ABSTRACT
Abstract In this study, it was aimed to investigate the amount of antioxidant, protective properties against DNA damage and antibacterial properties against various pathogens after the interaction of Ag metal (Ag NPs/Sa) of Sophora alopecuroides L. (S. alopecuroides L) plant seed, which is grown in Igdir and used in the treatment of many diseases. The DPPH radical quenching activity of Ag NPs/Sa was performed by using Blois method, DNA damage prevention activity by gel electrophoresis and antibacterial property by disk diffusion method. With the green synthesis method, AgNPs obtained as a result of the reaction of the plant and Ag metal are UV visible spectrophotometer (UV-vis), fourier-transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscope (SEM). DPPH radical quenching activity of Ag NPs/Sa was investigated in the concentration range of 25-250 µg/ml. The radical quenching activity at a concentration of 250 µg/ml was 85,215 ± 0,101%, while this value was 93,018% for the positive control BHA. It has been observed that the protective property of pBR322 plasmid DNA damage against OH radicals originating from H2O2 increases with concentration. It has been observed that Ag NPs/Sa has significant antimicrobial properties against some pathogens (B. subtilis ATCC 6633 E. coli ATCC 25952, B. cereus ATCC 10876, P. aeruginosa ATCC 27853, E. faecalis ATCC 29212, S. aureus ATTC 29213 and C. albicans ATTC 90028) that cause disease and even some pathogens are more effective than antibiotics
Subject(s)
Seeds/anatomy & histology , Sophora/metabolism , Fabaceae/adverse effects , Plants/adverse effects , Spectrum Analysis/methods , X-Ray Diffraction/instrumentation , Nanoparticles/classification , Anti-Infective Agents/classification , Antioxidants/classificationABSTRACT
To characterize the structure and function of ribosomal protein S13 (RPS13), we identified fulllength open reading frames (ORFs) of three RPS13 genes (RPS13-1, RPS13-2, and RPS13-3) of the Chinese medicinal plant, Sophora flavescens. The target genes were amplified by reverse transcription-olymerase chain reaction (RT-PCR), ligated into the pET22b(+) vector, and then transformed into Escherichia coli BL21 competent cells for protein expression. The physicochemical properties, protein motif, evolution, and structural organization of the three RPS13 genes were analyzed using bioinformatics tools. The full-length ORFs (453 bp) of the three RPS13 genes of S. flavescens were cloned, and each encodes a protein of 151 amino acids in length, and their expression was detected by Western blotting. Bioinformatics analysis showed that RPS13s are stable proteins that are closely related to the 40S RPS13s of Vigna radiate var. radiate. Their three-dimensional structures included three -helices at the C-terminal and four -helices at the N-terminal, and the two clusters of helices were connected by a long random coil, which may help maintain the dynamic bridging interactions between the large and small subunits of the ribosome. The full-length ORFs of three RPS13 genes of S. flavescens were successfully cloned and expressed in vitro. The study of the physicochemical properties, evolution, and secondary and three-dimensional structures of the three proteins will provide the theoretical basis for further studies on the function of RPS13s in plants.
Objetivo: Para caracterizar a estrutura e a função da proteína ribossomal S13 (RPS13), identificamos fases de leitura abertas (ORFs) completas de três genes RPS13 (RPS13-1, RPS13-2 e RPS13-3) da planta medicinal chinesa, Sophora flavescens. Métodos: Os genes alvo foram amplificados por reação em cadeia da polimerase por transcrição reversa (RT-PCR), ligados ao vetor pET22b(+), e então transformados em células competentes de Escherichia coli BL21 para expressão protéica. As propriedades físico-químicas, o motivo protéico, a evolução e a organização estrutural dos três genes RPS13 foram analisados utilizando ferramentas de bioinformática. Resultados: ORFs completos (453 pb) dos três genes RPS13 de S. flavescens foram clonados, e cada um codifica uma proteína de 151 aminoácidos de comprimento, e sua expressão foi detectada por western blotting. A análise de bioinformática mostrou que as RPS13s são proteínas estáveis que estão intimamente relacionadas com as 40S RPS13s de Vigna radiata var. radiate. Suas estruturas tridimensionais incluíam três -hélices no C-terminal e quatro -hélices no N-terminal, e os dois aglomerados de hélices eram conectados por uma longa bobina aleatória, o que pode ajudar a manter as interações de ponte dinâmicas entre o subunidades grandes e pequenas do ribossomo. Conclusões: As ORFs completas de três genes RPS13 de S. flavescens foram clonadas e expressas com sucesso in vitro. O estudo das propriedades físico-químicas, evolução e estruturas secundárias e tridimensionais das três proteínas fornecerão a base teórica para estudos adicionais sobre a função das RPS13s em plantas.
Subject(s)
Computational Biology , Sophora , Reverse Transcription , Escherichia coli , GenesABSTRACT
ABSTRACT Sophora tomentosa is a pantropical legume species with potential for recovery of areas degraded by salinization, and for stabilization of sand dunes. However, few studies on this species have been carried out, and none regarding its symbiotic relationship with beneficial soil microorganisms. Therefore, this study aimed to evaluate the diversity of nitrogen-fixing bacteria isolated from nodules of Sophora tomentosa, and to analyze the occurrence of colonization of arbuscular mycorrhizal fungi on the roots of this legume in seafront soil. Thus, seeds, root nodules, and soil from the rhizosphere of Sophora tomentosa were collected. From the soil samples, trap cultures with this species were established to extract spores and to evaluate arbuscular mycorhizal fungi colonization in legume roots, as well as to capture rhizobia. Rhizobia strains were isolated from nodules collected in the field or from the trap cultures. Representative isolates of the groups obtained in the similarity dendrogram, based on phenotypic characteristics, had their 16S rRNA genes sequenced. The legume species showed nodules with indeterminate growth, and reddish color, distributed throughout the root. Fifty-one strains of these nodules were isolated, of which 21 were classified in the genus Bacillus, Brevibacillus, Paenibacillus, Rhizobium and especially Sinorhizobium. Strains closely related to Sinorhizobium adhaerens were the predominant bacteria in nodules. The other genera found, with the exception of Rhizobium, are probably endophytic bacteria in the nodules. Arbuscular mycorrhizal fungi was observed colonizing the roots, but arbuscular mycorhizal fungi spores were not found in the trap cultures. Therefore Sophora tomentosa is associated with both arbuscular mycorhizal fungi and nodulating nitrogen-fixing bacteria.(AU)
Subject(s)
Symbiosis , Sophora/microbiology , MycorrhizaeABSTRACT
ABSTRACT Sophora tomentosa is a pantropical legume species with potential for recovery of areas degraded by salinization, and for stabilization of sand dunes. However, few studies on this species have been carried out, and none regarding its symbiotic relationship with beneficial soil microorganisms. Therefore, this study aimed to evaluate the diversity of nitrogen-fixing bacteria isolated from nodules of Sophora tomentosa, and to analyze the occurrence of colonization of arbuscular mycorrhizal fungi on the roots of this legume in seafront soil. Thus, seeds, root nodules, and soil from the rhizosphere of Sophora tomentosa were collected. From the soil samples, trap cultures with this species were established to extract spores and to evaluate arbuscular mycorhizal fungi colonization in legume roots, as well as to capture rhizobia. Rhizobia strains were isolated from nodules collected in the field or from the trap cultures. Representative isolates of the groups obtained in the similarity dendrogram, based on phenotypic characteristics, had their 16S rRNA genes sequenced. The legume species showed nodules with indeterminate growth, and reddish color, distributed throughout the root. Fifty-one strains of these nodules were isolated, of which 21 were classified in the genus Bacillus, Brevibacillus, Paenibacillus, Rhizobium and especially Sinorhizobium. Strains closely related to Sinorhizobium adhaerens were the predominant bacteria in nodules. The other genera found, with the exception of Rhizobium, are probably endophytic bacteria in the nodules. Arbuscular mycorrhizal fungi was observed colonizing the roots, but arbuscular mycorhizal fungi spores were not found in the trap cultures. Therefore Sophora tomentosa is associated with both arbuscular mycorhizal fungi and nodulating nitrogen-fixing bacteria.
Subject(s)
Bacteria/isolation & purification , Fungi/isolation & purification , Mycorrhizae/isolation & purification , Sophora/microbiology , Symbiosis , Bacterial Physiological Phenomena , Bacteria/classification , Bacteria/genetics , Fungi/classification , Fungi/genetics , Fungi/physiology , Mycorrhizae/classification , Mycorrhizae/genetics , Mycorrhizae/physiology , Phylogeny , Plant Roots/microbiology , Soil Microbiology , Sophora/physiologyABSTRACT
Sophora tomentosa is a pantropical legume species with potential for recovery of areas degraded by salinization, and for stabilization of sand dunes. However, few studies on this species have been carried out, and none regarding its symbiotic relationship with beneficial soil microorganisms. Therefore, this study aimed to evaluate the diversity of nitrogen-fixing bacteria isolated from nodules of Sophora tomentosa, and to analyze the occurrence of colonization of arbuscular mycorrhizal fungi on the roots of this legume in seafront soil. Thus, seeds, root nodules, and soil from the rhizosphere of Sophora tomentosa were collected. From the soil samples, trap cultures with this species were established to extract spores and to evaluate arbuscular mycorhizal fungi colonization in legume roots, as well as to capture rhizobia. Rhizobia strains were isolated from nodules collected in the field or from the trap cultures. Representative isolates of the groups obtained in the similarity dendrogram, based on phenotypic characteristics, had their 16S rRNA genes sequenced. The legume species showed nodules with indeterminate growth, and reddish color, distributed throughout the root. Fifty-one strains of these nodules were isolated, of which 21 were classified in the genus Bacillus, Brevibacillus, Paenibacillus, Rhizobium and especially Sinorhizobium. Strains closely related to Sinorhizobium adhaerens were the predominant bacteria in nodules. The other genera found, with the exception of Rhizobium, are probably endophytic bacteria in the nodules. Arbuscular mycorrhizal fungi was observed colonizing the roots, but arbuscular mycorhizal fungi spores were not found in the trap cultures. Therefore Sophora tomentosa is associated with both arbuscular mycorhizal fungi and nodulating nitrogen-fixing bacteria.
Subject(s)
Bacteria/isolation & purification , Fungi/isolation & purification , Mycorrhizae/isolation & purification , Sophora/microbiology , Symbiosis , Bacteria/classification , Bacteria/genetics , Bacterial Physiological Phenomena , Fungi/classification , Fungi/genetics , Fungi/physiology , Mycorrhizae/classification , Mycorrhizae/genetics , Mycorrhizae/physiology , Phylogeny , Plant Roots/microbiology , Soil Microbiology , Sophora/physiologyABSTRACT
Alkaloid contents of leaf and seed samples of eight species of Sophora native to New Zealand, plus Sophora cassioides from Chile are reported. Fifty-six leaf and forty-two seed samples were analysed for alkaloid content by proton nuclear magnetic resonance spectroscopy, which showed major alkaloids as cytisine, N-methyl cytisine and matrine. GC analyses quantified these and identified further alkaloid components. The alkaloids identified were cytisine, sparteine, and matrine-types common to Sophora from other regions of the world. Cytisine, N-methyl cytisine, and matrine were generally the most abundant alkaloids across all species with seeds containing the highest concentrations of alkaloids. However, there was no clear taxonomic grouping based on alkaloid composition. A quantitative analysis of various parts of two Sophora microphylla trees showed that the seeds were the richest source of alkaloids (total 0.4-0.5% DM), followed by leaf and twig (0.1-0.3%) and then bark (0.04-0.06%), with only low amounts (<0.02%) found in the roots. This study represents the most comprehensive phytochemical investigation of New Zealand Sophora species to date and presents data for three species of Sophora for which no prior chemistry has been reported.
Subject(s)
Alkaloids/analysis , Sophora/chemistry , Alkaloids/chemistry , Alkaloids/metabolism , Azocines/analysis , Chile , Drugs, Chinese Herbal/chemistry , Molecular Structure , New Zealand , Plant Leaves/chemistry , Plant Roots/chemistry , Quinolizines/analysis , Seeds/chemistry , Sophora/genetics , MatrinesABSTRACT
The physical dormancy of seeds has been poorly studied in species from tropical forests, such as the Atlantic Forest. This study aimed to examine the effect of moderate alternating temperatures on breaking the physical dormancy of seeds, the morphoanatomy and histochemistry of seed coats, and to locate the structure/region responsible for water entrance into the seed, after breaking the physical dormancy of seeds of two woody Fabaceae (subfamily Faboideae) species that occur in the Brazilian Atlantic Forest: Sophora tomentosa and Erythrina speciosa. To assess temperature effect, seeds were incubated in several temperature values that occur in the Atlantic Forest. For morphological and histochemical studies, sections of fixed seeds were subjected to different reagents, and were observed using light or epifluorescence microscopy, to analyze the anatomy and histochemistry of the seed coat. Treated and nonreated seeds were also analyzed using a scanning electron microscope (SEM) to observe the morphology of the seed coat. To localize the specific site of water entrance, the seeds were blocked with glue in different regions and also immersed in ink. In the present work a maximum temperature fluctuation of 15 degrees C was applied during a period of 20 days and these conditions did not increase the germination of S. tomentosa or E. speciosa. These results may indicate that these seeds require larger fluctuation of temperature than the applied or/and longer period of exposition to the temperature fluctuation. Blocking experiments water inlet combined with SEM analysis of the structures of seed coat for both species showed that besides the lens, the hilum and micropyle are involved in water absorption in seeds scarified with hot water. In seeds of E. speciosa the immersion of scarified seeds into an aniline aqueous solution showed that the solution first entered the seed through the hilum. Both species showed seed morphological and anatomical features for seed coats of the subfamily Faboideae. Lignin and callose were found around all palisade layers and the water impermeability and ecological role of these substances are discussed in the work.
Subject(s)
Erythrina/growth & development , Germination/physiology , Plant Dormancy/physiology , Seeds/growth & development , Sophora/growth & development , Microscopy, Electron, ScanningABSTRACT
BACKGROUND: Mescal production is the main economic activity associated to agaves in Mexico, which involves 53 species mostly harvested from forests. The increasing mescal demand has influenced risk in both agave populations and mescal production, but other social and ecological factors also intervene. We hypothesized that the greater the risk the greater the complexity of management responses; otherwise, the greater the probability of populations' depletion. We analysed this hypothesis by examining the diversity of risk conditions and management practices of Agave inaequidens in the state of Michoacán, in central-western Mexico. METHODS: We studied five communities of Michoacán, documenting through 41 semi-structured interviews the use forms, risk perception, number of agaves annually extracted, and the management practices. Using a matrix with social-ecological and technological data analyzed by PCA, we evaluated similarities of management contexts. A data matrix with information on risk of agave populations, and other about management practices were analysed also through CCA and PCA. The scores of the first principal components were considered as indexes of risk and management complexity, respectively. A regression analysis of these indexes evaluated their relation. RESULTS: We recorded 34 different uses of A. inaequidens, the most important being mescal production (mentioned by 76.1 % of people interviewed). Nearly 12.5 % of people practice only gathering, but others mentioned the following practices: Selective let standing of agaves for seed production (20 %); in situ transplanting of saplings; seed propagation in nurseries and saplings transplanting to forest (10 %); suckers transplanting (7.5 %); seed dispersal in forests; banning (5 %); enhancing of agave growth by removing tree canopies (2.5 %); transplanting from the wild to live fences (45 %); intensive plantations (35 %). The highest vulnerability of agave populations was identified in communities where risk is not counteracted by management. In two communities we identified the highest risk (annual extraction from 4,353 to 6,557 agaves), but different actions counteracting such risk. CONCLUSIONS: Interchange of knowledge and management experiences developed by handlers is crucial for the regional conservation, recovering, and sustainable management of A. inaequidens populations.
Subject(s)
Agave/classification , Forests , Plants, Medicinal , Sophora/classification , Adult , Conservation of Natural Resources , Ethnobotany/methods , Female , Humans , Interviews as Topic , Male , Mexico , Regression Analysis , Risk Assessment , Rural PopulationABSTRACT
PURPOSE:To investigate if oxymatrine pretreatment could ameliorate renal I/R injury induced in rats and explore the possible role of oxymatrine in Nrf2/HO-1 pathway.METHODS: Unilaterally nephrectomized rats were insulted by I/R in their left kidney. Twenty four rats were randomly divided into three groups: sham group, I/R + saline-treated group, I/R + OMT-treated group. Oxymatrine or vehicle solution was administered intraperitoneally injected 60 min before renal ischemia, respectively. Renal function, histology, makers of oxidative stress, cell apoptosis and Nrf2/HO-1 expressions were assessed.RESULTS: Oxymatrine pretreatment exhibited an improved renal functional recovery, alleviated histological injury and oxidative stress, inhibiting tubular apoptosis, and accompanied by upregulated the expression of Nrf2/HO-1 proteins.CONCLUSION:Oxymatrine may attenuate renal ischemia/reperfusion injury, and this renoprotective effect may be through activating the Nrf2/HO-1 pathway.(AU)
Subject(s)
Animals , Rats , Plant Extracts/therapeutic use , Sophora/chemistry , Renal Insufficiency/drug therapy , Oxidative Stress , Reperfusion Injury , Nephrectomy/veterinaryABSTRACT
The physical dormancy of seeds has been poorly studied in species from tropical forests, such as the Atlantic Forest. This study aimed to examine the effect of moderate alternating temperatures on breaking the physical dormancy of seeds, the morphoanatomy and histochemistry of seed coats, and to locate the structure/region responsible for water entrance into the seed, after breaking the physical dormancy of seeds of two woody Fabaceae (subfamily Faboideae) species that occur in the Brazilian Atlantic Forest: Sophora tomentosa and Erythrina speciosa. To assess temperature effect, seeds were incubated in several temperature values that occur in the Atlantic Forest. For morphological and histochemical studies, sections of fixed seeds were subjected to different reagents, and were observed using light or epifluorescence microscopy, to analyze the anatomy and histochemistry of the seed coat. Treated and non-treated seeds were also analyzed using a scanning electron microscope (SEM) to observe the morphology of the seed coat. To localize the specific site of water entrance, the seeds were blocked with glue in different regions and also immersed in ink. In the present work a maximum temperature fluctuation of 15ºC was applied during a period of 20 days and these conditions did not increase the germination of S. tomentosa or E. speciosa. These results may indicate that these seeds require larger fluctuation of temperature than the applied or/and longer period of exposition to the temperature fluctuation. Blocking experiments water inlet combined with SEM analysis of the structures of seed coat for both species showed that besides the lens, the hilum and micropyle are involved in water absorption in seeds scarified with hot water. In seeds of E. speciosa the immersion of scarified seeds into an aniline aqueous solution showed that the solution first entered the seed through the hilum. Both species showed seed morphological and anatomical features for seed coats of the subfamily Faboideae. Lignin and callose were found around all palisade layers and the water impermeability and ecological role of these substances are discussed in the work.
Requisitos para romper la latencia en semillas de Sophora tomentosa y Erythrina speciosa (Fabaceae). La latencia física de las semillas ha sido poco estudiada en las especies de los bosques tropicales, como el bosque atlántico. Este estudio tuvo como objetivo examinar el efecto de las temperaturas moderadas alternantes en romper la latencia física de las semillas, la anatomía y la histoquímica de la cubierta de las semillas, y la localización de la estructura o región responsable de la entrada de agua, después de romper la latencia física de las semillas de Sophora tomentosa y Eythrina speciosa, dos especies leñosas de Fabaceae (subfamilia Faboideae) que presentes en el bosque atlántico de Brasil. Para cumplir con el primer objetivo se incubaron las semillas a varias temperaturas que se dan en el bosque atlántico. Para los estudios morfológicos e histoquímicos se fijaron secciones de semillas sometidos a diferentes reactivos y se observaron usando luz o microscopía de epifluorescencia para analizar la anatomía y la histoquímica de la cubierta de la semilla. Semillas tratadas y no tratadas se analizaron también usando un microscopio electrónico de barrido (MDB) o microscopio estereoscópico (ME) para observar la morfología de la cubierta de la semilla. Para localizar el sitio específico de la entrada de agua, las semillas fueron bloqueadas con pegamento en diferentes regiones y también sumergidas en tinta. En el presente trabajo se aplicó una fluctuación de temperatura máxima de 15°C durante un período de 20 días y estas condiciones no aumentó la germinación de S. tomentosa o E. speciosa. Estos resultados pueden indicar que estas semillas requieren mayor fluctuación de la temperatura que la aplicada y/o un período más largo de exposición a la fluctuación de la temperatura. Experimentos de bloqueo de entrada de agua combinada con el análisis de las estructuras de la cubierta de la semilla para ambas especies (SEM) mostró que, a pesar de la lente, el hilio y micropilo están implicados en la absorción de agua en las semillas escarificadas con agua caliente. En las semillas de E. speciosa la inmersión de semillas escarificadas en una solución acuosa de anilina mostró que la solución entró por primera vez a la semilla a través del hilio. Ambas especies mostraron características morfológicas y anatómicas de semillas con cubierta de la subfamilia Faboideae. La lignina y callosa se encontraron alrededor de todas las capas de empalizada y la impermeabilidad al agua y en el trabajo se discute el papel ecológico de estas sustancias.
Subject(s)
Erythrina/growth & development , Germination/physiology , Plant Dormancy/physiology , Seeds/growth & development , Sophora/growth & development , Microscopy, Electron, ScanningABSTRACT
The endophytic strain Zong1 isolated from root nodules of the legume Sophora alopecuroides was characterized by conducting physiological and biochemical tests employing gfp-marking, observing their plant growth promoting characteristics (PGPC) and detecting plant growth parameters of inoculation assays under greenhouse conditions. Results showed that strain Zong1 had an effective growth at 28 ºC after placed at 4-60 ºC for 15 min, had a wide range pH tolerance of 6.0-11.0 and salt tolerance up to 5% of NaCl. Zong1 was resistant to the following antibiotics (µg/mL): Phosphonomycin (100), Penicillin (100) and Ampicillin (100). It could grow in the medium supplemented with 1.2 mmol/L Cu, 0.1% (w/v) methylene blue and 0.1-0.2% (w/v) methyl red, respectively. Zong1 is closely related to Pseudomonas chlororaphis based on analysis the sequence of 16S rRNA gene. Its expression of the gfp gene indicated that strain Zong1 may colonize in root or root nodules and verified by microscopic observation. Furthermore, co-inoculation with Zong1 and SQ1 (Mesorhizobium sp.) showed significant effects compared to single inoculation for the following PGPC parameters: siderophore production, phosphate solubilization, organic acid production, IAA production and antifungal activity in vitro. These results suggest strains P. chlororaphi Zong1 and Mesorhizobium sp. SQ1 have better synergistic or addictive effect. It was noteworthy that each growth index of co-inoculated Zong1+SQ1 in growth assays under greenhouse conditions is higher than those of single inoculation, and showed a significant difference (p < 0.05) when compared to a negative control. Therefore, as an endophyte P. chlororaphis Zong1 may play important roles as a potential plant-growth promoting agent.
Subject(s)
Endophytes/isolation & purification , Endophytes/metabolism , Pseudomonas/isolation & purification , Pseudomonas/metabolism , Sophora/microbiology , Anti-Bacterial Agents/pharmacology , Antibiosis , Carboxylic Acids/metabolism , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Endophytes/classification , Endophytes/genetics , Fungi/growth & development , Hydrogen-Ion Concentration , Indoleacetic Acids/metabolism , Molecular Sequence Data , Phosphates/metabolism , Phylogeny , Plant Development , Plant Roots/microbiology , Pseudomonas/classification , Pseudomonas/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Siderophores/metabolism , Sodium Chloride/metabolism , Sophora/growth & development , TemperatureABSTRACT
The endophytic strain Zong1 isolated from root nodules of the legume Sophora alopecuroides was characterized by conducting physiological and biochemical tests employing gfp-marking, observing their plant growth promoting characteristics (PGPC) and detecting plant growth parameters of inoculation assays under greenhouse conditions. Results showed that strain Zong1 had an effective growth at 28 ºC after placed at 4-60 ºC for 15 min, had a wide range pH tolerance of 6.0-11.0 and salt tolerance up to 5% of NaCl. Zong1 was resistant to the following antibiotics (µg/mL): Phosphonomycin (100), Penicillin (100) and Ampicillin (100). It could grow in the medium supplemented with 1.2 mmol/L Cu, 0.1% (w/v) methylene blue and 0.1-0.2% (w/v) methyl red, respectively. Zong1 is closely related to Pseudomonas chlororaphis based on analysis the sequence of 16S rRNA gene. Its expression of the gfp gene indicated that strain Zong1 may colonize in root or root nodules and verified by microscopic observation. Furthermore, co-inoculation with Zong1 and SQ1 (Mesorhizobium sp.) showed significant effects compared to single inoculation for the following PGPC parameters: siderophore production, phosphate solubilization, organic acid production, IAA production and antifungal activity in vitro. These results suggest strains P. chlororaphi Zong1 and Mesorhizobium sp. SQ1 have better synergistic or addictive effect. It was noteworthy that each growth index of co-inoculated Zong1+SQ1 in growth assays under greenhouse conditions is higher than those of single inoculation, and showed a significant difference (p < 0.05) when compared to a negative control. Therefore, as an endophyte P. chlororaphis Zong1 may play important roles as a potential plantgrowth promoting agent.
Subject(s)
Endophytes/isolation & purification , Endophytes/metabolism , Pseudomonas/isolation & purification , Pseudomonas/metabolism , Sophora/microbiology , Antibiosis , Anti-Bacterial Agents/pharmacology , Cluster Analysis , Carboxylic Acids/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Endophytes/classification , Endophytes/genetics , Fungi/growth & development , Hydrogen-Ion Concentration , Indoleacetic Acids/metabolism , Molecular Sequence Data , Phylogeny , Plant Development , Phosphates/metabolism , Plant Roots/microbiology , Pseudomonas/classification , Pseudomonas/genetics , /genetics , Sequence Analysis, DNA , Siderophores/metabolism , Sodium Chloride/metabolism , Sophora/growth & development , TemperatureABSTRACT
The endophytic strain Zong1 isolated from root nodules of the legume Sophora alopecuroides was characterized by conducting physiological and biochemical tests employing gfp-marking, observing their plant growth promoting characteristics (PGPC) and detecting plant growth parameters of inoculation assays under greenhouse conditions. Results showed that strain Zong1 had an effective growth at 28 ºC after placed at 4-60 ºC for 15 min, had a wide range pH tolerance of 6.0-11.0 and salt tolerance up to 5% of NaCl. Zong1 was resistant to the following antibiotics (µg/mL): Phosphonomycin (100), Penicillin (100) and Ampicillin (100). It could grow in the medium supplemented with 1.2 mmol/L Cu, 0.1% (w/v) methylene blue and 0.1-0.2% (w/v) methyl red, respectively. Zong1 is closely related to Pseudomonas chlororaphis based on analysis the sequence of 16S rRNA gene. Its expression of the gfp gene indicated that strain Zong1 may colonize in root or root nodules and verified by microscopic observation. Furthermore, co-inoculation with Zong1 and SQ1 (Mesorhizobium sp.) showed significant effects compared to single inoculation for the following PGPC parameters: siderophore production, phosphate solubilization, organic acid production, IAA production and antifungal activity in vitro. These results suggest strains P. chlororaphi Zong1 and Mesorhizobium sp. SQ1 have better synergistic or addictive effect. It was noteworthy that each growth index of co-inoculated Zong1+SQ1 in growth assays under greenhouse conditions is higher than those of single inoculation, and showed a significant difference (p < 0.05) when compared to a negative control. Therefore, as an endophyte P. chlororaphis Zong1 may play important roles as a potential plantgrowth promoting agent.(AU)
Subject(s)
Pseudomonas , Sophora , Fluorescent Antibody Technique , Phylogeny , Plant RootsABSTRACT
Particulate matter is a natural occurrence in the environment, but some industries, such as the iron ore sector, can raise the total amount of particles in the atmosphere. This industry is primarily a source of iron and sulfur dioxide particulates. The effects of the pollutants from the iron ore industries on representatives of restinga vegetation in a Brazilian coastal ecosystem were investigated using physiological and biochemical measures. Two species, Schinus terebinthifolius and Sophora tomentosa, were exposed to simulated deposition of acid mist and iron ore particulate matter in acrylic chambers in a greenhouse. Parameters such as gas exchange, fluorescence emission, chlorophyll content, total iron content, antioxidant enzyme activity and malondialdehyde content were assessed in order to evaluate the responses of the two species. Neither treatment was capable of inducing oxidative stress in S. terebinthifolius. Nevertheless, the deposition of iron ore particulates on this species increased chlorophyll content, the maximum quantum efficiency of photosystem II and the electron transport rate, while iron content was unaltered. On the other hand, S. tomentosa showed a greater sensitivity to the treatments. Plants of S. tomentosa that were exposed to acid mist had a decrease in photosynthesis, while the deposition of iron particulate matter led to an increase in iron content and membrane permeability of the leaves. The activities of antioxidant enzymes, such as catalases and superoxide dismutase, were enhanced by both treatments. The results suggested that the two restinga species use different strategies to overcome the stressful conditions created by the deposition of particulate matter, either solid or wet. It seems that while S. terebinthifolius avoided stress, S. tomentosa used antioxidant enzyme systems to partially neutralize oxidative stress. The findings also point to the potential use of S. tomentosa as a biomarker species under field conditions.
Subject(s)
Acid Rain/adverse effects , Anacardiaceae/drug effects , Iron Compounds/adverse effects , Particulate Matter/adverse effects , Photosynthesis/drug effects , Sophora/drug effects , Anacardiaceae/metabolism , Chlorophyll/metabolism , Computer Simulation , Enzymes/metabolism , Iron Compounds/analysis , Malondialdehyde/metabolism , Models, Theoretical , Oxidative Stress/drug effects , Sophora/metabolismABSTRACT
The objective of the present study was to determine if the combination of alkaloids from Sophora moorcroftiana seeds and albendazole might be effective in the treatment of experimental echinococcosisin female NIH mice (6 weeks old and weighing 18-20 g, N = 8 in each group) infected withprotoscolices of Echinococcus granulosus. Viable protoscolices (N = 6 x 103) were cultured in vitro in 1640 medium and mortality was calculated daily. To determine the in vivo efficacy, mice were inoculated intraperitoneally with viable protoscolices and then treated once daily by gavage for three months with the alkaloids (50 mg kg-1 day-1) and albendazole (50 mg kg-1 day-1), separately and in combination (both alkaloids at 25 mg kg-1 day-1 and albendazole at 25 mg kg-1 day-1). Next, the hydatid cysts collected from the peritoneal cavity of the animals were weighed and serum IL-4, IL-2, and IgE levels were analyzed. Administration of alkaloids to cultured protoscolices showed significant dose- and time-dependent killing effects. The weight of hydatid cysts was significantly decreased upon treatment with each drug (P < 0.01), but the decrease was more prominent and the rate of hydatid cyst growth inhibition was much higher (76.1 percent) in the group receiving the combined treatments (18.3 ± 4.6 mg). IL-4 and total IgE were decreased (939 ± 447 pg/mL and 2.03 ± 0.42 IU/mL, respectively) in serum from mice treated with alkaloids and albendazole compared with the untreated control (1481 ± 619 pg/mL and 3.31 ± 0.37 IU/mL; P < 0.01). These results indicate that S. moorcroftiana alkaloids have protoscolicidal effects and the combination of alkaloids and albendazole has significant additive effects.
Subject(s)
Animals , Female , Mice , Albendazole/administration & dosage , Alkaloids/administration & dosage , Anticestodal Agents/administration & dosage , Echinococcosis/drug therapy , Echinococcus granulosus/drug effects , Sophora/chemistry , Disease Models, Animal , Drug Therapy, Combination , Echinococcosis/immunology , Echinococcosis/pathology , Immunoglobulin E/blood , /blood , /blood , Mice, Inbred Strains , Seeds/chemistry , Time FactorsABSTRACT
The objective of the present study was to determine if the combination of alkaloids from Sophora moorcroftiana seeds and albendazole might be effective in the treatment of experimental echinococcosisin female NIH mice (6 weeks old and weighing 18-20 g, N = 8 in each group) infected withprotoscolices of Echinococcus granulosus. Viable protoscolices (N = 6 x 10(3)) were cultured in vitro in 1640 medium and mortality was calculated daily. To determine the in vivo efficacy, mice were inoculated intraperitoneally with viable protoscolices and then treated once daily by gavage for three months with the alkaloids (50 mg kg-1 day-1) and albendazole (50 mg kg-1 day-1), separately and in combination (both alkaloids at 25 mg kg-1 day-1 and albendazole at 25 mg kg-1 day-1). Next, the hydatid cysts collected from the peritoneal cavity of the animals were weighed and serum IL-4, IL-2, and IgE levels were analyzed. Administration of alkaloids to cultured protoscolices showed significant dose- and time-dependent killing effects. The weight of hydatid cysts was significantly decreased upon treatment with each drug (P < 0.01), but the decrease was more prominent and the rate of hydatid cyst growth inhibition was much higher (76.1%) in the group receiving the combined treatments (18.3 +/- 4.6 mg). IL-4 and total IgE were decreased (939 +/- 447 pg/mL and 2.03 +/- 0.42 IU/mL, respectively) in serum from mice treated with alkaloids and albendazole compared with the untreated control (1481 +/- 619 pg/mL and 3.31 +/- 0.37 IU/mL; P < 0.01). These results indicate that S. moorcroftiana alkaloids have protoscolicidal effects and the combination of alkaloids and albendazole has significant additive effects.