Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Magnes Res ; 35(1): 1-10, 2022 01 01.
Article in English | MEDLINE | ID: mdl-36214549

ABSTRACT

In the present study, we investigated whether magnesium sulphate activates the L-arginine/NO/cGMP pathway and elicits peripheral antinociception. The male Swiss mice paw pressure test was performed with hyperalgesia induced by intraplantar injection of prostaglandin E2. All drugs were administered locally into the right hind paw of animals. Magnesium sulphate (20, 40, 80 and 160 µg/paw) induced an antinociceptive effect. The dose of 80 µg/paw elicited a local antinociceptive effect that was antagonized by the non-selective NOS inhibitor, L-NOArg, and by the selective neuronal NOS inhibitor, L-NPA. The inhibitors, L-NIO and L-NIL, selectively inhibited endothelial and inducible NOS, respectively, but were ineffective regarding peripheral magnesium sulphate injection. The soluble guanylyl cyclase inhibitor, ODQ, blocked the action of magnesium sulphate, and the cGMP-phosphodiesterase inhibitor, zaprinast, enhanced the antinociceptive effects of intermediate dose of magnesium sulphate. Our results suggest that magnesium sulphate stimulates the NO/cGMP pathway via neuronal NO synthase to induce peripheral antinociceptive effects.


Subject(s)
Dinoprostone , Magnesium Sulfate , Analgesics/pharmacology , Animals , Arginine/metabolism , Cyclic GMP/metabolism , Dinoprostone/adverse effects , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Magnesium Sulfate/pharmacology , Male , Mice , Nitric Oxide , Nitroarginine , Phosphodiesterase Inhibitors/pharmacology , Soluble Guanylyl Cyclase/antagonists & inhibitors
2.
Nat Commun ; 12(1): 2628, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976159

ABSTRACT

Thoracic aortic aneurysm, as occurs in Marfan syndrome, is generally asymptomatic until dissection or rupture, requiring surgical intervention as the only available treatment. Here, we show that nitric oxide (NO) signaling dysregulates actin cytoskeleton dynamics in Marfan Syndrome smooth muscle cells and that NO-donors induce Marfan-like aortopathy in wild-type mice, indicating that a marked increase in NO suffices to induce aortopathy. Levels of nitrated proteins are higher in plasma from Marfan patients and mice and in aortic tissue from Marfan mice than in control samples, indicating elevated circulating and tissue NO. Soluble guanylate cyclase and cGMP-dependent protein kinase are both activated in Marfan patients and mice and in wild-type mice treated with NO-donors, as shown by increased plasma cGMP and pVASP-S239 staining in aortic tissue. Marfan aortopathy in mice is reverted by pharmacological inhibition of soluble guanylate cyclase and cGMP-dependent protein kinase and lentiviral-mediated Prkg1 silencing. These findings identify potential biomarkers for monitoring Marfan Syndrome in patients and urge evaluation of cGMP-dependent protein kinase and soluble guanylate cyclase as therapeutic targets.


Subject(s)
Aortic Aneurysm, Thoracic/pathology , Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Marfan Syndrome/complications , Soluble Guanylyl Cyclase/metabolism , Animals , Aorta/cytology , Aorta/diagnostic imaging , Aorta/drug effects , Aorta/pathology , Aortic Aneurysm, Thoracic/diagnosis , Aortic Aneurysm, Thoracic/etiology , Aortic Aneurysm, Thoracic/prevention & control , Biomarkers/blood , Biomarkers/metabolism , Carbazoles/administration & dosage , Cyclic GMP/blood , Cyclic GMP/metabolism , Disease Models, Animal , Female , Fibrillin-1/genetics , Gene Knockdown Techniques , Humans , Male , Marfan Syndrome/blood , Marfan Syndrome/genetics , Marfan Syndrome/pathology , Mice , Muscle, Smooth, Vascular/cytology , Mutation , Myocytes, Smooth Muscle , Nitric Oxide/metabolism , Nitric Oxide Donors/administration & dosage , Primary Cell Culture , Soluble Guanylyl Cyclase/antagonists & inhibitors , Ultrasonography
3.
Am J Physiol Regul Integr Comp Physiol ; 320(5): R588-R610, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33501888

ABSTRACT

Whether hypoxic acclimation influences nitric oxide (NO)-mediated control of fish cardiac function is not known. Thus, we measured the function/performance of myocardial strips from normoxic- and hypoxic-acclimated (40% air saturation; ∼8 kPa O2) trout at several frequencies (20-80 contractions·min-1) and two muscle strain amplitudes (8% and 14%) when exposed to increasing concentrations of the NO donor sodium nitroprusside (SNP) (10-9 to 10-4 M). Further, we examined the influence of 1) nitric oxide synthase (NOS) produced NO [by blocking NOS with 10-4 M NG-monomethyl-l-arginine (l-NMMA)] and 2) soluble guanylyl cyclase mediated, NOS-independent, NO effects (i.e., after blockade with 10-4 M ODQ), on myocardial contractility. Hypoxic acclimation increased twitch duration by 8%-10% and decreased mass-specific net power by ∼35%. However, hypoxic acclimation only had minor impacts on the effects of SNP and the two blockers on myocardial function. The most surprising finding of the current study was the degree to which contraction frequency and strain amplitude influenced NO-mediated effects on myocardial power. For example, at 8% strain, 10-4 SNP resulted in a decrease in net power of ∼30% at 20 min-1 but an increase of ∼20% at 80 min-1, and this effect was magnified at 14% strain. This research suggests that hypoxic acclimation has only minor effects on NO-mediated myocardial contractility in salmonids, is the first to report the high frequency- and strain-dependent nature of NO effects on myocardial contractility in fishes, and supports previous work showing that NO effects on the heart (myocardium) are finely tuned spatiotemporally.


Subject(s)
Acclimatization , Hypoxia/metabolism , Myocardial Contraction , Myocardium/metabolism , Nitric Oxide/metabolism , Oncorhynchus mykiss/metabolism , Animals , Enzyme Inhibitors/pharmacology , Fish Proteins/antagonists & inhibitors , Fish Proteins/metabolism , Hypoxia/physiopathology , Kinetics , Myocardial Contraction/drug effects , Nitric Oxide Donors/metabolism , Nitric Oxide Donors/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , Soluble Guanylyl Cyclase/antagonists & inhibitors , Soluble Guanylyl Cyclase/metabolism
4.
J Biol Chem ; 296: 100336, 2021.
Article in English | MEDLINE | ID: mdl-33508317

ABSTRACT

Soluble guanylate cyclase (sGC) is a heme-containing heterodimeric enzyme that generates many molecules of cGMP in response to its ligand nitric oxide (NO); sGC thereby acts as an amplifier in NO-driven biological signaling cascades. Because sGC helps regulate the cardiovascular, neuronal, and gastrointestinal systems through its cGMP production, boosting sGC activity and preventing or reversing sGC inactivation are important therapeutic and pharmacologic goals. Work over the last two decades is uncovering the processes by which sGC matures to become functional, how sGC is inactivated, and how sGC is rescued from damage. A diverse group of small molecules and proteins have been implicated in these processes, including NO itself, reactive oxygen species, cellular heme, cell chaperone Hsp90, and various redox enzymes as well as pharmacologic sGC agonists. This review highlights their participation and provides an update on the processes that enable sGC maturation, drive its inactivation, or assist in its recovery in various settings within the cell, in hopes of reaching a better understanding of how sGC function is regulated in health and disease.


Subject(s)
Soluble Guanylyl Cyclase/metabolism , Animals , Dimerization , Glyceraldehyde-3-Phosphate Dehydrogenases , HSP90 Heat-Shock Proteins/metabolism , Heme/metabolism , Humans , Ligands , Nitric Oxide/metabolism , Oxidation-Reduction , Soluble Guanylyl Cyclase/antagonists & inhibitors
5.
J Nat Prod ; 83(12): 3642-3651, 2020 12 24.
Article in English | MEDLINE | ID: mdl-33290062

ABSTRACT

Soluble guanylate cyclase (sGC) is the human receptor of nitric oxide (NO) in numerous kinds of cells and produces the second messenger 3',5'-cyclic guanosine monophosphate (cGMP) upon NO binding to its heme. sGC is involved in many cell signaling pathways both under healthy conditions and under pathological conditions, such as angiogenesis associated with tumor growth. Addressing the selective inhibition of the NO/cGMP pathway is a strategy worthwhile to be investigated for slowing down tumoral angiogenesis or for curing vasoplegia. However, sGC inhibitors are lacking investigation. We have explored a chemical library of various natural compounds and have discovered inhibitors of sGC. The selected compounds were evaluated for their inhibition of purified sGC in vitro and sGC in endothelial cells. Six natural compounds, from various organisms, have IC50 in the range 0.2-1.5 µM for inhibiting the NO-activated synthesis of cGMP by sGC, and selected compounds exhibit a quantified antiangiogenic activity using an endothelial cell line. These sGC inhibitors can be used directly as tools to investigate angiogenesis and cell signaling or as templates for drug design.


Subject(s)
Biological Products/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Soluble Guanylyl Cyclase/antagonists & inhibitors , Animals , Biological Products/chemistry , Enzyme Inhibitors/chemistry , Humans
6.
Nitric Oxide ; 104-105: 61-69, 2020 11 01.
Article in English | MEDLINE | ID: mdl-33038483

ABSTRACT

INTRODUCTION: Cardiovascular diseases are coupled to decreased nitric oxide (NO) bioavailability, and there is a constant search for novel and better NO-donors. Here we synthesized and characterized the cardiovascular effects of the new organic nitrate 2-nitrate-1,3-dioctanoxypropan (NDOP). METHODS: A combination of in vitro and in vivo experiments was performed in C57BL/6 mice and Wistar rats. Thus, the ability of NDOP in donating NO in a cell-free system and in vascular smooth muscles cells (VSMC) and its ability to induce vasorelaxation in aortic rings from mice were evaluated. In addition, changes in blood pressure and heart rate to different doses of NDOP were evaluated in conscious rats. Finally, acute pre-clinical toxicity to oral administration of NDOP was assessed in mice. RESULTS: In cell-free system, NDOP increased NO levels, which was dependent on xanthine oxidoreductase (XOR). NDOP also increased NO levels in VSMC, which was not influenced by endothelial NO synthase. Furthermore, incubation with the XOR inhibitor febuxostat blunted the vasorelaxation in aortic ring preparations. In conscious rats, NDOP elicited dose-dependent reduction in blood pressure accompanied with increased heart rate. In vessel preparations, NDOP (10-8-10-3 mol/L) induced endothelium-independent vasorelaxation, which was inhibited by the NO scavengers 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and hydroxocobalamin or by inhibition of soluble guanylyl cyclase using H- [1,2,4] oxadiazolo [4,3-a]quinoxalin-1-one. To investigate if NDOP acts through potassium channels, selective blockers were used. Inhibition of BKCa, Kv or KATP subtypes of potassium channels had no effect, but inhibition of inward-rectifier potassium channels (KIR) significantly reduced NDOP-mediated vasorelaxation. Lastly, NDOP showed low toxicity (LD50 ~5000 mg/kg). CONCLUSION: Bioactivation of NDOP involves functional XOR, and this new organic nitrate elicits vasorelaxation via NO-cGMP-PKG signaling and activation of KIR channels. Future studies should further characterize the underlying mechanism and evaluate the therapeutic benefits of chronic NDOP treatment in relevant cardiovascular disease models.


Subject(s)
Nitric Oxide Donors/pharmacology , Nitric Oxide/metabolism , Nitro Compounds/pharmacology , Potassium Channels, Inwardly Rectifying/metabolism , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Animals , Blood Pressure/drug effects , Enzyme Inhibitors/pharmacology , Female , Male , Mice, Inbred C57BL , Nitric Oxide Donors/toxicity , Nitro Compounds/toxicity , Oxadiazoles/pharmacology , Quinoxalines/pharmacology , Rats, Wistar , Signal Transduction/drug effects , Soluble Guanylyl Cyclase/antagonists & inhibitors , Tachycardia/chemically induced , Vasodilator Agents/toxicity , Xanthine Dehydrogenase/metabolism
7.
United European Gastroenterol J ; 8(10): 1174-1185, 2020 12.
Article in English | MEDLINE | ID: mdl-32878579

ABSTRACT

BACKGROUND: In cirrhosis, the nitric oxide-soluble guanylyl cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway is impaired, which contributes to increased intrahepatic vascular resistance (IHVR) and fibrogenesis. We investigated if sGC stimulation (riociguat (RIO)), sGC activation (cinaciguat (CINA)) or phosphodiesterase (PDE)-5 inhibition (tadalafil (TADA)) improves portal hypertension (PHT) and liver fibrosis. METHODS: Fifty male Sprague-Dawley rats underwent bile-duct ligation (BDL) or sham operation. RIO (0.5 mg/kg), CINA (1 mg/kg), TADA (1.5 mg/kg) or vehicle (VEH) was administered from weeks 2 to 4 after BDL. At week 4, invasive haemodynamic measurements were performed, and liver fibrosis was assessed by histology (chromotrope-aniline blue (CAB), Picro-Sirius red (PSR)) and hepatic hydroxyproline content. RESULTS: Cirrhotic bile duct-ligated rats presented with PHT (13.1 ± 1.0 mmHg) and increased IHVR (4.9 ± 0.5 mmHg⋅min/mL). Both RIO (10.0 ± 0.7 mmHg, p = 0.021) and TADA (10.3 ± 0.9 mmHg, p = 0.050) decreased portal pressure by reducing IHVR (RIO: -41%, p = 0.005; TADA: -21%, p = 0.199) while not impacting heart rate, mean arterial pressure and portosystemic shunting. Hepatic cGMP levels increased upon RIO (+239%, p = 0.006) and TADA (+32%, p = 0.073) therapy. In contrast, CINA dosed at 1 mg/kg caused weight loss, arterial hypotension and hyperlactataemia in bile duct-ligated rats. Liver fibrosis area was significantly decreased by RIO (CAB: -48%, p = 0.011; PSR: -27%, p = 0.121) and TADA (CAB: -21%, p = 0.342; PSR: -52%, p = 0.013) compared to VEH-treated bile duct-ligated rats. Hepatic hydroxyproline content was reduced by RIO (from 503 ± 20 to 350 ± 30 µg/g, p = 0.003) and TADA (282 ± 50 µg/g, p = 0.003), in line with a reduction of the hepatic stellate cell activation markers smooth-muscle actin and phosphorylated moesin. Liver transaminases decreased under RIO (AST: -36%; ALT: -32%) and TADA (AST: -24%; ALT: -27%) treatment. Hepatic interleukin 6 gene expression was reduced in the RIO group (-56%, p = 0.053). CONCLUSION: In a rodent model of biliary cirrhosis, the sGC stimulator RIO and the PDE-5 inhibitor TADA improved PHT. The decrease of sinusoidal vascular resistance was paralleled by a reduction in liver fibrosis and hepatic inflammation, while systemic haemodynamics were not affected.


Subject(s)
Hypertension, Portal/drug therapy , Liver Cirrhosis/drug therapy , Phosphodiesterase 5 Inhibitors/therapeutic use , Soluble Guanylyl Cyclase/antagonists & inhibitors , Animals , Benzoates/pharmacology , Benzoates/therapeutic use , Bile Ducts/surgery , Disease Models, Animal , Humans , Hypertension, Portal/diagnosis , Hypertension, Portal/etiology , Hypertension, Portal/physiopathology , Ligation/adverse effects , Liver Cirrhosis/etiology , Male , Phosphodiesterase 5 Inhibitors/pharmacology , Portal Pressure/drug effects , Portal Pressure/physiology , Portal System/drug effects , Portal System/physiopathology , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Signal Transduction/physiology , Soluble Guanylyl Cyclase/metabolism , Tadalafil/pharmacology , Tadalafil/therapeutic use , Vascular Resistance/drug effects , Vascular Resistance/physiology
8.
Biomed Pharmacother ; 130: 110605, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32781358

ABSTRACT

A mass of evidence has identified a promoting of nitric oxide (NO) production in endothelial cells using natural products as a potential strategy to prevent and treat hypertension. This study investigated whether the aqueous extract of Moringa oleifera leaves (MOE) could lower mean arterial pressure (MAP) and relax mesenteric arterial beds in rats via stimulating endothelium-derived NO production. Intravenous administration of MOE (1-30 mg/kg) caused a dose-dependent reduction in MAP in anesthetized rats. In rats pretreated with the NO-synthase inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME, 30 mg/kg, i.v.), the effect of MOE on MAP was significantly reduced. MOE (0.001-3 mg) induced relaxation in methoxamine (10 µM) pre-contracted mesenteric arterial beds, which was abolished by endothelium denudation. This endothelium-dependent vasorelaxation was reduced by L-NAME (100 µM) or the NO-sensitive guanylyl cyclase inhibitor, 1H- [1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one (10 µM). In primary human pulmonary artery endothelial cells, MOE (3-30 µg/mL) induced NO production, which was inhibited by L-NAME (100 µM) pretreatment. These findings show that MOE stimulates the endothelium-derived NO release for driving its vasorelaxation to lower arterial blood pressure. These suggest the development of MOE as a natural antihypertensive supplement.


Subject(s)
Arterial Pressure/drug effects , Arteries/drug effects , Moringa oleifera/chemistry , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/biosynthesis , Plant Extracts/pharmacology , Vascular Resistance/drug effects , Animals , Dose-Response Relationship, Drug , Male , Muscle Relaxation/drug effects , NG-Nitroarginine Methyl Ester/pharmacology , Plant Extracts/therapeutic use , Plant Leaves/chemistry , Rats , Rats, Wistar , Soluble Guanylyl Cyclase/antagonists & inhibitors , Splanchnic Circulation/drug effects
9.
Andrologia ; 52(6): e13606, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32352181

ABSTRACT

Diabetic men are at a higher risk of erectile dysfunction (ED). A tropical plant, clove (Syn. Eugenia caryophyllata, Caryophyllus aromaticus L., Syzygium aromaticum (L.) Merr. & L.M. Perry) from the Myrtaceae family has displayed aphrodisiac activity. The present research aimed to investigate the impacts of clove essential oil (CEO) and the ingredient of CEO, eugenol (E) on ED in diabetic rats. We divided Sprague-Dawley rats into control and diabetic groups. Erectile function was evaluated before and after CEO and E intracavernosal injection. CEO- and E-induced relaxation responses were investigated in isolated corpus cavernosum (CC) using various inhibitors. The intracavernous administration of CEO and E restored erectile responses in diabetic rats. CEO and E induced remarkable relaxation in all groups. CEO- and E-induced relaxation responses were partially inhibited after pre-contraction with KCl. Tetraethylammonium and glibenclamide inhibited the relaxation response to CEO. Glibenclamide inhibited maximum relaxation to E. The inhibitors of nitric oxide synthase (NOS), soluble guanylyl cyclase and nifedipine did not change CEO- and E-induced relaxation responses. The current results suggest that CEO and the major compound of the essential oil, E improved diabetes-induced ED in rats, and CEO caused CC relaxation via K+ channels independently NO signalling pathway.


Subject(s)
Clove Oil/pharmacology , Diabetes Mellitus, Experimental/physiopathology , Erectile Dysfunction/physiopathology , Eugenol/pharmacology , Penile Erection/drug effects , Animals , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Erectile Dysfunction/etiology , Erectile Dysfunction/metabolism , Glyburide/pharmacology , In Vitro Techniques , Injections , Male , Nifedipine/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Oils, Volatile/pharmacology , Penis/drug effects , Potassium Channel Blockers/pharmacology , Rats , Rats, Sprague-Dawley , Soluble Guanylyl Cyclase/antagonists & inhibitors , Tetraethylammonium/pharmacology
10.
Molecules ; 23(9)2018 Aug 25.
Article in English | MEDLINE | ID: mdl-30149624

ABSTRACT

Soluble guanylate cyclase (sGC) is a key enzyme implicated in various physiological processes such as vasodilation, thrombosis and platelet aggregation. The enzyme's Heme-Nitric oxide/Oxygen (H-NOX) binding domain is the only sensor of nitric oxide (NO) in humans, which on binding with NO activates sGC to produce the second messenger cGMP. H-NOX is thus a hot target for drug design programs. BAY60-2770 and BAY58-2667 are two widely studied activators of sGC. Here we present comparative molecular dynamics studies to understand the molecular details characterizing the binding of BAY60-2770 and BAY58-2667 with the human H-NOX (hH-NOX) and bacterial H-NOX (bH-NOX) domains. HartreeFock method was used for parametrization of both the activators. A 50 ns molecular dynamics (MD) simulation was run to identify the functionally critical regions of the H-NOX domains. The CPPTRAJ module was used for analysis. BAY60-2770 on binding with bH-NOX, triggered rotational movement in signaling helix F and significant dynamicity in loops α and ß, but in hH-NOX domain the compound showed relatively lesser aforementioned structural fluctuations. Conversely, hH-NOX ligated BAY58-2667 experienced highest transitions in its helix F due to electrostatic interactions with D84, T85 and R88 residues which are not conserved in bH-NOX. These conformational transformations might be essential to communicate with downstream PAS, CC and cyclase domains of sGC. Comparative MD studies revealed that BAY bound bHNOX dynamics varied from that of hH-NOX, plausibly due to some key residues such as R40, F74 and Y112 which are not conserved in bacteria. These findings will help to the design of novel drug leads to cure diseases associated to human sGC.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Heme/chemistry , Nitric Oxide/chemistry , Oxygen/chemistry , Protein Interaction Domains and Motifs , Soluble Guanylyl Cyclase/antagonists & inhibitors , Soluble Guanylyl Cyclase/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Humans , Hydrogen Bonding , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Soluble Guanylyl Cyclase/metabolism
12.
Mol Pharmacol ; 93(2): 73-78, 2018 02.
Article in English | MEDLINE | ID: mdl-29138269

ABSTRACT

Belonging to the class of so-called soluble guanylate cyclase (sGC) activators, cinaciguat and BAY 60-2770 are interesting therapeutic tools for the treatment of various cardiovascular pathologies. The drugs are supposed to preferentially stimulate oxidized or heme-depleted, but not native sGC. Since this concept has been challenged by studies demonstrating complete relaxation of nondiseased vessels, this study was designed to reinvestigate the mode of action in greater detail. To this purpose, the effect of cinaciguat was studied on vessel tone of porcine coronary arteries and rat thoracic aortas. Organ bath studies showed that the compound caused time- and concentration-dependent relaxation of precontracted vessels with a maximal effect observed at 90 minutes. The dilatory response was not affected by extensive washout of the drug. Cinaciguat-induced vasodilation was associated with a time- and concentration-dependent increase of cGMP levels. Experiments with purified sGC in the presence of Tween 20 showed that cinaciguat activates the heme-free enzyme in a concentration-dependent manner with an EC50 value of ∼0.2 µM and maximal cGMP formation at 10 µM. By contrast, the effect of cinaciguat on 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one-oxidized (ferric) sGC was moderate, reaching ∼10%-15% of maximal activity. Dilution experiments of cinaciguat/Tween 20-preincubated sGC revealed the irreversible character of the drug. Assuming a sensitive balance between heme-free, ferric, and nitric oxide-sensitive ferrous sGC in cells and tissues, we propose that cinaciguat by virtue of its irreversible mode of action is capable of shifting this equilibrium toward the heme-free apo-sGC species.


Subject(s)
Benzoates/pharmacology , Enzyme Inhibitors/pharmacology , Molecular Mimicry , Protoporphyrins/metabolism , Soluble Guanylyl Cyclase/antagonists & inhibitors , Vasodilation/drug effects , Animals , Aorta, Thoracic/physiology , Cattle , Coronary Vessels/metabolism , Cyclic GMP/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/enzymology , Enzyme Activation , Enzyme Stability , Lung/drug effects , Lung/enzymology , Protoporphyrins/chemistry , Rats, Sprague-Dawley , Soluble Guanylyl Cyclase/metabolism , Swine , Vasodilator Agents/pharmacology
13.
PLoS One ; 12(8): e0184088, 2017.
Article in English | MEDLINE | ID: mdl-28859127

ABSTRACT

Among androgen-regulated genes, soluble guanylyl cyclase α1 (sGCα1) is significant in promoting the survival and growth of prostate cancer cells and does so independent of nitric oxide (NO) signaling. Peptides were designed targeting sGCα1 to block its pro-cancer functions and one peptide is discussed here. Peptide B-8R killed both androgen-dependent and androgen-independent prostate cancer cells that expressed sGCα1, but not cells that do not express this gene. Peptide B-8R induced apoptosis of prostate cancer cells. Importantly, Peptide B-8R does not affect nor its cytotoxicity depend on NO signaling, despite the fact that it associates with sGCα1, which dimerizes with sGCß1 to form the sGC enzyme. Just as with a previously studied Peptide A-8R, Peptide B-8R induced elevated levels of reactive oxygen species (ROS) in prostate cancer cells, but using a ROS-sequestering agent showed that ROS was not responsible the cytotoxic activity of Peptide B-8R. Interestingly, Peptide B-8R induced elevated levels of p53 and phosphorylated p38, but neither of these changes is the cause of the peptide's cytotoxicity. Additional drugs were used to alter levels of iron levels in cells and these studies showed that Peptide B-8R activity does not depend on Ferroptosis. Thus, future work will be directed at defining the mechanism of cytotoxic action of Peptide B-8R against prostate cancer cells.


Subject(s)
Enkephalins/administration & dosage , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Protein Precursors/administration & dosage , Soluble Guanylyl Cyclase/genetics , Androgens/genetics , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Enkephalins/genetics , Gene Expression Regulation, Neoplastic , Humans , Male , Nitric Oxide/metabolism , Oncogene Protein pp60(v-src)/genetics , Peptide Fragments/genetics , Prostatic Neoplasms/pathology , Protein Precursors/genetics , Reactive Oxygen Species/metabolism , Soluble Guanylyl Cyclase/antagonists & inhibitors
14.
Neuropharmacology ; 125: 156-165, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28754372

ABSTRACT

The role of nitric oxide (NO) in nociceptive transmission at the spinal cord level remains uncertain. Increased activity of spinal N-methyl-d-aspartate (NMDA) receptors contributes to development of chronic pain induced by peripheral nerve injury. In this study, we determined how endogenous NO affects NMDA receptor activity of spinal cord dorsal horn neurons in control and spinal nerve-ligated rats. Bath application of the NO precursor l-arginine or the NO donor S-nitroso-N-acetylpenicillamine (SNAP) significantly inhibited NMDA receptor currents of spinal dorsal horn neurons in both sham control and nerve-injured rats. Inhibition of neuronal nitric oxide synthase (nNOS) or blocking the S-nitrosylation reaction with N-ethylmaleimide abolished the inhibitory effects of l-arginine on NMDA receptor currents recorded from spinal dorsal horn neurons in sham control and nerve-injured rats. However, bath application of the cGMP analog 8-bromo-cGMP had no significant effects on spinal NMDA receptor currents. Inhibition of soluble guanylyl cyclase also did not alter the inhibitory effect of l-arginine on spinal NMDA receptor activity. Furthermore, knockdown of nNOS with siRNA abolished the inhibitory effects of l-arginine, but not SNAP, on spinal NMDA receptor activity in both groups of rats. Additionally, intrathecal injection of l-arginine significantly attenuated mechanical or thermal hyperalgesia induced by nerve injury, and the l-arginine effect was diminished in rats treated with a nNOS inhibitor or nNOS-specific siRNA. These findings suggest that endogenous NO inhibits spinal NMDA receptor activity through S-nitrosylation. NO derived from nNOS attenuates spinal nociceptive transmission and neuropathic pain induced by nerve injury.


Subject(s)
Analgesics, Non-Narcotic/pharmacology , Hyperalgesia/drug therapy , Nitric Oxide/pharmacology , Posterior Horn Cells/drug effects , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Spinal Nerves/injuries , Animals , Arginine/pharmacology , Central Nervous System Agents/pharmacology , Cyclic GMP/analogs & derivatives , Cyclic GMP/pharmacology , Disease Models, Animal , Ethylmaleimide/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Hot Temperature , Hyperalgesia/metabolism , Male , Neuralgia/drug therapy , Neuralgia/metabolism , Nitric Oxide Synthase Type I/antagonists & inhibitors , Nitric Oxide Synthase Type I/metabolism , Posterior Horn Cells/metabolism , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/metabolism , S-Nitroso-N-Acetylpenicillamine/pharmacology , Soluble Guanylyl Cyclase/antagonists & inhibitors , Soluble Guanylyl Cyclase/metabolism , Spinal Nerves/drug effects , Spinal Nerves/metabolism , Tissue Culture Techniques , Touch
15.
Am J Physiol Gastrointest Liver Physiol ; 313(5): G419-G433, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28705804

ABSTRACT

Regulation of colonic motility depends on the integrity of enteric inhibitory neurotransmission mediated by nitric oxide (NO), purine neurotransmitters, and neuropeptides. Intramuscular interstitial cells of Cajal (ICC-IM) and platelet-derived growth factor receptor-α-positive (PDGFRα+) cells are involved in generating responses to NO and purine neurotransmitters, respectively. Previous studies have suggested a decreased nitrergic and increased purinergic neurotransmission in KitW/KitW-v (W/Wv ) mice that display lesions in ICC-IM along the gastrointestinal tract. However, contributions of NO to these phenotypes have not been evaluated. We used small-chamber superfusion assays and HPLC to measure the spontaneous and electrical field stimulation (EFS)-evoked release of nicotinamide adenine dinucleotide (NAD+)/ADP-ribose, uridine adenosine tetraphosphate (Up4A), adenosine 5'-triphosphate (ATP), and metabolites from the tunica muscularis of human, monkey, and murine colons and circular muscle of monkey colon, and we tested drugs that modulate NO levels or blocked NO receptors. NO inhibited EFS-evoked release of purines in the colon via presynaptic neuromodulation. Colons from W/Wv, Nos1-/- , and Prkg1-/- mice displayed augmented neural release of purines that was likely due to altered nitrergic neuromodulation. Colons from W/Wv mice demonstrated decreased nitrergic and increased purinergic relaxations in response to nerve stimulation. W/Wv mouse colons demonstrated reduced Nos1 expression and reduced NO release. Our results suggest that enhanced purinergic neurotransmission may compensate for the loss of nitrergic neurotransmission in muscles with partial loss of ICC. The interactions between nitrergic and purinergic neurotransmission in the colon provide novel insight into the role of neurotransmitters and effector cells in the neural regulation of gastrointestinal motility.NEW & NOTEWORTHY This is the first study investigating the role of nitric oxide (NO) and intramuscular interstitial cells of Cajal (ICC-IM) in modulating neural release of purines in colon. We found that NO inhibited release of purines in human, monkey, and murine colons and that colons from KitW/KitW-v (W/Wv ) mice, which present with partial loss of ICC-IM, demonstrated augmented neural release of purines. Interactions between nitrergic and purinergic neurotransmission may affect motility in disease conditions with ICC-IM deficiencies.


Subject(s)
Colon , Gastrointestinal Motility , Interstitial Cells of Cajal , Nitric Oxide/metabolism , Purines , Animals , Colon/innervation , Colon/metabolism , Colon/physiopathology , Gastrointestinal Motility/drug effects , Gastrointestinal Motility/physiology , Haplorhini , Humans , Interstitial Cells of Cajal/drug effects , Interstitial Cells of Cajal/physiology , Membrane Potentials/physiology , Mice , Neurotransmitter Agents/antagonists & inhibitors , Neurotransmitter Agents/metabolism , Nitric Oxide/antagonists & inhibitors , Purines/antagonists & inhibitors , Purines/metabolism , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Soluble Guanylyl Cyclase/antagonists & inhibitors , Soluble Guanylyl Cyclase/metabolism , Synaptic Transmission/physiology
16.
Nitric Oxide ; 69: 28-34, 2017 Sep 30.
Article in English | MEDLINE | ID: mdl-28414103

ABSTRACT

Poly-S-nitrosated human serum albumin (Poly-SNO-HSA) delivered and accumulated nitric oxide (NO) in tumors and induces apoptosis. Tumor hypoxia is strongly associated with malignant progression and tumor resistance to therapy. In this study, we examined the cytotoxic effect of Poly-SNO-HSA under hypoxia on the murine colon 26 adenocarcinoma (C26) cells in vitro and in vivo. Under hypoxia, at about 4 times LD50 dose of Poly-SNO-HSA in vitro, the reactive oxygen species production was hindered but apoptotic cells were induced via cGMP pathway as the effect was suppressed by a soluble guanylate cyclase inhibitor, NS2028. The apoptosis induction effect of low dose Poly-SNO-HSA on C26 cells in vitro under hypoxia can be restored by a phosphodiesterase 5 (PDE5) inhibitor, vardenafil. In C26-bearing mice, Poly-SNO-HSA/vardenafil combination treatment significantly suppressed the tumor volume compared with Poly-SNO-HSA or vardenafil treatment alone. Furthermore, the core tumor tissues showed increased expression of caspase-3 than the non-core tissue. The expression of caspase-3 appeared to overlap with the hypoxic zone of tumor tissues. Similar results were also obtained when the experiments were repeated using Epimedium extract, a natural herbal supplement with PDE5 inhibition activity. In conclusion, Poly-SNO-HSA/PDE5 inhibitors combination therapy is a promising approach for enhancing the anticancer therapeutic effects of Poly-SNO-HSA against not only anti-cancer drug resistance but also hypoxic stress related solid tumor resistance.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Drug Resistance, Neoplasm/drug effects , Nitroso Compounds/pharmacology , Serum Albumin, Human/pharmacology , Adenocarcinoma , Animals , Caspase 3/metabolism , Cell Line, Tumor , Colonic Neoplasms , Cyclic GMP/analogs & derivatives , Cyclic GMP/pharmacology , Drug Synergism , Drugs, Chinese Herbal/pharmacology , Humans , Hypoxia/physiopathology , Male , Mice, Inbred BALB C , Oxadiazoles/pharmacology , Oxazines/pharmacology , Phosphodiesterase 5 Inhibitors/pharmacology , Plant Extracts/pharmacology , Reactive Oxygen Species/analysis , Soluble Guanylyl Cyclase/antagonists & inhibitors , Vardenafil Dihydrochloride/pharmacology
17.
Antioxid Redox Signal ; 26(3): 107-121, 2017 01 20.
Article in English | MEDLINE | ID: mdl-26979942

ABSTRACT

SIGNIFICANCE: Soluble guanylyl/guanylate cyclase (sGC) is the primary receptor for nitric oxide (NO) and is central to the physiology of blood pressure regulation, wound healing, memory formation, and other key physiological activities. sGC is increasingly implicated in disease and is targeted by novel therapeutic compounds. The protein displays a rich evolutionary history and a fascinating signal transduction mechanism, with NO binding to an N-terminal heme-containing domain, which activates the C-terminal cyclase domains. Recent Advances: Crystal structures of individual sGC domains or their bacterial homologues coupled with small-angle x-ray scattering, electron microscopy, chemical cross-linking, and Förster resonance energy transfer measurements are yielding insight into the overall structure for sGC, which is elongated and likely quite dynamic. Transient kinetic measurements reveal a role for individual domains in lowering NO affinity for heme. New sGC stimulatory drugs are now in the clinic and appear to function through binding near or directly to the sGC heme domain, relieving inhibitory contacts with other domains. New sGC-activating drugs show promise for recovering oxidized sGC in diseases with high inflammation by replacing lost heme. CRITICAL ISSUES: Despite the many recent advances, sGC regulation, NO activation, and mechanisms of drug binding remain unclear. Here, we describe the molecular evolution of sGC, new molecular models, and the linked equilibria between sGC NO binding, drug binding, and catalytic activity. FUTURE DIRECTIONS: Recent results and ongoing studies lay the foundation for a complete understanding of structure and mechanism, and they open the door for new drug discovery targeting sGC. Antioxid. Redox Signal. 26, 107-121.


Subject(s)
Models, Molecular , Nitric Oxide/metabolism , Soluble Guanylyl Cyclase/chemistry , Soluble Guanylyl Cyclase/metabolism , Animals , Drug Discovery , Enzyme Activation , Gene Expression , Guanosine Triphosphate/chemistry , Guanosine Triphosphate/metabolism , Guanylate Cyclase/chemistry , Guanylate Cyclase/metabolism , Heme/chemistry , Heme/metabolism , Humans , Molecular Conformation , Protein Binding , Protein Interaction Domains and Motifs , Protein Subunits , Signal Transduction , Soluble Guanylyl Cyclase/antagonists & inhibitors , Soluble Guanylyl Cyclase/genetics , Structure-Activity Relationship
18.
Eur J Pharmacol ; 793: 14-20, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27815172

ABSTRACT

Nicorandil is a hybrid angina therapeutic agent that has nitric oxide (NO) action and the ability to open ATP-sensitive K+ channels (KATP channels). A transient increase in NO and intracellular Ca2+ has been demonstrated to be highly involved in the differentiation and activation of osteoclasts. The objective of this study was to verify that the pharmacological effect of nicorandil suppresses the differentiation process of osteoclasts in vitro. Although little authentic NO production was detected in the culture medium in osteoclast formation assays, NO production increased only in the presence of nicorandil. The number of osteoclasts decreased markedly at late time-points after nicorandil addition compared with the number at early time-points. Both the number of TRAP-positive multinucleated cells and the number of cells that obtained F-actin rings decreased in the presence of nicorandil in a concentration-dependent manner. The osteo assay showed that the bone resorption area was also reduced with nicorandil in a concentration-dependent manner. An inhibition recovery experiment was conducted by adding a soluble guanylyl cyclase (sGC) inhibitor (ODQ) and a KATP channel-opening inhibitor (glibenclamide) during the osteoclast formation process. In the inhibition recovery experiment, the inhibitory effect of nicorandil on osteoclastogenesis was blocked by the addition of ODQ and glibenclamide. These results suggest that both the NO and KATP channel-opening activity of nicorandil inhibit osteoclast differentiation. Further study of nicorandil may lead to the development of drugs for osteoporosis treatment.


Subject(s)
Cell Differentiation/drug effects , Nicorandil/pharmacology , Osteoclasts/cytology , Osteoclasts/drug effects , Animals , Dose-Response Relationship, Drug , Humans , KATP Channels/antagonists & inhibitors , Mice , Nitric Oxide/biosynthesis , Osteoclasts/metabolism , Oxadiazoles/pharmacology , Quinoxalines/pharmacology , Soluble Guanylyl Cyclase/antagonists & inhibitors
19.
Curr Med Chem ; 23(24): 2770-2788, 2016.
Article in English | MEDLINE | ID: mdl-27776476

ABSTRACT

cAMP-response element-binding protein (CREB) plays a central role in various aspects of central nervous system (CNS) function, ranging from the developmental stages to neuronal plasticity and survival in adult brain. Activation of CREB plays a crucial role in learning and memory and is at the convergence of multiple intracellular signaling cascades including CAMKII and MAPK. This review focuses on the important functions of nitric oxide (NO) in activating CREB via the NO receptor, soluble guanylyl cyclase (sGC), and production of the second messenger, cGMP. The involvement of the NO/cGMP signaling pathway in synaptic plasticity suggests several avenues for therapeutic intervention, and targeting early synaptic degeneration could be an attractive approach for the development of novel disease-modifying approaches to treat cognition and memory dysfunction in neurodegenerative diseases.


Subject(s)
Alzheimer Disease/pathology , Central Nervous System/metabolism , Cyclic GMP/metabolism , Neurodegenerative Diseases/pathology , Nitric Oxide/metabolism , Alzheimer Disease/metabolism , CREB-Binding Protein/metabolism , Humans , Neurodegenerative Diseases/metabolism , Neuronal Plasticity/physiology , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/metabolism , Signal Transduction , Soluble Guanylyl Cyclase/antagonists & inhibitors , Soluble Guanylyl Cyclase/metabolism , Synapses/metabolism
20.
FEBS Lett ; 590(20): 3669-3680, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27654641

ABSTRACT

Soluble guanylyl cyclase (sGC) plays a crucial role in cyclic nucleotide signaling that regulates numerous important physiological processes. To identify new sGC inhibitors that may prevent the formation of the active catalytic domain conformation, we carried out an in silico docking screen targeting a 'backside pocket' of the inactive sGC catalytic domain structure. Compounds 1 and 2 were discovered to inhibit sGC even at high/saturating nitric oxide concentrations. Both compounds also inhibit the BAY 58-2667-activated sGC as well as BAY 41-2272-stimulated sGC activity. Additional biochemical analyses showed that compound 2 also inhibits the isolated catalytic domain, thus demonstrating functional binding to this domain. Both compounds have micromolar affinity for sGC and are potential leads to develop more potent sGC inhibitors.


Subject(s)
Enzyme Inhibitors/pharmacology , Small Molecule Libraries/pharmacology , Soluble Guanylyl Cyclase/antagonists & inhibitors , Soluble Guanylyl Cyclase/chemistry , Animals , Catalytic Domain/drug effects , Computer Simulation , Enzyme Activation/drug effects , Humans , Models, Molecular , Molecular Docking Simulation , Protein Binding , Pyrazoles/pharmacology , Pyridines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...