769464

ABSTRACT

Multiple biotic and abiotic stresses challenge plants growing in agricultural fields. Most molecular studies have aimed to understand plant responses to challenges under controlled conditions. However, studies on field-grown plants are scarce, limiting application of the findings in agricultural conditions. In this study, we investigated the composition of apoplastic proteomes of potato cultivar Bintje grown under field conditions, i.e., two field sites in June-August across two years and fungicide treated and untreated, using quantitative proteomics, as well as its activity using activity-based protein profiling (ABPP). Samples were clustered and some proteins showed significant intensity and activity differences, based on their field site and sampling time (June-August), indicating differential regulation of certain proteins in response to environmental or developmental factors. Peroxidases, class II chitinases, pectinesterases, and osmotins were among the proteins more abundant later in the growing season (July-August) as compared to early in the season (June). We did not detect significant differences between fungicide Shirlan treated and untreated field samples in two growing seasons. Using ABPP, we showed differential activity of serine hydrolases and ß-glycosidases under greenhouse and field conditions and across a growing season. Furthermore, the activity of serine hydrolases and ß-glycosidases, including proteins related to biotic stress tolerance, decreased as the season progressed. The generated proteomics data would facilitate further studies aiming at understanding mechanisms of molecular plant physiology in agricultural fields and help applying effective strategies to mitigate biotic and abiotic stresses.


Subject(s)
Plant Proteins/metabolism , Proteome/metabolism , Solanum tuberosum/metabolism , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Ecosystem , Plant Leaves/growth & development , Plant Leaves/metabolism , Proteome/analysis , Proteomics/methods , Solanum tuberosum/growth & development , Stress, Physiological/physiology
14.
Int J Mol Sci ; 22(21)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34769506

ABSTRACT

Plants serve as a niche for the growth and proliferation of a diversity of microorganisms. Soil microorganisms, which closely interact with plants, are increasingly being recognized as factors important to plant health. In this study, we explored the use of high-throughput DNA sequencing of the fungal ITS and bacterial 16S for characterization of the fungal and bacterial microbiomes following biocontrol treatment (DT) with Bacillus subtilis strain Bv17 relative to treatments without biocontrol (DC) during the potato growth cycle at three time points. A total of 5631 operational taxonomic units (OTUs) were identified from the 16S data, and 2236 OTUs were identified from the ITS data. The number of bacterial and fungal OTU in DT was higher than in DC and gradually increased during potato growth. In addition, indices such as Ace, Chao, Shannon, and Simpson were higher in DT than in DC, indicating greater richness and community diversity in soil following the biocontrol treatment. Additionally, the potato tuber yields improved without a measurable change in the bacterial communities following the B. subtilis strain Bv17 treatment. These results suggest that soil microbial communities in the rhizosphere are differentially affected by the biocontrol treatment while improving potato yield, providing a strong basis for biocontrol utilization in crop production.


Subject(s)
Bacillus subtilis/physiology , Fungi/physiology , Plant Tubers/growth & development , Soil Microbiology/standards , Solanum tuberosum/growth & development , Biodiversity , High-Throughput Nucleotide Sequencing/methods , Microbiota , Plant Tubers/genetics , Plant Tubers/microbiology , Rhizosphere , Solanum tuberosum/genetics , Solanum tuberosum/microbiology
15.
Plant Physiol ; 187(3): 1071-1086, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34734280

ABSTRACT

Plants exhibit diverse developmental plasticity and modulate growth responses under various environmental conditions. Potato (Solanum tuberosum), a modified stem and an important food crop, serves as a substantial portion of the world's subsistence food supply. In the past two decades, crucial molecular signals have been identified that govern the tuberization (potato development) mechanism. Interestingly, microRNA156 overexpression in potato provided the first evidence for induction of profuse aerial stolons and tubers from axillary meristems under short-day (SD) photoperiod. A similar phenotype was noticed for overexpression of epigenetic modifiers-MUTICOPY SUPRESSOR OF IRA1 (StMSI1) or ENAHNCER OF ZESTE 2 (StE[z]2), and knockdown of B-CELL-SPECIFIC MOLONEY MURINE LEUKEMIA VIRUS INTEGRATION SITE 1 (StBMI1). This striking phenotype represents a classic example of modulation of plant architecture and developmental plasticity. Differentiation of a stolon to a tuber or a shoot under in vitro or in vivo conditions symbolizes another example of organ-level plasticity and dual fate acquisition in potato. Stolon-to-tuber transition is governed by SD photoperiod, mobile RNAs/proteins, phytohormones, a plethora of small RNAs and their targets. Recent studies show that polycomb group proteins control microRNA156, phytohormone metabolism/transport/signaling and key tuberization genes through histone modifications to govern tuber development. Our comparative analysis of differentially expressed genes between the overexpression lines of StMSI1, StBEL5 (BEL1-LIKE transcription factor [TF]), and POTATO HOMEOBOX 15 TF revealed more than 1,000 common genes, indicative of a mutual gene regulatory network potentially involved in the formation of aerial and belowground tubers. In this review, in addition to key tuberization factors, we highlight the role of photoperiod and epigenetic mechanism that regulates the development of aerial and belowground tubers in potato.


Subject(s)
Cell Plasticity , Epigenesis, Genetic , Photoperiod , Solanum tuberosum/genetics , Plant Tubers/genetics , Plant Tubers/growth & development , Plant Tubers/radiation effects , Solanum tuberosum/growth & development , Solanum tuberosum/radiation effects
16.
Sci Rep ; 11(1): 20029, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34625595

ABSTRACT

Inhibiting sprouting of potatoes is an interesting subject needed for potato storage and industry. Sprouting degrades the quality of tuber along with releasing α-solanine and α-chaconine, which are harmful for health. Sprout suppressants, available in the market, are either costly or toxic to both health and environment. So, there is a need for developing countries to explore new sprouting suppressant compound which is cheap, non-toxic and reasonably efficient in comparison to commercial ones. We have established that simple maleic acid and L-tartaric acid are effective sprout suppressing agents. Both can hinder sprouting up to 6 weeks and 4 weeks post treatment respectively at room temperature in dark. These do not affect the quality parameters, retain the moisture content and maintain the stout appearance of the tubers along the total storage period. Thus maleic acid and L-tartaric acid would qualify as alternative, cheap, efficient sprout suppressant for potato storage and processing.


Subject(s)
Food Storage/methods , Maleates/pharmacology , Plant Tubers/growth & development , Solanine/analogs & derivatives , Solanum tuberosum/growth & development , Tartrates/pharmacology , Plant Tubers/drug effects , Plant Tubers/metabolism , Solanine/metabolism , Solanum tuberosum/drug effects , Solanum tuberosum/metabolism
17.
Sci Rep ; 11(1): 18284, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34521910

ABSTRACT

The Aldehyde dehydrogenase (ALDH) superfamily comprises a group of enzymes involved in the scavenging of toxic aldehyde molecules by converting them into their corresponding non-toxic carboxylic acids. A genome-wide study in potato identified a total of 22 ALDH genes grouped into ten families that are presented unevenly throughout all the 12 chromosomes. Based on the evolutionary analysis of ALDH proteins from different plant species, ALDH2 and ALDH3 were found to be the most abundant families in the plant, while ALDH18 was found to be the most distantly related one. Gene expression analysis revealed that the expression of StALDH genes is highly tissue-specific and divergent in various abiotic, biotic, and hormonal treatments. Structural modelling and functional analysis of selected StALDH members revealed conservancy in their secondary structures and cofactor binding sites. Taken together, our findings provide comprehensive information on the ALDH gene family in potato that will help in developing a framework for further functional studies.


Subject(s)
Aldehyde Dehydrogenase/genetics , Solanum tuberosum/genetics , Aldehyde Dehydrogenase/metabolism , Chromosomes, Plant/genetics , Evolution, Molecular , Genes, Plant/genetics , Genome, Plant/genetics , Phylogeny , Sequence Alignment , Solanum tuberosum/enzymology , Solanum tuberosum/growth & development , Solanum tuberosum/physiology , Stress, Physiological
18.
PLoS One ; 16(8): e0255536, 2021.
Article in English | MEDLINE | ID: mdl-34352881

ABSTRACT

Disease-free and superior quality seed tubers could be obtained by haulm (vine) killing, which also reduces weight loss during storage. Higher resistance during storage ensures that seed tubers will be at the desired physiological age at the time of planting. The use of healthy seed tubers of appropriate physiological age will have positive impact on yield and quality. This study aimed to investigate the effects of haulm killing on seed potato yield and yield components (total tuber yield, average tuber yield/plant, number of tubers and average tuber weight) under semi-arid climate of Artova district in Tokat province, Turkey. The field studies were carried out during potato growing seasons of 2017 and 2018. The experiment consisted of two factors, i.e., potato cultivars and haulm killing. Five different potato cultivars, i.e., 'Agria', 'Marabel', 'Hermes', 'Marfona' and Madeleine were included in the study. The haulm killing treatments were 'haulm killing' and 'no haulm killing'. Haulm killing positively affected the number of tubers per plant and average tuber weight, which are directly related to the tuber yield. Tuber seed yield in the first and second year with haulm killing treatment was 40.78 and 44.05 tons/ha, respectively. The yield without haulm killing in the first and second years was 37.78 and 38.76 tons/ha, respectively. The dry matter ratio of tubers with haulm killing was 21.89% in 2017 and 22.35% during 2018. The dry matter ratio of tubers without haulm killing was 20.57% in 2016 and 21.03% during 2017. The results revealed haulm killing had positive impact on yield, yield-related parameters and dry matter content of seed tubers. Therefore, haulm killing is recommended for higher yield and better quality of seed tubers.


Subject(s)
Plant Stems/chemistry , Plant Tubers/growth & development , Seeds/growth & development , Solanum tuberosum/growth & development
19.
Sci Rep ; 11(1): 15888, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34354149

ABSTRACT

The effects of the amount and timing of regulated deficit drip irrigation under plastic film on potato ('Qingshu 168') growth, photosynthesis, yield, water use efficiency, and quality were examined from 2017 to 2019 in cold and arid northwestern China. In the four stages of potato growth (seedling, tuber initiation, tuber bulking, starch accumulation), eight treatments were designed, with a mild deficit was in treatments WD1 (seedling), WD2 (tuber initiation), WD3 (tuber bulking), and WD4 (starch accumulation); and a moderate deficit in WD5 (seedling), WD6 (tuber initiation), WD7 (tuber bulking), and WD8 (starch accumulation). The net photosynthetic rate, stomatal conductance, and transpiration rate decreased significantly under water deficit in the tuber formation and starch accumulation stages. Although water deficit reduced potato yields, a mild deficit in the seedling stage resulted in the highest yield and water use efficiency at 43,961.91 kg ha-1 and 8.67 kg m-3, respectively. The highest overall quality was in potatoes subjected to mild and moderate water deficit in the seedling stage. Principal component analysis identified mild water stress in the seedling stage as the optimum regulated deficit irrigation regime. The results of this study provide theoretical and technical references for efficient water-saving cultivation and industrialization of potato in northwestern China.


Subject(s)
Agricultural Irrigation/methods , Solanum tuberosum/growth & development , Solanum tuberosum/metabolism , Agriculture/methods , China , Conservation of Water Resources , Photosynthesis/physiology , Plant Leaves/metabolism , Plant Tubers/growth & development , Soil , Water
20.
Int J Mol Sci ; 22(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34360972

ABSTRACT

Auxins and cytokinins create versatile regulatory network controlling virtually all aspects of plant growth and development. These hormonal systems act in close contact, synergistically or antagonistically, determining plant phenotype, resistance and productivity. However, the current knowledge about molecular interactions of these systems is still scarce. Our study with potato plants aimed at deciphering potential interactions between auxin and cytokinin signaling pathways at the level of respective gene expression. Potato plants grown on sterile medium with 1.5% (vegetation) or 5% (tuberization) sucrose were treated for 1 h with auxin or cytokinin. Effects of these two hormones on expression profiles of genes belonging to main signaling pathways of auxin and cytokinin were quantified by RT-qPCR. As a result, several signaling genes were found to respond to auxin and/or cytokinin by up- or down-regulation. The observed effects were largely organ-specific and depended on sucrose content. Auxin strongly reduced cytokinin perception apparatus while reciprocal cytokinin effect was ambiguous and sucrose-dependent. In many cases, functional clustering of genes of the same family was observed. Promoters in some clusters are enriched with canonic hormone-response cis-elements supporting their direct sensitivity to hormones. Collectively, our data shed new light on the crosstalk between auxin- and cytokinin signaling pathways.


Subject(s)
Cytokinins/metabolism , Indoleacetic Acids/metabolism , Signal Transduction , Solanum tuberosum/metabolism , Genes, Plant , Plant Development , Solanum tuberosum/genetics , Solanum tuberosum/growth & development , Sucrose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...