Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 994
Filter
1.
Eur J Neurosci ; 60(5): 4830-4842, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39044301

ABSTRACT

Chemerin is an adipokine that contributes to metabolism regulation. Nucleus tractus solitarius (NTS) is the first relay station in the brain for accepting various visceral afferent activities for regulating cardiovascular activity. However, the roles of chemerin in the NTS in regulating sympathetic activity and blood pressure are almost unknown. This study aimed to determine the role and potential mechanism of chemerin in the NTS in modulating sympathetic outflow and blood pressure. Bilateral NTS microinjections were performed in anaesthetized adult male Sprague-Dawley rats. Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were continuously recorded. Chemerin and its receptor chemokine-like receptor 1 (CMKLR1) were highly expressed in caudal NTS (cNTS). Microinjection of chemerin-9 to the cNTS increased RSNA, MAP and HR, which were prevented by CMKLR1 antagonist α-NETA, superoxide scavenger tempol or N-acetyl cysteine, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors diphenyleneiodonium or apocynin. Chemerin-9 increased superoxide production and NADPH oxidase activity in the cNTS. The increased superoxide production induced by chemerin-9 was inhibited by α-NETA. The effects of cNTS microinjection of chemerin-9 on the RSNA, MAP and HR were attenuated by the pretreatment with paraventricular nucleus (PVN) microinjection of NMDA receptor antagonist MK-801 rather than AMPA/kainate receptor antagonist CNQX. These results indicate that chemerin-9 in the NTS increases sympathetic outflow, blood pressure and HR via CMKLR1-mediated NADPH oxidase activation and subsequent superoxide production in anaesthetized normotensive rats. Glutamatergic inputs in the PVN are needed for the chemerin-9-induced responses.


Subject(s)
Blood Pressure , Chemokines , Rats, Sprague-Dawley , Solitary Nucleus , Sympathetic Nervous System , Animals , Solitary Nucleus/drug effects , Solitary Nucleus/physiology , Solitary Nucleus/metabolism , Male , Chemokines/metabolism , Blood Pressure/drug effects , Blood Pressure/physiology , Sympathetic Nervous System/physiology , Sympathetic Nervous System/drug effects , Rats , Receptors, Chemokine/metabolism , Heart Rate/drug effects , Heart Rate/physiology , Intercellular Signaling Peptides and Proteins/pharmacology , Intercellular Signaling Peptides and Proteins/administration & dosage , NADPH Oxidases/metabolism , Superoxides/metabolism
2.
Nature ; 632(8025): 585-593, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38987598

ABSTRACT

The most successful obesity therapeutics, glucagon-like peptide-1 receptor (GLP1R) agonists, cause aversive responses such as nausea and vomiting1,2, effects that may contribute to their efficacy. Here, we investigated the brain circuits that link satiety to aversion, and unexpectedly discovered that the neural circuits mediating these effects are functionally separable. Systematic investigation across drug-accessible GLP1R populations revealed that only hindbrain neurons are required for the efficacy of GLP1-based obesity drugs. In vivo two-photon imaging of hindbrain GLP1R neurons demonstrated that most neurons are tuned to either nutritive or aversive stimuli, but not both. Furthermore, simultaneous imaging of hindbrain subregions indicated that area postrema (AP) GLP1R neurons are broadly responsive, whereas nucleus of the solitary tract (NTS) GLP1R neurons are biased towards nutritive stimuli. Strikingly, separate manipulation of these populations demonstrated that activation of NTSGLP1R neurons triggers satiety in the absence of aversion, whereas activation of APGLP1R neurons triggers strong aversion with food intake reduction. Anatomical and behavioural analyses revealed that NTSGLP1R and APGLP1R neurons send projections to different downstream brain regions to drive satiety and aversion, respectively. Importantly, GLP1R agonists reduce food intake even when the aversion pathway is inhibited. Overall, these findings highlight NTSGLP1R neurons as a population that could be selectively targeted to promote weight loss while avoiding the adverse side effects that limit treatment adherence.


Subject(s)
Anti-Obesity Agents , Avoidance Learning , Glucagon-Like Peptide-1 Receptor , Neural Pathways , Rhombencephalon , Satiety Response , Animals , Female , Male , Mice , Anti-Obesity Agents/adverse effects , Anti-Obesity Agents/pharmacology , Area Postrema/metabolism , Area Postrema/drug effects , Avoidance Learning/drug effects , Avoidance Learning/physiology , Eating/drug effects , Eating/physiology , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Mice, Inbred C57BL , Neural Pathways/drug effects , Neurons/metabolism , Neurons/physiology , Neurons/drug effects , Obesity/metabolism , Rhombencephalon/cytology , Rhombencephalon/drug effects , Rhombencephalon/metabolism , Rhombencephalon/physiology , Satiety Response/drug effects , Satiety Response/physiology , Solitary Nucleus/cytology , Solitary Nucleus/drug effects , Solitary Nucleus/metabolism , Solitary Nucleus/physiology , Food
3.
Physiol Behav ; 284: 114624, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38959991

ABSTRACT

Angiotensin-II (Ang-II) production is driven by deviations in blood volume and osmolality, and serves the role of regulating blood pressure and fluid intake to maintain cardiovascular and hydromineral homeostasis. These actions are mediated by Ang-II acting on its type 1a receptor (AT1aR) within the central nervous system and periphery. Of relevance, AT1aR are expressed on sensory afferents responsible for conveying cardiovascular information to the nucleus of the solitary tract (NTS). We have previously determined that optical excitation of neurons and vagal afferents within the NTS that express AT1aR (referred to as NTSAT1aR) mimics the perception of increased vascular stretch and induces compensatory responses to restore blood pressure. Here, we test whether NTSAT1aR are also involved in the modulation of water and sodium intake. We directed the light-sensitive excitatory channelrhodopsin-2 (ChR2) or inhibitory halorhodopsin (Halo) to Agtr1a-containing neurons and measured water and sodium chloride (NaCl) intake in the presence and absence of optical stimulation within the NTS during various challenges to fluid homeostasis. Optical perturbation of NTSAT1aR modulates NaCl intake, such that excitation attenuates, whereas inhibition increases intake. This effect is only observed in the water-deprived condition, suggesting that NTSAT1aR are involved in the regulation of sodium intake during an imbalance in both the intracellular and extracellular fluid compartments. Furthermore, optical excitation of NTSAT1aR increases c-Fos expression within oxytocinergic neurons of the paraventricular nucleus of the hypothalamus (PVN), indicating that the regulation of sodium intake by NTSAT1aR may be mediated by oxytocin. Collectively, these results reveal that NTSAT1aR are sufficient and necessary to modulate sodium intake relative to perceived changes in vascular stretch.


Subject(s)
Neurons , Receptor, Angiotensin, Type 1 , Solitary Nucleus , Animals , Solitary Nucleus/metabolism , Solitary Nucleus/physiology , Solitary Nucleus/drug effects , Receptor, Angiotensin, Type 1/metabolism , Neurons/metabolism , Neurons/physiology , Male , Drinking/physiology , Drinking/drug effects , Neurons, Afferent/physiology , Neurons, Afferent/metabolism , Optogenetics , Sodium Chloride/pharmacology
4.
J Neurosci ; 44(27)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38789262

ABSTRACT

We previously showed that orexin neurons are activated by hypoxia and facilitate the peripheral chemoreflex (PCR)-mediated hypoxic ventilatory response (HVR), mostly by promoting the respiratory frequency response. Orexin neurons project to the nucleus of the solitary tract (nTS) and the paraventricular nucleus of the hypothalamus (PVN). The PVN contributes significantly to the PCR and contains nTS-projecting corticotropin-releasing hormone (CRH) neurons. We hypothesized that in male rats, orexin neurons contribute to the PCR by activating nTS-projecting CRH neurons. We used neuronal tract tracing and immunohistochemistry (IHC) to quantify the degree that hypoxia activates PVN-projecting orexin neurons. We coupled this with orexin receptor (OxR) blockade with suvorexant (Suvo, 20 mg/kg, i.p.) to assess the degree that orexin facilitates the hypoxia-induced activation of CRH neurons in the PVN, including those projecting to the nTS. In separate groups of rats, we measured the PCR following systemic orexin 1 receptor (Ox1R) blockade (SB-334867; 1 mg/kg) and specific Ox1R knockdown in PVN. OxR blockade with Suvo reduced the number of nTS and PVN neurons activated by hypoxia, including those CRH neurons projecting to nTS. Hypoxia increased the number of activated PVN-projecting orexin neurons but had no effect on the number of activated nTS-projecting orexin neurons. Global Ox1R blockade and partial Ox1R knockdown in the PVN significantly reduced the PCR. Ox1R knockdown also reduced the number of activated PVN neurons and the number of activated tyrosine hydroxylase neurons in the nTS. Our findings suggest orexin facilitates the PCR via nTS-projecting CRH neurons expressing Ox1R.


Subject(s)
Corticotropin-Releasing Hormone , Neurons , Orexin Receptor Antagonists , Orexin Receptors , Orexins , Rats, Sprague-Dawley , Solitary Nucleus , Animals , Male , Corticotropin-Releasing Hormone/metabolism , Orexins/metabolism , Rats , Neurons/metabolism , Neurons/physiology , Neurons/drug effects , Solitary Nucleus/metabolism , Solitary Nucleus/physiology , Solitary Nucleus/drug effects , Orexin Receptor Antagonists/pharmacology , Orexin Receptors/metabolism , Hypoxia/metabolism , Triazoles/pharmacology , Azepines/pharmacology , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/physiology
5.
Brain Res ; 1837: 148955, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38679314

ABSTRACT

Swallowing is induced by a central pattern generator in the nucleus tractus solitarius (NTS). We aimed to create a medullary slice preparation to elucidate the neural architecture of the central pattern generator of swallowing (Sw-CPG) and record its neural activities. Experiments were conducted on 2-day-old Sprague-Dawley rats (n = 46). The brainstem-spinal cord was transected at the pontomedullary and cervicothoracic junctions; the medulla was sliced transversely at thicknesses of 600, 700, or 800 µm. The rostral end of the slice was 100 µm rostral to the vagus nerve. We recorded hypoglossal nerve activity and electrically stimulated the vagus nerve or microinjected bicuculline methiodide (BIC) into the NTS. The 800-µm slices generated both rhythmic respiratory activity and electrically elicited neural activity. The 700-µm slices generated only respiratory activity, while the 600-µm slices did not generate any neural activity. BIC microinjection into the NTS in 800-µm slices resulted in the typical activity that closely resembled the swallowing activity reported in other experiments. This swallowing-like activity consistently lengthened the respiratory interval. Despite complete inhibition of respiratory activity, weak swallowing-like activity was observed under bath application of a non-NMDA receptor antagonist. Contrastingly, bath application of NMDA receptor antagonists resulted in a complete loss of swallowing-like activity and no change in respiratory activity. These results suggest that the 800-µm medullary slice preparation contains both afferent and efferent neural circuits and pattern generators of swallowing activity. Additionally, NMDA receptors may be necessary for generating swallowing activity. This medullary slice preparation can therefore elucidate Sw-CPG neural networks.


Subject(s)
Animals, Newborn , Bicuculline , Central Pattern Generators , Deglutition , Hypoglossal Nerve , Medulla Oblongata , Rats, Sprague-Dawley , Vagus Nerve , Animals , Deglutition/physiology , Deglutition/drug effects , Medulla Oblongata/physiology , Medulla Oblongata/drug effects , Bicuculline/pharmacology , Bicuculline/analogs & derivatives , Rats , Vagus Nerve/physiology , Vagus Nerve/drug effects , Central Pattern Generators/physiology , Central Pattern Generators/drug effects , Hypoglossal Nerve/physiology , Hypoglossal Nerve/drug effects , Electric Stimulation , Solitary Nucleus/drug effects , Solitary Nucleus/physiology
6.
Neuropeptides ; 105: 102418, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38442503

ABSTRACT

The aim of this study is to verify the impact of Leptin in blood pressure (BP) regulation and Leptin-resistance in metabolic/neurogenic hypertension through baroreflex afferents and dysregulation. Artery BP/heart rate (HR) were measured while nodose (NG) microinjection of Leptin, membrane depolarization/inward current were obtained by whole-cell patch from NG neurons isolated from adult female rats. Baroreflex sensitivity (BRS) tested with PE/SNP, distribution/expression of Leptin/receptors in the NG/nucleus tractus solitary (NTS) examined using immumostaining and qRT-PCR, and serum concentrations of Leptin/NE measured by ELISA were observed in control and high fructose-drinking induced hypertension (HTN-HFD) rats. The results showed that BP was significantly/dose-dependently reduced by Leptin NG microinjection likely through direct excitation of female-specific subpopulation of Ah-type neurons showing a potent membrane depolarization/inward currents. Sex-specific distribution/expression of OB-Ra/OB-Rb in the NG were detected with estrogen-dependent manner, similar observations were also confirmed in the NTS. As expected, BRS was dramatically decreased in the presence of PE/SNP in both male and female rats except for the female with PE at given concentrations. Additionally, serum concentration of Leptin was elevated in HFD-HTN model rats of either sex with more obvious in females. Under hypertensive condition, the mean fluorescent density of OB-R and mRNA expression for OB-Ra/OB-Rb in the NG/NTS were significantly down-regulated. These results have demonstrated that Leptin play a role in dominant parasympathetic drive via baroreflex afferent activation to buffer Leptin-mediated sympathetic activation systemically and Leptin-resistance is an innegligible mechanism for metabolic/neurogenic hypertension through baroreflex afferent dysregulation.


Subject(s)
Baroreflex , Blood Pressure , Hypertension , Leptin , Animals , Female , Male , Rats , Baroreflex/drug effects , Blood Pressure/drug effects , Heart Rate/drug effects , Hypertension/metabolism , Hypertension/physiopathology , Leptin/pharmacology , Leptin/metabolism , Leptin/blood , Neurons/metabolism , Neurons/drug effects , Nodose Ganglion/metabolism , Nodose Ganglion/drug effects , Rats, Sprague-Dawley , Receptors, Leptin/metabolism , Solitary Nucleus/metabolism , Solitary Nucleus/drug effects
7.
Am J Physiol Regul Integr Comp Physiol ; 321(5): R751-R767, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34523351

ABSTRACT

The gene Tas1r3 codes for the protein T1R3, which dimerizes with T1R2 to form a sweetener-binding receptor in taste cells. Tas1r3 influences sweetener preferences in mice, as shown by work with a 129.B6-Tas1r3 segregating congenic strain on a 129P3/J (129) genetic background; members of this strain vary in whether they do or do not have one copy of a donor fragment with the C57BL/6ByJ (B6) allele for Tas1r3 (B6/129 and 129/129 mice, respectively). Taste-evoked neural responses were measured in the nucleus of the solitary tract (NST), the first central gustatory relay, in B6/129 and 129/129 littermates, to examine how the activity dependent on the T1R2/T1R3 receptor is distributed across neurons and over time. Responses to sucrose were larger in B6/129 than in 129/129 mice, but only during a later, tonic response portion (>600 ms) sent to different cells than the earlier, phasic response. Similar results were found for artificial sweeteners, whose responses were best considered as complex spatiotemporal patterns. There were also group differences in burst firing of NST cells, with a significant positive correlation between bursting prevalence and sucrose response size in only the 129/129 group. The results indicate that sweetener transduction initially occurs through T1R3-independent mechanisms, after which the T1R2/T1R3 receptor initiates a separate, spatially distinct response, with the later period dominating sweet taste perceptions and driving sugar preferences. Furthermore, the current data suggest that burst firing is distributed across NST neurons nonrandomly and in a manner that may amplify weak incoming gustatory signals.


Subject(s)
Action Potentials/drug effects , Receptors, G-Protein-Coupled/agonists , Solitary Nucleus/drug effects , Sucrose/pharmacology , Sweetening Agents/pharmacology , Taste Perception , Taste , Animals , Food Preferences , Male , Mice, 129 Strain , Mice, Inbred C57BL , Reaction Time , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Solitary Nucleus/physiology , Species Specificity , Time Factors
8.
Anesth Analg ; 133(5): 1311-1320, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34347648

ABSTRACT

BACKGROUND: Visceral and parietal peritoneum layers have different sensory innervations. Most visceral peritoneum sensory information is conveyed via the vagus nerve to the nucleus of the solitary tract (NTS). We already showed in animal models that intramuscular (i.m.) injection of local anesthetics decreases acute somatic and visceral pain and general inflammation induced by aseptic peritonitis. The goal of the study was to compare the effects of parietal block, i.m. bupivacaine, and vagotomy on spinal cord and NTS stimulation induced by a chemical peritonitis. METHODS: We induced peritonitis in rats using carrageenan and measured cellular activation in spinal cord and NTS under the following conditions, that is, a parietal nerve block with bupivacaine, a chemical right vagotomy, and i.m. microspheres loaded with bupivacaine. Proto-oncogene c-Fos (c-Fos), cluster of differentiation protein 11b (CD11b), and tumor necrosis factor alpha (TNF-α) expression in cord and NTS were studied. RESULTS: c-Fos activation in the cord was inhibited by nerve block 2 hours after peritoneal insult. Vagotomy and i.m. bupivacaine similarly inhibited c-Fos activation in NTS. Forty-eight hours after peritoneal insult, the number of cells expressing CD11b significantly increased in the cord (P = .010). The median difference in the effect of peritonitis compared to control was 30 cells (CI95, 13.5-55). TNF-α colocalized with CD11b. Vagotomy inhibited this microglial activation in the NTS, but not in the cord. This activation was inhibited by i.m. bupivacaine both in cord and in NTS. The median difference in the effect of i.m. bupivacaine added to peritonitis was 29 cells (80% increase) in the cord and 18 cells (75% increase) in the NTS. Our study underlines the role of the vagus nerve in the transmission of an acute visceral pain message and confirmed that systemic bupivacaine prevents noxious stimuli by inhibiting c-Fos and microglia activation. CONCLUSIONS: In rats receiving intraperitoneal carrageenan, i.m. bupivacaine similarly inhibited c-Fos and microglial activation both in cord and in the NTS. Vagal block inhibited activation only in the NTS. Our study underlines the role of the vagus nerve in the transmission of an acute visceral pain message and confirmed that systemic bupivacaine prevents noxious stimuli. This emphasizes the effects of systemic local anesthetics on inflammation and visceral pain.


Subject(s)
Acute Pain/prevention & control , Anesthetics, Local/administration & dosage , Bupivacaine/administration & dosage , Pain Management , Solitary Nucleus/drug effects , Spinal Cord/drug effects , Vagotomy , Vagus Nerve/surgery , Visceral Pain/prevention & control , Acute Pain/chemically induced , Acute Pain/metabolism , Acute Pain/physiopathology , Animals , CD11b Antigen/metabolism , Carrageenan , Disease Models, Animal , Injections, Intramuscular , Male , Microglia/drug effects , Microglia/metabolism , Peritonitis/chemically induced , Proto-Oncogene Proteins c-fos/metabolism , Rats, Sprague-Dawley , Solitary Nucleus/metabolism , Solitary Nucleus/physiopathology , Spinal Cord/metabolism , Spinal Cord/pathology , Tumor Necrosis Factor-alpha/metabolism , Vagus Nerve/physiopathology , Visceral Pain/chemically induced , Visceral Pain/metabolism , Visceral Pain/physiopathology
9.
Physiol Res ; 70(4): 579-590, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34062082

ABSTRACT

Prolactin-releasing peptide (PrRP) has been proposed to mediate the central satiating effects of cholecystokinin (CCK) through the vagal CCK1 receptor. PrRP acts as an endogenous ligand of G protein-coupled receptor 10 (GPR10), which is expressed at the highest levels in brain areas related to food intake regulation, e.g., the paraventricular hypothalamic nucleus (PVN) and nucleus of the solitary tract (NTS). The NTS and PVN are also significantly activated after peripheral CCK administration. The aim of this study was to determine whether the endogenous PrRP neuronal system in the brain is involved in the central anorexigenic effect of the peripherally administered CCK agonist JMV236 or the CCK1 antagonist devazepide and whether the CCK system is involved in the central anorexigenic effect of the peripherally applied lipidized PrRP analog palm-PrRP31 in fasted lean mice. The effect of devazepide and JMV236 on the anorexigenic effects of palm-PrRP31 as well as devazepide combined with JMV236 and palm-PrRP31 on food intake and Fos cell activation in the PVN and caudal NTS was examined. Our results suggest that the anorexigenic effect of JMV236 is accompanied by activation of PrRP neurons of the NTS in a CCK1 receptor-dependent manner. Moreover, while the anorexigenic effect of palm-PrRP31 was not affected by JMV236, it was partially attenuated by devazepide in fasted mice. The present findings indicate that the exogenously influenced CCK system may be involved in the central anorexigenic effect of peripherally applied palm-PrRP31, which possibly indicates some interaction between the CCK and PrRP neuronal systems.


Subject(s)
Appetite Depressants/administration & dosage , Cholecystokinin/metabolism , Eating/drug effects , Feeding Behavior/drug effects , Paraventricular Hypothalamic Nucleus/drug effects , Prolactin-Releasing Hormone/analogs & derivatives , Solitary Nucleus/drug effects , Animals , Chemokines, CC/drug effects , Chemokines, CC/metabolism , Devazepide/administration & dosage , Fasting , Hormone Antagonists/administration & dosage , Injections, Intraperitoneal , Injections, Subcutaneous , Male , Mice, Inbred C57BL , Paraventricular Hypothalamic Nucleus/metabolism , Peptide Fragments/administration & dosage , Prolactin-Releasing Hormone/administration & dosage , Proto-Oncogene Proteins c-fos/metabolism , Signal Transduction , Sincalide/administration & dosage , Sincalide/analogs & derivatives , Solitary Nucleus/metabolism
10.
Metab Brain Dis ; 36(6): 1305-1314, 2021 08.
Article in English | MEDLINE | ID: mdl-33914222

ABSTRACT

Exposure to high fat diet during perinatal period (PHFD) leads to neuroplastic changes in autonomic circuits, however, the role of gender has been incompletely understood. This study aims to investigate (i) short, and (ii) long-term effects of PHFD on autonomic outflow, and (iii) sexual dimorphic variations emerge at adulthood. Male and female rats were fed a control diet (13.5 % kcal from fat) or PHFD (60 % kcal from fat) from embryonic day-14 to postnatal day-21. To assess changes in autonomic outflow, heart rate variability (HRV) was analyzed at 10- and 20-week-old ages. Expressions of tyrosine hydroxylase (TH), metabotropic glutamate2/3 receptor (mGlu2/3R), N-methyl-D-aspartate1 receptor (NMDA1R), and gamma aminobutyric acidA receptor (GABAAR) were evaluated by immunohistochemistry. PHFD did not affect the body weight of 4-, 10-or 20-week-old male or female offsprings. PHFD significantly increased the sympathetic marker low frequency (LF) component, and sympatho-vagal balance (LF:HF) only in 10-week-old PHFD males. Compared with control, the propranolol-induced (4 mg·kg- 1, ip) decline in LF was observed more prominently in PHFD rats, however, these changes were found to be restored at the age of 20 weeks. In caudal ventrolateral medulla and nucleus tractus solitarius, expression of mGlu2/3R was downregulated in PHFD males, whereas no change was detected in NMDA1R. The number of GABAAR-expressing TH-immunoreactive cells was decreased in rostral ventrolateral medulla of PHFD males. The findings of this study suggest that exposure to maternal high-fat diet could lead to autonomic imbalance with increased sympathetic tone in the early adulthood of male offspring rats without developing obesity.


Subject(s)
Diet, High-Fat , Maternal Exposure , Medulla Oblongata/drug effects , Nerve Net/drug effects , Sex Characteristics , Sympathetic Nervous System/drug effects , Adrenergic beta-Antagonists/pharmacology , Animals , Animals, Newborn , Body Weight , Female , Heart Rate/drug effects , Male , Pregnancy , Prenatal Exposure Delayed Effects , Propranolol/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, GABA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Solitary Nucleus/drug effects , Solitary Nucleus/metabolism
11.
Front Endocrinol (Lausanne) ; 12: 772909, 2021.
Article in English | MEDLINE | ID: mdl-34987476

ABSTRACT

Central administration of fibroblast growth factor-1 (FGF1) results in long-lasting resolution of hyperglycemia in various rodent models, but the pre- and postsynaptic mechanisms mediating the central effects of FGF1 are unknown. Here we utilize electrophysiology recordings from neuronal populations in the arcuate nucleus of the hypothalamus (ARH), nucleus of the solitary tract (NTS), and area postrema (AP) to investigate the mechanisms underlying FGF1 actions. While FGF1 did not alter membrane potential in ARH-NPY-GFP neurons, it reversibly depolarized 83% of ARH-POMC-EGFP neurons and decreased the frequency of inhibitory inputs onto ARH-POMC-EGFP neurons. This depolarizing effect persisted in the presence of FGF receptor (R) blocker FIIN1, but was blocked by pretreatment with the voltage-gated sodium channel (VGSC) blocker tetrodotoxin (TTX). Non-FGF1 subfamilies can activate vascular endothelial growth factor receptors (VEGFR). Surprisingly, the VEGFR inhibitors axitinib and BMS605541 blocked FGF1 effects on ARH-POMC-EGFP neurons. We also demonstrate that FGF1 induces c-Fos in the dorsal vagal complex, activates NTS-NPY-GFP neurons through a FGFR mediated pathway, and requires VGSCs to activate AP neurons. We conclude that FGF1 acts in multiple brain regions independent of FGFRs. These studies present anatomical and mechanistic pathways for the future investigation of the pharmacological and physiological role of FGF1 in metabolic processes.


Subject(s)
Arcuate Nucleus of Hypothalamus/drug effects , Area Postrema/drug effects , Fibroblast Growth Factor 1/pharmacology , Neurons/drug effects , Solitary Nucleus/drug effects , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Area Postrema/metabolism , Membrane Potentials/drug effects , Mice , Neurons/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Solitary Nucleus/metabolism
12.
Acta Pharmacol Sin ; 42(6): 898-908, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33154555

ABSTRACT

Hydrogen sulfide (H2S), which is closely related to various cardiovascular disorders, lowers blood pressure (BP), but whether this action is mediated via the modification of baroreflex afferent function has not been elucidated. Therefore, the current study aimed to investigate the role of the baroreflex afferent pathway in H2S-mediated autonomic control of BP regulation. The results showed that baroreflex sensitivity (BRS) was increased by acute intravenous NaHS (a H2S donor) administration to renovascular hypertensive (RVH) and control rats. Molecular expression data also showed that the expression levels of critical enzymes related to H2S were aberrantly downregulated in the nodose ganglion (NG) and nucleus tractus solitarius (NTS) in RVH rats. A clear reduction in BP by the microinjection of NaHS or L-cysteine into the NG was confirmed in both RVH and control rats, and a less dramatic effect was observed in model rats. Furthermore, the beneficial effects of NaHS administered by chronic intraperitoneal infusion on dysregulated systolic blood pressure (SBP), cardiac parameters, and BRS were verified in RVH rats. Moreover, the increase in BRS was attributed to activation and upregulation of the ATP-sensitive potassium (KATP) channels Kir6.2 and SUR1, which are functionally expressed in the NG and NTS. In summary, H2S plays a crucial role in the autonomic control of BP regulation by improving baroreflex afferent function due at least in part to increased KATP channel expression in the baroreflex afferent pathway under physiological and hypertensive conditions.


Subject(s)
Afferent Pathways/metabolism , Baroreflex/physiology , Blood Pressure/physiology , Hydrogen Sulfide/metabolism , Hypertension/physiopathology , Animals , Antihypertensive Agents/pharmacology , Baroreflex/drug effects , Blood Pressure/drug effects , Cardiotonic Agents/pharmacology , Cystathionine beta-Synthase/metabolism , Cystathionine gamma-Lyase/metabolism , Hydrogen Sulfide/pharmacology , Hypertension/drug therapy , Male , Nodose Ganglion/drug effects , Nodose Ganglion/enzymology , Nodose Ganglion/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Rats, Sprague-Dawley , Solitary Nucleus/drug effects , Solitary Nucleus/enzymology , Solitary Nucleus/metabolism , Sulfides/pharmacology , Sulfonylurea Receptors/metabolism , Sulfurtransferases/metabolism
13.
J Physiol Pharmacol ; 71(4)2020 Apr.
Article in English | MEDLINE | ID: mdl-33214338

ABSTRACT

Hydrogen sulfide (H2S) is a neuromodulator in the central nervous system. The physiological function of H2S in the nucleus tractus solitarii (NTS) has rarely been reported. This research aimed to explore the role of H2S in regulating gastric functions. Wistar rats were randomly assigned to sodium hydrosulfide (NaHS; 4 and 8 nmol) groups, physiological saline (PS) group, capsazepine (10 pmol) + NaHS (4 nmol) group, L703606 (4 nmol) + NaHS (4 nmol) group, and pyrrolidine dithiocarbamate (4 nmol) + NaHS (4 nmol) group. The pH values of gastric acid were measured using a pH meter pre- and post-injection. It was found that the microinjetion of NaHS (4 and 8 nmol), an exogenous H2S donor, into the NTS (n = 6) remarkably decreased the pH values of gastric juice. The inductive effect of NaHS on gastric juice production could be suppressed by capsazepine (a transient receptor potential vanilloid 1 antagonist), L703606 (a NK1 receptor antagonist) and pyrrolidine dithiocarbamate (a nuclear fator-κB inhibitor). However, the same amount of PS did not induce any significant change in the pH value of gastric acid (P > 0.05). The findings of this study revealed that NaHS within the NTS remarkably promoted gastric acid secretion via the activation of TRPV1 channels and nuclear factor-κB-dependent mechanism in rats.


Subject(s)
Gasotransmitters/metabolism , Gastric Acid/metabolism , Gastric Mucosa/innervation , Hydrogen Sulfide/metabolism , Solitary Nucleus/drug effects , Sulfides/pharmacology , Animals , Gastric Acidity Determination , Hydrogen-Ion Concentration , Male , NF-kappa B/metabolism , Rats, Wistar , Receptors, Neurokinin-1/metabolism , Secretory Pathway , Solitary Nucleus/metabolism , Sulfides/metabolism , TRPV Cation Channels/metabolism
14.
Am J Physiol Regul Integr Comp Physiol ; 319(6): R673-R683, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33026822

ABSTRACT

Oxytocin (OT) is a neuropeptide whose central receptor-mediated actions include reducing food intake. One mechanism of its behavioral action is the amplification of the feeding inhibitory effects of gastrointestinal (GI) satiation signals processed by hindbrain neurons. OT treatment also reduces carbohydrate intake in humans and rodents, and correspondingly, deficits in central OT receptor (OT-R) signaling increase sucrose self-administration. This suggests that additional processes contribute to central OT effects on feeding. This study investigated the hypothesis that central OT reduces food intake by decreasing food seeking and food motivation. As central OT-Rs are expressed widely, a related focus was to assess the role of one or more OT-R-expressing nuclei in food motivation and food-seeking behavior. OT was delivered to the lateral ventricle (LV), nucleus tractus solitarius (NTS), or ventral tegmental area (VTA), and a progressive ratio (PR) schedule of operant reinforcement and an operant reinstatement paradigm were used to measure motivated feeding behavior and food-seeking behavior, respectively. OT delivered to the LV, NTS, or VTA reduced 1) motivation to work for food and 2) reinstatement of food-seeking behavior. Results provide a novel and additional interpretation for central OT-driven food intake inhibition to include the reduction of food motivation and food seeking.


Subject(s)
Appetite Depressants/administration & dosage , Appetite Regulation/drug effects , Eating/drug effects , Feeding Behavior/drug effects , Lateral Ventricles/drug effects , Motivation/drug effects , Oxytocin/administration & dosage , Solitary Nucleus/drug effects , Ventral Tegmental Area/drug effects , Animals , Infusions, Intraventricular , Lateral Ventricles/physiology , Male , Rats, Sprague-Dawley , Solitary Nucleus/physiology , Ventral Tegmental Area/physiology
15.
Brain Res ; 1746: 147006, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32628919

ABSTRACT

Neuronatin (Nnat) is involved in the regulation of cellular molecular signaling and appears to be also linked to metabolic processes. The gastrointestinal peptides cholecystokinin (CCK) and bombesin (BN) have an effect on the short-term inhibition of food intake and induce neuronal activation in different brain nuclei, prominently in the nucleus of the solitary tract (NTS) involved in the modulation of food intake. The aim of the study was to examine if Nnat immunoreactivity is detectable in the NTS, and whether peripheral CCK-8S or BN cause c-Fos activation of Nnat neurons. Non-fasted male Sprague-Dawley rats received an intraperitoneal (i.p.) injection of 5.2 or 8.7 nmol CCK-8S/kg or 26 or 32 nmol BN/kg (n = 4 all groups) or vehicle solution (0.15 M NaCl; n = 7). The number of c-Fos neurons was determined 90 min post injection in the NTS and dorsal motor nucleus of the vagus (DMV). We observed Nnat immunoreactive neurons in the NTS and DMV. CCK-8S (25-fold and 51-fold, p = 0.025 and p = 0.001) and BN (31-fold and 59-fold, p = 0.007 and p = 0.001) at both doses increased the number of c-Fos positive neurons in the NTS. CCK and BN did not show a significant effect in the DMV. Both doses of CCK-8S (24-fold and 48-fold p = 0.011 and p = 0.001) and bombesin (31-fold and 56-fold, p = 0.002 and p = 0.001) increased the number of activated Nnat neurons in the NTS (p = 0.001) compared to the vehicle group, while in the DMV no significant increase of c-Fos activation was detected. In conclusion, i.p. injected CCK-8S or BN induce an increased neuronal activity in NTS Nnat neurons, giving rise that Nnat may play a role in the regulation of food intake mediated by peripheral CCK-8S or BN.


Subject(s)
Bombesin/pharmacology , Cholecystokinin/pharmacology , Neurons/drug effects , Peptide Fragments/pharmacology , Solitary Nucleus/cytology , Solitary Nucleus/drug effects , Animals , Male , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Solitary Nucleus/metabolism
16.
Brain Res ; 1743: 146949, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32522627

ABSTRACT

The α2-adrenergic receptor (α2-AR) agonist dexmedetomidine increases baroreflex sensitivity (BRS). In the current study, we examined the potential role of adenosine A1 receptor (A1R) within the nucleus tractus solitaries (NTS) in such a response. Briefly, adult male Sprague-Dawley rats were anesthetized and randomly received microinjection of selective A1R antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 0.1 pmol/1 µl) or saline vehicle into the right NTS. Ten min after the microinjection, dexmedetomidine infusion started at a rate of 30 µg/kg over 15 min followed by infusion at 15 µg·kg-1·h-1 for 105 min, or 100 µg/kg over 15 min followed by infusion at 50 µg·kg-1·h-1 for 105 min. BRS was examined using a standard phenylephrine method prior to infusion (T0), 60 min (T1) and 120 min (T2) after dexmedetomidine infusion started. Adenosine concentration in plasma and brainstem was measured with high-performance liquid chromatography with vs. without α2-AR antagonist atipamezole pretreatment (0.5 mg/kg, i.p.). Dexmedetomidine increased BRS at both 30 (T0: 0.55 ± 0.25 vs. T1: 2.45 ± 0.37, T2: 2.26 ± 0.56 ms/mmHg, P < 0.05) and 100 µg/kg (T0: 0.63 ± 0.24 vs. T1: 6.21 ± 1.87, T2: 6.30 ± 2.12 ms/mmHg, P < 0.05). DPCPX pretreatment obliterated BRS response to 100-µg/kg dexmedetomidine. At 100 µg/kg, dexmedetomidine increased adenosine concentration in plasma (0.23 ± 0.11 to 0.45 ± 0.07 µg/ml, P < 0.05) and brainstem (1.46 ± 0.30 to 2.52 ± 0.22 µg/ml, P < 0.05); such effect was blocked by atipamezole pretreatment. Western blot analysis showed α2-AR up-regulation by 100-µg/kg dexmedetomidine, which can be prevented by DPCPX. Double-labeling with glial fibrillary acidic protein showed α2-AR up-regulation in astrocytes in the NTS. These results suggest that dexmedetomidine enhances baroreflex sensitivity, possibly by increasing adenosine in NTS and α2-AR expression in astrocytes.


Subject(s)
Adenosine A1 Receptor Antagonists/pharmacology , Adrenergic alpha-2 Receptor Agonists/pharmacology , Baroreflex/drug effects , Dexmedetomidine/pharmacology , Receptor, Adenosine A1/metabolism , Solitary Nucleus/metabolism , Animals , Male , Rats , Rats, Sprague-Dawley , Solitary Nucleus/drug effects
17.
Psychoneuroendocrinology ; 117: 104687, 2020 07.
Article in English | MEDLINE | ID: mdl-32388229

ABSTRACT

The gut-brain peptide glucagon-like peptide-1 (GLP-1) reduces reward from palatable food and drugs of abuse. Recent rodent studies show that activation of GLP-1 receptors (GLP-1R) within the nucleus of the solitary tract (NTS) not only suppresses the motivation and intake of palatable food, but also reduces alcohol-related behaviors. As reward induced by addictive drugs and sexual behaviors involve similar neurocircuits, we hypothesized that activation of GLP-1R suppresses sexual behavior in sexually naïve male mice. We initially identified that systemic administration of the GLP-1R agonist, exendin-4 (Ex4), decreased the frequency and duration of mounting behaviors, but did not alter the preference for females or female bedding. Thereafter infusion of Ex4 into the NTS decreased various behaviors of the sexual interaction chain, namely social, mounting and self-grooming behaviors. In male mice tested in the sexual interaction test, NTS-Ex4 increased dopamine turnover and enhanced serotonin levels in the nucleus accumbens (NAc). In addition, these mice displayed higher corticosterone, but not testosterone, levels in plasma. Finally, GLP-1R antagonist, exendin-3 (9-39) amide (Ex9), infused into the NTS differentially altered the ability of systemic-Ex4 to suppress the various behaviors of the sexual interaction chain, indicating that GLP-1R within the NTS is one of many sub-regions contributing to the GLP-1 dependent sexual behavior link. In these mice NTS-Ex9 partly blocked the systemic-Ex4 enhancement of corticosterone levels. Collectively, these data highlight that activation of GLP-1R, specifically those in the NTS, reduces sexual interaction behaviors in sexually naïve male mice and further provide a link between NTS-GLP-1R activation and reward-related behaviors.


Subject(s)
Corticosterone/blood , Glucagon-Like Peptide-1 Receptor/metabolism , Nucleus Accumbens/metabolism , Reward , Sexual Behavior, Animal/physiology , Solitary Nucleus/metabolism , Animals , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/antagonists & inhibitors , Male , Mice , Nucleus Accumbens/drug effects , Sexual Behavior, Animal/drug effects , Solitary Nucleus/drug effects
18.
J Neuroendocrinol ; 32(6): e12855, 2020 06.
Article in English | MEDLINE | ID: mdl-32436241

ABSTRACT

Phoenixin (PNX) is a neuropeptide shown to play roles in the control of reproduction. The nucleus of the solitary tract (NTS), a critical autonomic integrating centre in the hindbrain, is one of many areas with dense expression of PNX. Using coronal NTS slices obtained from male Sprague-Dawley rats, the present study characterised the effects of PNX on both spike frequency and membrane potential of NTS neurones. Extracellular recordings demonstrated that bath-applied 10 nmol L-1 PNX increased the firing frequency in 32% of NTS neurones, effects which were confirmed with patch-clamp recordings showing that 50% of NTS neurones tested depolarised in response to application of the peptide. Surprisingly, the responsiveness to PNX in NTS neurones then declined suddenly to 9% (P < 0.001). This effect was subsequently attributed to stress associated with construction in our animal care facility because PNX responsiveness was again observed in slices from rats delivered and maintained in a construction-free facility. We then examined whether this loss of PNX responsiveness could be replicated in rats placed on a chronic stress regimen involving ongoing corticosterone (CORT) treatment in the construction-free facility. Slices from animals treated in this way showed a similar lack of neuronal responsiveness to PNX (9.1 ± 3.9%) within 2 weeks of CORT treatment. These effects were specific to PNX responsiveness because CORT treatment had no effect on the responsiveness of NTS neurones to angiotensin II. These results are the first to implicate PNX with respect to directly controlling the excitability of NTS neurones and also provide intriguing data showing the plasticity of these effects associated with environmental and glucocorticoid stress levels of the animal.


Subject(s)
Cellular Microenvironment , Glucocorticoids/adverse effects , Neurons/drug effects , Peptide Hormones/pharmacology , Solitary Nucleus/drug effects , Action Potentials/drug effects , Animals , Cellular Microenvironment/drug effects , Cellular Microenvironment/physiology , Electric Stimulation , Electrophysiological Phenomena/drug effects , Male , Membrane Potentials/drug effects , Neurons/physiology , Rats , Rats, Sprague-Dawley , Solitary Nucleus/cytology , Solitary Nucleus/physiology , Stress, Physiological/drug effects , Stress, Physiological/physiology
19.
Physiol Rep ; 8(10): e14443, 2020 05.
Article in English | MEDLINE | ID: mdl-32441441

ABSTRACT

It is crucial for animals to discriminate between palatable (safe) and aversive (toxic) tastants. The mechanisms underlying neuronal discrimination of taste stimuli remain unclear. We examined relations between taste response properties (spike counts, response duration, and coefficient of variation [CV]) and location of taste-sensitive neurons in the pontine parabrachial nucleus (PBN). Extracellular single units' activity in the PBN of Wistar rats was recorded using multibarrel glass micropipettes under urethane anesthesia. Forty taste-sensitive neurons were classified as NaCl (N)-best (n = 15), NaCl/HCl (NH)-best (n = 14), HCl (H)-best (n = 8), and sucrose (S)-best (n = 3) neurons. The net response to NaCl (15.2 ± 2.3 spikes/s) among the N-best neurons was significantly larger than that among the NH-best (4.5 ± 0.8 spikes/s) neurons. The response duration (4.5 ± 0.2 s) of the N-best neurons to NaCl was significantly longer than that of the NH-best (2.2 ± 0.3 s) neurons. These differences in the spike counts and the response durations between the two neuronal types in the PBN were similar to that previously reported in the rostral nucleus of the solitary tract (rNST). The CVs in the N-best and the NH-best neurons were significantly smaller in the PBN than those in the rNST. Histologically, most N-best neurons (12/13, 92%) were localized to the medial region, while NH-best neurons (11/13, 85%) were primarily found within the brachium conjunctivum. These results suggest that NaCl-specific taste information is transmitted by two distinct neuronal groups (N-best and NH-best), with different taste properties and locations within rNST to PBN tractography. Future studies on the higher order nuclei for taste could reveal more palatable and aversive taste pathways.


Subject(s)
Neurons/physiology , Parabrachial Nucleus/physiology , Sodium Chloride/pharmacology , Solitary Nucleus/physiology , Taste Perception/physiology , Taste/physiology , Action Potentials , Animals , Male , Neurons/drug effects , Parabrachial Nucleus/drug effects , Rats , Rats, Wistar , Solitary Nucleus/drug effects , Taste/drug effects , Taste Perception/drug effects
20.
Am J Physiol Regul Integr Comp Physiol ; 318(6): R1068-R1077, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32320636

ABSTRACT

Severe trauma can produce a postinjury "metabolic self-destruction" characterized by catabolic metabolism and hyperglycemia. The severity of the hyperglycemia is highly correlated with posttrauma morbidity and mortality. Although no mechanism has been posited to connect severe trauma with a loss of autonomic control over metabolism, traumatic injury causes other failures of autonomic function, notably, gastric stasis and ulceration ("Cushing's ulcer"), which has been connected with the generation of thrombin. Our previous studies established that proteinase-activated receptors (PAR1; "thrombin receptors") located on astrocytes in the autonomically critical nucleus of the solitary tract (NST) can modulate gastric control circuit neurons to cause gastric stasis. Hindbrain astrocytes have also been implicated as important detectors of low glucose or glucose utilization. When activated, these astrocytes communicate with hindbrain catecholamine neurons that, in turn, trigger counterregulatory responses (CRR). There may be a convergence between the effects of thrombin to derange hindbrain gastrointestinal control and the hindbrain circuitry that initiates CRR to increase glycemia in reaction to critical hypoglycemia. Our results suggest that thrombin acts within the NST to increase glycemia through an astrocyte-dependent mechanism. Blockade of purinergic gliotransmission pathways interrupted the effect of thrombin to increase glycemia. Our studies also revealed that thrombin, acting in the NST, produced a rapid, dramatic, and potentially lethal suppression of respiratory rhythm that was also a function of purinergic gliotransmission. These results suggest that the critical connection between traumatic injury and a general collapse of autonomic regulation involves thrombin action on astrocytes.


Subject(s)
Astrocytes/drug effects , Blood Glucose , Neurons/drug effects , Rhombencephalon/drug effects , Thrombin/pharmacology , Animals , Male , Phrenic Nerve/drug effects , Rats , Rats, Sprague-Dawley , Respiratory Rate/drug effects , Solitary Nucleus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL