ABSTRACT
Fungi are important resources for drug development, as they have a diversity of genes, that can produce novel secondary metabolites with effective bioactivities. Here, five depsidone-based analogs were isolated from the rice media of Chaetomium brasiliense SD-596. Their structures were elucidated using NMR and mass spectrometry analysis. Five compounds, including three new depsidone analogs, mollicellin S (1), mollicellin T (2), and mollicellin U (3), and two known compounds, mollicellin D (4) and mollicellin H (5), exhibited significant inhibition against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA), with MIC values ranging from 6.25 to 12.5 µg ml-1. Herein, we identified the predicted plausible biosynthetic cluster of the compounds and discussed the structure-activity relationship. Finally, we found that the introduction of aldehyde and methoxyl groups provide marked improvement for the inhibition against MRSA.
Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Depsides/pharmacology , Lactones/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Sordariales/chemistry , Depsides/chemistry , Drug Discovery , Fermentation , Genome, Fungal , Lactones/chemistry , Molecular Structure , Sordariales/genetics , Sordariales/metabolismABSTRACT
AIMS: This work aimed to estimate the growth of Myceliophthora thermophila M.7·7 in solid-state cultivation (SSC) through quantification of N-acetyl-d-glucosamine (NAG) and enzyme activity. METHODS AND RESULTS: The fungus was cultivated in sugarcane bagasse and wheat bran. A consistent statistical analysis was done to assess the reliability of experimental data. Logistic model equation was fitted to experimental data and growth parameters were estimated. The results showed strong influence of the sample size on NAG and a minimum recommended sample size was identified. Scanning electron microscopy (SEM) was used to identify the strategy of substrate colonization. Wheat bran was attacked firstly, while sugarcane bagasse was consumed after wheat bran depletion. The biomass growth was poorly estimated by secretion kinetics of α-amylase, endoglucanase, protease and xylanase, but enzyme kinetics were important for understanding substrate colonization. CONCLUSIONS: In conclusion, the NAG concentration was strongly affected by the sample size and sampling procedure. The strategy of fungal colonization on the substrates was well characterized through SEM analysis. The colonization strategy has direct influence on the kinetic parameters of the logistic model. Myceliophthora thermophila has a well-defined dynamic of enzyme secretion to degrade the substrate, although the kinetics of enzyme secretion has shown not adequate to characterize the kinetics of fungal growth. SIGNIFICANCE AND IMPACT OF THE STUDY: The paper provides reliable growth kinetic parameters in the SSC of the cellulase producer fungus M. thermophila M.7·7, as well as a robust analysis on three indirect methods (NAG, enzymes and SEM) for estimation of fungal development.
Subject(s)
Sordariales/growth & development , Acetylglucosamine/metabolism , Biomass , Bioreactors , Cellulose/metabolism , Dietary Fiber/metabolism , Fungal Proteins/metabolism , Kinetics , Reproducibility of Results , Saccharum/chemistry , Sordariales/enzymology , Sordariales/metabolism , Sordariales/ultrastructureABSTRACT
Enzymes do not have long-term storage stability in soluble forms, thus drying methods could minimize the loss of enzymatic activity, the spray dryer removes water under high temperatures and little time. The aims of this study were to improve the stability of enzymatic extract from Myceliophthora thermophila for potential applications in industry and to evaluate the best conditions to remove the water by spray drying technique. The parameters were tested according to Box-Behnken and evaluated by analysis of variance (ANOVA), all the parameters measured were found to influence the final enzyme activity and spray drying process yield ranged from 38.65 to 63.75%. Enzyme powders showed increased storage stability than extract and maintained about 100% of collagenolytic activity after 180 days of storage at 30°C. The results showed that the microbial enzymes maintained activity during the spray drying process and were stable during long-term storage; these are promising characteristics for industrial applications.
Subject(s)
Peptide Hydrolases/metabolism , Sordariales/enzymology , Analysis of Variance , Collagen/metabolism , Desiccation , Enzyme Stability , Industrial Microbiology , Peptide Hydrolases/chemistry , Peptide Hydrolases/isolation & purification , Proteolysis , Sordariales/growth & development , Sordariales/metabolismABSTRACT
Diplogelasinospora grovesii has been reported as a very active biocatalyst in the reduction of ketones. Along the text, the properties of this filamentous fungus as an immobilized catalyst are described. For this purpose, several immobilization supports as agar and polyurethane foam were tested. Experimental assays were also performed to test different co-substrates for the regeneration of the required enzyme cofactor. The fungus immobilized in polyurethane foam lead to the most stable and active catalyst. This derivative, using i-PrOH as co-substrate, could be reused at least 18 times without appreciable activity loss (>90% activity remains). Kinetic runs experiments shown that the reduction of cyclohexanone, selected as model substrate, followed a pseudo-first kinetic order and that the rate controlling step was the mass transfer through the cell wall. The deactivation kinetic constants were also determined. The reduction of different chiral ketones showed that the ketone reductase activity followed the Prelog's rule.
Subject(s)
Biocatalysis/drug effects , Ketones/metabolism , Polyurethanes/pharmacology , Sordariales/cytology , Sordariales/metabolism , Cells, Immobilized/cytology , Cells, Immobilized/drug effects , Cells, Immobilized/metabolism , Cyclohexanols/metabolism , Cyclohexanones/metabolism , Diffusion/drug effects , Ketones/chemistry , Kinetics , Oxidation-Reduction/drug effects , Recycling , Sordariales/drug effects , Stereoisomerism , Substrate Specificity/drug effectsABSTRACT
Erythrina crista-galli (Fabaceae) is used in Argentinean ethnopharmacology as anti-inflammatory medication, narcotic, desinfectant, and for the treatment of wounds. The common name of the tree is "ceibo" or coral tree. The dominating endophytes in E. crista-galli all belong to the genus Phomopsis as identified by microscopic features and the analysis of their ITS sequences. To investigate a possible contribution of Phomopsis spp. to the metabolites found in the plant, twelve different isolates were cultivated in different media. Besides several new metabolites a number of known compounds were detected: mellein, nectriapyrone, 4-hydroxymellein, scytalone, tyrosol, clavatol, mevinic acid, and mevalonolactone.