Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 188
Filter
1.
Funct Plant Biol ; 512024 Jun.
Article in English | MEDLINE | ID: mdl-38902905

ABSTRACT

The aim of this study was to investigate whether silicon (Si) supply was able to alleviate the harmful effects caused by salinity stress on sorghum-sudangrass (Sorghum bicolor ×Sorghum sudanense ), a species of grass raised for forage and grain. Plants were grown in the presence or absence of 150mM NaCl, supplemented or not with Si (0.5mM Si). Biomass production, water and mineral status, photosynthetic pigment contents, and gas exchange parameters were investigated. Special focus was accorded to evaluating the PSI and PSII. Salinity stress significantly reduced plant growth and tissue hydration, and led to a significant decrease in all other studied parameters. Si supply enhanced whole plant biomass production by 50%, improved water status, decreased Na+ and Cl- accumulation, and even restored chlorophyll a , chlorophyll b , and carotenoid contents. Interestingly, both photosystem activities (PSI and PSII) were enhanced with Si addition. However, a more pronounced enhancement was noted in PSI compared with PSII, with a greater oxidation state upon Si supply. Our findings confirm that Si mitigated the adverse effects of salinity on sorghum-sudangrass throughout adverse approaches. Application of Si in sorghum appears to be an efficient key solution for managing salt-damaging effects on plants.


Subject(s)
Chlorophyll , Photosynthesis , Salinity , Silicon , Sorghum , Sorghum/growth & development , Sorghum/drug effects , Sorghum/metabolism , Silicon/pharmacology , Photosynthesis/drug effects , Chlorophyll/metabolism , Biomass , Photosystem II Protein Complex/metabolism , Salt Stress/drug effects , Chlorophyll A/metabolism
2.
Plant Physiol Biochem ; 212: 108733, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761547

ABSTRACT

Sorghum [Sorghum bicolor (L.) Moench] yield is limited by the coincidence of drought during its sensitive stages. The use of cerium oxide nanoparticles in agriculture is minimal despite its antioxidant properties. We hypothesize that drought-induced decreases in photosynthetic rate in sorghum may be associated with decreased tissue water content and organelle membrane damage. We aimed to quantify the impact of foliar application of nanoceria on transpiration rate, accumulation of compatible solutes, photosynthetic rate and reproductive success under drought stress in sorghum. In order to ascertain the mechanism by which nanoceria mitigate drought-induced inhibition of photosynthesis and reproductive success, experiments were undertaken in a factorial completely randomized design or split-plot design. Foliar spray of nanoceria under progressive soil drying conserved soil moisture by restricting the transpiration rate than water spray, indicating that nanoceria exerted strong stomatal control. Under drought stress at the seed development stage, foliar application of nanoceria at 25 mg L-1 significantly improved the photosynthetic rate (19%) compared to control by maintaining a higher tissue water content (18%) achieved by accumulating compatible solutes. The nanoceria-sprayed plants exhibited intact chloroplast and thylakoid membranes because of increased heme enzymes [catalase (53%) and peroxidase (45%)] activity, which helped in the reduction of hydrogen peroxide content (74%). Under drought, compared to water spray, nanoceria improved the seed-set percentage (24%) and individual seed mass (27%), eventually causing a higher seed yield. Thus, foliar application of nanoceria at 25 mg L-1 under drought can increase grain yield through increased photosynthesis and reproductive traits.


Subject(s)
Cerium , Droughts , Nanoparticles , Photosynthesis , Plant Stomata , Sorghum , Sorghum/metabolism , Sorghum/drug effects , Sorghum/physiology , Cerium/pharmacology , Plant Stomata/drug effects , Plant Stomata/physiology , Photosynthesis/drug effects , Drought Resistance
3.
Plant Physiol Biochem ; 212: 108737, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763003

ABSTRACT

Over evolutionary time, plants have developed sophisticated regulatory mechanisms to adapt to fluctuating nitrogen (N) environments, ensuring that their growth is balanced with their responses to N stress. This study explored the potential of L-tryptophan (Trp) in regulating sorghum root growth under conditions of N limitation. Here, two distinct sorghum genotypes (low-N tolerance 398B and low-N sensitive CS3541) were utilized for investigating effect of low-N stress on root morphology and conducting a comparative transcriptomics analysis. Our foundings indicated that 398B exhibited longer roots, greater root dry weights, and a higher Trp content compared to CS3541 under low-N conditions. Furthermore, transcriptome analysis revealed substantial differences in gene expression profiles related to Trp pathway and carbon (C) and N metabolism pathways between the two genotypes. Additional experiments were conducted to assess the effects of exogenous Trp treatment on the interplay between sorghum root growth and low-N tolerance. Our observations showed that Trp-treated plants developed longer root and had elevated levels of Trp and IAA under low-N conditons. Concurrently, these plants demonstrated stronger physiological activities in C and N metabolism when subjected to low-N stress. These results underscored the pivotal role of Trp on root growth and low-N stress responses by balancing IAA levels and C and N metabolism. This study not only deepens our understanding of how plants maintain growth plasticity during environmental stress but also provides valuable insights into the availability of amino acid in crops, which could be instrumental in developing strategies for promoting crop resilience to N deficiency.


Subject(s)
Nitrogen , Plant Roots , Sorghum , Tryptophan , Sorghum/growth & development , Sorghum/metabolism , Sorghum/genetics , Sorghum/drug effects , Nitrogen/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/drug effects , Tryptophan/metabolism , Gene Expression Regulation, Plant/drug effects , Indoleacetic Acids/metabolism , Carbon/metabolism , Stress, Physiological
4.
Plant Physiol Biochem ; 211: 108655, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744086

ABSTRACT

The challenge of desert farming with a high salt level has become an ecological task due to salt stress negatively affecting plant growth and reproduction. The current study deals with the cultivation of sorghum under salt stress conditions to counteract the effect of chitosan and gibberellic acid (GA3). Here, the effects of chitosan, GA3 and nano-composite (GA3@chitosan) on biochemical contents, growth and seed yield of sorghum under salinity stress conditions were studied. The results showed that spraying with GA3@chitosan increased sorghum grain yield by 2.07, 1.81 and 1.64 fold higher than salinity stressed plants, chitosan treatment and GA3 treatment, respectively. Additionally, compared to the control of the same variety, the GA3@chitosan spraying treatment improved the concentration of microelements in the grains of the Shandweel-1 and Dorado by 24.51% and 18.39%, respectively for each variety. Furthermore, spraying GA3@chitosan on sorghum varieties increased the accumulation of the macroelements N, P, and K by 34.03%, 47.61%, and 8.67% higher than salt-stressed plants, respectively. On the other hand, the proline and glycinebetaine content in sorghum leaves sprayed with nano-composite were drop by 51.04% and 11.98% less than stressed plants, respectively. The results showed that, in Ras Sudr, the Shandweel-1 variety produced more grain per feddan than the Dorado variety. These findings suggest that GA3@chitosan improves the chemical and biochemical components leading to a decrease in the negative effect of salt stress on the plant which reflects in the high-yield production of cultivated sorghum plants in salt conditions.


Subject(s)
Chitosan , Gibberellins , Salt Stress , Sorghum , Sorghum/drug effects , Sorghum/metabolism , Sorghum/growth & development , Gibberellins/metabolism , Gibberellins/pharmacology , Salt Stress/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism
5.
Ecotoxicol Environ Saf ; 277: 116380, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38677068

ABSTRACT

The interaction between microplastics (MPs) and cadmium (Cd) poses a threat to agricultural soil environments, and their effects on plant growth and rhizosphere microbial community functions are not yet clear. In this study, energy sorghum was used as a test plant to investigate the effects of two types of MPs, polystyrene (PS) and polyethylene (PE), at different particle sizes (13 µm, 550 µm) and concentrations (0.1%, 1% w/w), and Cd, as well as their interactions, on the growth of sorghum in a soil-cultivation pot experiment. The results showed that the combined effects of MP and Cd pollution on the dry weight and Cd accumulation rate in sorghum varied depending on the type, concentration, and particle size of the MPs, with an overall trend of increasing stress from combined pollution with increasing Cd content and accumulation. High-throughput sequencing analysis revealed that combined MP and Cd pollution increased bacterial diversity, and the most significant increase was observed in the abundance-based coverage estimator (ACE), Shannon, and Sobs indices in the 13 µm 1% PS+Cd treatment group. Metagenomic analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways revealed that 19 groups of metabolic pathways, including microbial metabolism and methane metabolism, differed significantly under combined MP and Cd pollution. Hierarchical clustering results indicated that Cd treatment and combined MP and Cd treatment affected the abundances of sorghum rhizosphere soil nitrogen (N) and phosphorus (P) cycling genes and that the type of MP present was an important factor affecting N and P cycling genes. The results of this study provide a basis for exploring the toxic effects of combined MP and Cd pollution and for conducting soil environmental risk assessments.


Subject(s)
Cadmium , Microplastics , Rhizosphere , Soil Microbiology , Soil Pollutants , Sorghum , Sorghum/drug effects , Sorghum/microbiology , Cadmium/toxicity , Soil Pollutants/toxicity , Microplastics/toxicity , Soil/chemistry , Particle Size , Bacteria/drug effects
6.
Pest Manag Sci ; 80(7): 3278-3292, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38372427

ABSTRACT

BACKGROUND: Faced with the need to develop new herbicides with modes of action different to those observed for existing agrochemicals, one of the most promising strategies employed by synthetic chemists involves the structural modification of molecules found in natural products. Molecules containing amides, imides, and epoxides as functional groups are prevalent in nature and find extensive application in synthesizing more intricate compounds due to their biological properties. In this context, this paper delineates the synthesis of N-phenylnorbornenesuccinimide derivatives, conducts biological assays, and carries out in silico investigation of the protein target associated with the most potent compound in plant organisms. The phytotoxic effects of the synthesized compounds (2-29) were evaluated on Allium cepa, Bidens pilosa, Cucumis sativus, Sorghum bicolor, and Solanum lycopersicum. RESULTS: Reaction of endo-bicyclo[2.2.1]hept-5-ene-3a,7a-dicarboxylic anhydride (1) with aromatic amines led to the N-phenylnorbornenesuccinic acids (2-11) with yields ranging from 75% to 90%. Cyclization of compounds (2-11) in the presence of acetic anhydride and sodium acetate afforded N-phenylnorbornenesuccinimides (12-20) with yields varying from 65% to 89%. Those imides were then subjected to epoxidation reaction to afford N-phenylepoxynorbornanesuccimides (21-29) with yields from 60% to 90%. All compounds inhibited the growth of seedlings of the plants evaluated. Substance 23 was the most active against the plants tested, inhibiting 100% the growth of all species in all concentrations. Cyclophilin was found to be the enzymatic target of compound 23. CONCLUSION: These findings suggest that derivatives of N-phenylnorbornenesuccinimide are promising compounds in the quest for more selective and stable agrochemicals. This perspective reinforces the significance of these derivatives as potential innovative herbicides and emphasizes the importance of further exploring their biological activity on weeds. © 2024 Society of Chemical Industry.


Subject(s)
Herbicides , Herbicides/pharmacology , Herbicides/chemistry , Succinimides/pharmacology , Succinimides/chemistry , Solanum lycopersicum/drug effects , Solanum lycopersicum/growth & development , Onions/drug effects , Sorghum/drug effects , Sorghum/growth & development , Cucumis sativus/drug effects , Cucumis sativus/growth & development
7.
PLoS One ; 16(12): e0261461, 2021.
Article in English | MEDLINE | ID: mdl-34929013

ABSTRACT

In warm-humid ago-ecologies of the world, sorghum [Sorghum bicolor (L.) Moench] production is severely affected by anthracnose disease caused by Colletotrichum sublineolum Henn. New sources of anthracnose resistance should be identified to introgress novel genes into susceptible varieties in resistance breeding programs. The objective of this study was to determine genome-wide association of Diversity Arrays Technology Sequencing (DArTseq) based single nucleotide polymorphisms (SNP) markers and anthracnose resistance genes in diverse sorghum populations for resistance breeding. Three hundred sixty-six sorghum populations were assessed for anthracnose resistance in three seasons in western Ethiopia using artificial inoculation. Data on anthracnose severity and the relative area under the disease progress curve were computed. Furthermore, the test populations were genotyped using SNP markers with DArTseq protocol. Population structure analysis and genome-wide association mapping were undertaken based on 11,643 SNPs with <10% missing data. The evaluated population was grouped into eight distinct genetic clusters. A total of eight significant (P < 0.001) marker-trait associations (MTAs) were detected, explaining 4.86-15.9% of the phenotypic variation for anthracnose resistance. Out of which the four markers were above the cutoff point. The significant MTAs in the assessed sorghum population are useful for marker-assisted selection (MAS) in anthracnose resistance breeding programs and for gene and quantitative trait loci (QTL) mapping.


Subject(s)
Disease Resistance/genetics , Plant Diseases/microbiology , Sorghum/genetics , Colletotrichum , Genes, Plant/genetics , Genetic Markers/genetics , Genome-Wide Association Study , Plant Diseases/immunology , Polymorphism, Single Nucleotide/genetics , Sorghum/drug effects
8.
Sci Rep ; 11(1): 19828, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34615901

ABSTRACT

Organophosphate is the commonly used pesticide to control pest outbreak, such as those by aphids in many crops. Despite its wide use, however, necrotic lesion and/or cell death following the application of organophosphate pesticides has been reported to occur in several species. To understand this phenomenon, called organophosphate pesticide sensitivity (OPS) in sorghum, we conducted QTL analysis in a recombinant inbred line derived from the Japanese cultivar NOG, which exhibits OPS. Mapping OPS in this population identified a prominent QTL on chromosome 5, which corresponded to Organophosphate-Sensitive Reaction (OSR) reported previously in other mapping populations. The OSR locus included a cluster of three genes potentially encoding nucleotide-binding leucine-rich repeat (NB-LRR, NLR) proteins, among which NLR-C was considered to be responsible for OPS in a dominant fashion. NLR-C was functional in NOG, whereas the other resistant parent, BTx623, had a null mutation caused by the deletion of promoter sequences. Our finding of OSR as a dominant trait is important not only in understanding the diversified role of NB-LRR proteins in cereals but also in securing sorghum breeding free from OPS.


Subject(s)
Drug Resistance/genetics , Leucine-Rich Repeat Proteins/genetics , Organophosphates/pharmacology , Pesticides/pharmacology , Sorghum/drug effects , Sorghum/genetics , Chromosome Mapping , Dose-Response Relationship, Drug , Gene Expression Regulation, Plant , Genetic Linkage , Leucine-Rich Repeat Proteins/metabolism , Phenotype , Phylogeny , Plant Development/drug effects , Plant Development/genetics , Promoter Regions, Genetic , Quantitative Trait Loci , Sorghum/classification
9.
PLoS One ; 16(7): e0253878, 2021.
Article in English | MEDLINE | ID: mdl-34283857

ABSTRACT

Chromium toxicity is a major problem in agricultural soils that negatively affects a plant's metabolic activities. It reduces biochemical and antioxidant defence system's activities. In search of the solution to this problem a two-year pot experiment (completely randomized design with three replications), in three genetically different varieties of sorghum (SSG 59-3, HJ 513 and HJ 541) under Cr toxicity (2 and 4 ppm) was conducted to determine the effect of glycine betaine (50 and 100mM) and Arbuscular mycorrhizal fungi (AMF) on the antioxidant system (enzymes viz. superoxide dismutase, ascorbate peroxidase, catalase, glutathione reductase, peroxidase and metabolites viz. glutathione, ascorbate, proline, ß-carotene) along with Cr accumulation and indices of oxidative stress parameters (polyphenol oxidase, hydrogen peroxide and malondialdehyde) at two growth stages (vegetative and grain filling). According to results; Cr stress (2 & 4 ppm) increased its accumulation and indices of oxidative stresses significantly (p≤0.05) in all varieties of sorghum at both growth stages. However, soil application of glycine betaine (GB) and AMF decreased Cr accumulation and indices of oxidative stress by increasing antioxidant enzymes and metabolites activities at both growth stages in all varieties. The combination of 100mM GB with AMF was observed most significant (p≤0.05) in decreasing oxidative stress and improved the antioxidant system's activities. The SSG 59-3 cultivar showed the lowest Cr accumulation (1.60 and 8.61 ppm), indices of oxidative stress and highest antioxidant system's activity among these three cultivars at both growth stages. Thus, SSG 59-3 was found most tolerant cultivars followed by HJ 513 and then HJ 541. These findings suggest that both GB and AMF, either individually or combined can play a positive role to reduce oxidative stress and increased antioxidant attributes under Cr toxicity in sorghum.


Subject(s)
Antioxidants/pharmacology , Chromium/toxicity , Oxidative Stress/drug effects , Sorghum/drug effects , Betaine/pharmacology , Mycorrhizae/drug effects , Mycorrhizae/metabolism , Plant Roots/drug effects , Plant Roots/microbiology , Soil/chemistry , Soil Microbiology , Sorghum/growth & development , Sorghum/microbiology
10.
Plant Signal Behav ; 16(7): 1916211, 2021 07 03.
Article in English | MEDLINE | ID: mdl-34034635

ABSTRACT

Aluminum (Al) toxicity in acidic soils severely reduces crop production worldwide. Sorghum (Sorghum bicolor L.) is an important agricultural crop widely grown in tropical and subtropical regions, where Al toxicity is prevalent. ATP-binding cassette (ABC) transporters play key roles in the development of plants and include the member sensitive to aluminum rhizotoxicity 1 (STAR1), which is reported to be associated with Al tolerance in a few plant species. However, a STAR1 homolog has not been characterized in sorghum with respect to Al tolerance. Here, we identified and characterized a SbSTAR1 gene in sweet sorghum encoding the nucleotide-binding domain of a bacterial-type ABC transporter. The transcriptional expression of SbSTAR1 is induced by Al in a time- and dosage-dependent manner in root, especially in root tip, which is the key site of Al toxicity in plants. The typical Al-associated transcription factor SbSTOP1 showed transcriptional regulation of SbSTAR1. SbSTAR1 was present at both the cytoplasm and nuclei. Overexpression of SbSTAR1 significantly enhanced the Al tolerance of transgenic plants, which possibly via regulating the hemicellulose content in root cell wall. This study provides the first ABC protein in sorghum implicated in Al tolerance, suggesting the existence of a SbSTAR1-mediated Al tolerance mechanism in sorghum.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Aluminum/toxicity , Plant Proteins/metabolism , Sorghum/metabolism , ATP-Binding Cassette Transporters/genetics , Drug Resistance/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plants, Genetically Modified , Polysaccharides/metabolism , Soil/chemistry , Sorghum/drug effects
11.
PLoS One ; 16(3): e0248962, 2021.
Article in English | MEDLINE | ID: mdl-33788892

ABSTRACT

BACKGROUND: Methyl Jasmonate (MeJA) could promote the opening of sorghum florets, but the molecular mechanism remains unclear. OBJECTIVE: We aimed to investigate the molecular mechanism of exogenous MeJA in promoting the opening of sorghum florets. METHODS: Hybrid sorghum Aikang-8 was selected as the test material in this study. Sorghum plants of uniform growth with approximately 20%-25% florets open were selected and treated with 0, 0.5 and 2.0 mmol/L of MeJA. Totally there were 27 samples with lodicules removed were obtained at different time points and used for the transcriptome analysis using the BGISEQ_500RS platform. RESULTS: The results showed the sorghum florets opened earlier than the control after the treatment with exogenous MeJA, and the promotive effect increased along with the increase of exogenous MeJA concentration. The number of differentially expressed genes (DEGs) in plasma cells increased with the increase of MeJA concentration, whether up- or down-regulated, after the exogenous MeJA treatment. Besides, the number of metabolic pathways was also positively correlated with the concentration of MeJA. GO and KEGG analysis suggested the DEGs were mainly enriched in starch and sucrose metabolism-related pathways (i.e., LOC8063704, LOC8083539 and LOC8056206), plant hormone signal transduction pathways (i.e., LOC8084842, LOC8072010, and LOC8057408), energy metabolic pathway (i.e., LOC8076139) and the α-linolenic acid metabolic pathway (i.e., LOC8055636, LOC8057399, LOC8063048 and LOC110430730). Functional analysis of target genes showed that two genes named LOC-1 (LOC8063704) and LOC-2 (LOC8076139) could induce the earlier flowering of Arabidopsis thaliana. CONCLUSION: The results of this study suggest that exogenous MeJA treatments could induce the up- or down- regulation of genes related to starch and sucrose metabolism, -linolenic acid metabolism and plant hormone signal transduction pathways in the plasma cells of sorghum florets, thereby promoting the opening of sorghum florets.


Subject(s)
Acetates/pharmacology , Cyclopentanes/pharmacology , Flowers/genetics , Flowers/physiology , Gene Expression Profiling , Oxylipins/pharmacology , Sorghum/genetics , Flowers/drug effects , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Multigene Family , Reproducibility of Results , Signal Transduction/drug effects , Sorghum/drug effects
12.
Comput Biol Chem ; 92: 107460, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33621907

ABSTRACT

Garcinia gardneriana is a medicinal tree species used in Brazil in the treatment of hepatitis and gastritis. This use is attributed to phenolic compounds, mainly 7-epiclusianone, guttiferone-A and fukugetin, which present several proven biological activities. However, to the best of our knowledge, no study on the phytotoxic activity of G. gardneriana extracts has been conducted until now. This research proposed to isolate and quantify by high-performance liquid chromatography (HPLC) the major compounds from G. gardneriana seed extracts in ethyl acetate and to evaluate their phytotoxic activities. The natural products 7-epiclusianone, guttiferone-A and fukugetin were quantified at concentrations varying from 0.46 to 1.13 mg mL-1 and were isolated with yields ranging from 7% to 23% (w/w). The phytotoxic assay indicated that the crude extract showed no action on the dry matter of Sorghum bicolor plants, but the isolated compounds fukugetin and 7-epiclusianone had moderate activity. On the other hand, guttiferone-A displayed a greater herbicide activity than glyphosate, a positive control, even in almost three times lower concentrations, causing severe intoxication in the plants. This work is the first report on this activity by the extract of G. gardneriana and its isolated compounds. Besides that, guttiferone-A showed up as a scaffold for the development of new agrochemicals. Complementing these findings, computational studies suggested that this benzophenone can interact effectively with transferase enzymes type, in special caffeic acid O-methyltransferase from S. bicolor (PDB code: 4PGH), indicating a possible mechanism of action in this plant.


Subject(s)
Biological Products/pharmacology , Garcinia/chemistry , Plant Extracts/pharmacology , Sorghum/drug effects , Biological Products/isolation & purification , Biological Products/metabolism , Brazil , Chromatography, High Pressure Liquid , Molecular Conformation , Plant Extracts/isolation & purification , Plant Extracts/metabolism
13.
PLoS One ; 16(1): e0245505, 2021.
Article in English | MEDLINE | ID: mdl-33465130

ABSTRACT

Sorghum [Sorghum bicolor (L.) Moench] seed germination is sensitive to salinity, and seed priming is an effective method for alleviating the negative effects of salt stress on seed germination. However, few studies have compared the effects of different priming agents on sorghum germination under salt stress. In this study, we quantified the effects of priming with distilled water (HP), sodium chloride (NaCl), potassium chloride (KCl), calcium chloride (CaCl2), and polyethylene glycol (PEG) on sorghum seed germination under 150 mM NaCl stress. The germination potential, germination rate, germination index, vigor index, root length, shoot length, root fresh weight, shoot fresh weight, root dry weight, and shoot dry weight were significantly reduced by salt stress. Different priming treatments alleviated the germination inhibition caused by salt stress to varying degrees, and 50 mM CaCl2 was the most effective treatment. In addition, the mitigation effect of priming was stronger on root traits than on shoot traits. Mitigation efficacy was closely related to both the type of agent and the concentration of the solution. Principal component analysis showed that all concentrations of CaCl2 had higher scores and were clearly distinguished from other treatments based on their positive effects on all germination traits. The effects of the other agents varied with concentration. The priming treatments were divided into three categories based on their priming efficacy, and the 50, 100, and 150 mM CaCl2 treatments were placed in the first category. The 150 mM KCl, 10% PEG, HP, 150 mM NaCl, 30% PEG, and 50 mM KCl treatments were placed in the second category, and the 100 mM NaCl, 100 mM KCl, 20% PEG, and 50 mM NaCl treatments were least effective and were placed in the third category. Choosing appropriate priming agents and methods for future research and applications can ensure that crop seeds germinate healthily under saline conditions.


Subject(s)
Germination , Salt Stress/drug effects , Seeds/growth & development , Sodium Chloride/pharmacology , Sorghum/growth & development , Seeds/drug effects , Sorghum/drug effects
14.
Planta ; 253(2): 29, 2021 Jan 09.
Article in English | MEDLINE | ID: mdl-33423117

ABSTRACT

MAIN CONCLUSION: Silicon inhibits the growth of Alternaria alternata into sorghum root cells by maintaining their integrity through stimulating biochemical defense reactions rather than by silica-based physical barrier creation. Although the ameliorating effect of silicon (Si) on plant resistance against fungal pathogens has been proven, the mechanism of its action needs to be better understood on a cellular level. The present study explores the effect of Si application in sorghum roots infected with fungus Alternaria alternata under controlled in vitro conditions. Detailed anatomical and cytological observations by both fluorescent and electron microscopy revealed that Si supplementation results in the inhibition of fungal hyphae growth into the protoplast of root cells. An approach of environmental scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy enabling spatial detection of Si even at low concentrations showed that there is no continual solid layer of silica in the root cell walls of the rhizodermis, mesodermis and exodermis physically blocking the fungal growth into the protoplasts. Additionally, biochemical evidence suggests that Si speeds up the onset of activities of phenylpropanoid pathway enzymes phenylalanine ammonia lyase, peroxidases and polyphenol oxidases involved in phenolic compounds production and deposition to plant cell walls. In conclusion, Si alleviates the negative impact of A. alternata infection by limiting hyphae penetration through sorghum root cell walls into protoplasts, thus maintaining their structural and functional integrity. This might occur by triggering plant biochemical defense responses rather than by creating compact Si layer deposits.


Subject(s)
Alternaria , Plant Roots , Silicon , Sorghum , Alternaria/drug effects , Phenylalanine Ammonia-Lyase , Plant Diseases/microbiology , Plant Roots/drug effects , Plant Roots/enzymology , Plant Roots/microbiology , Silicon/pharmacology , Sorghum/drug effects , Sorghum/enzymology , Sorghum/microbiology
15.
Planta ; 253(2): 48, 2021 Jan 23.
Article in English | MEDLINE | ID: mdl-33484360

ABSTRACT

MAIN CONCLUSION: This study confirms a high level of metabolic resistance to the herbicide chlorsulfuron, inherited by a single dominant gene in a sorghum genotype (GL-1). Chlorsulfuron, an acetolactate synthase (ALS)-inhibitor, effectively controls post-emergence grass and broadleaf weeds but is not registered for use in sorghum because of crop injury. The objectives of this study were to characterize the inheritance and mechanism of chlorsulfuron resistance in the sorghum genotype GL-1. Chlorsulfuron dose-response experiments were conducted using GL-1 along with BTx623 (susceptible check), and Pioneer 84G62 (commercial sorghum hybrid). The F1 and F2 progeny were generated by crossing GL-1 with BTx623. To assess if the target site alterations bestow resistance, the ALS gene, the molecular target of chlorsulfuron, was sequenced from GL-1. The role of cytochrome P450 (CYP) in metabolizing chlorsulfuron, using malathion, a CYP-inhibitor was tested. The chlorsulfuron dose-response assay indicated that GL-1 and F1 progeny were ~ 20-fold more resistant to chlorsulfuron relative to BTx623. The F2 progenies segregated 3:1 (resistance: susceptibility) suggesting that chlorsulfuron resistance in GL-1 is a single dominant trait. No mutations in the ALS gene were detected in the GL-1; however, a significant reduction in biomass accumulation was found in plants pre-treated with malathion indicating that metabolism of chlorsulfuron contributes to resistance in GL-1. Also, GL-1 is highly susceptible to other herbicides (e.g., mesotrione and tembotrione) compared to Pioneer 84G62, suggesting the existence of a negative cross-resistance in GL-1. Overall, these results confirm a high level of metabolic resistance to chlorsulfuron inherited by a single dominant gene in GL-1 sorghum. These results have potential for developing chlorsulfuron-tolerant sorghum hybrids, with the ability to improve post-emergence weed control.


Subject(s)
Herbicide Resistance , Sorghum , Sulfonamides , Triazines , Acetolactate Synthase/genetics , Herbicide Resistance/genetics , Herbicides/toxicity , Sorghum/drug effects , Sorghum/genetics , Sulfonamides/toxicity , Triazines/toxicity
16.
Pak J Biol Sci ; 24(12): 1278-1296, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34989205

ABSTRACT

<b>Background and Objective:</b> Salt stress is considering the biggest environmental obstacle to crop productivity, especially sorghum. So, it was necessary to develop new sorghum lines tolerant to salt stress and high yielding to participate in bridging the large gap in the Egyptian bread industry and also as an important feed for animals. This is the biggest goalie this investigation. <b>Materials and Methods:</b> Some promising sorghum genotypes were evaluated under the control experiment and two salinity stress locations to test their stability and its salinity stress tolerance during two years. Some agro-morphological and physiological traits were the most important parameters tested under all conditions besides, 11 SCoT primers for comparing among the seven sorghum genotypes and Identification of molecular genetic markers responsible for salt stress tolerance. <b>Results:</b> The final results revealed that the five promising sorghum lines were recorded highly rank of salinity stress tolerance in all studied traits and a higher level of genetic stability during the two years. <b>Conclusion:</b> Results of agro-physiological traits, salinity tolerance indices and SCoT primers succeed in determining salt stress tolerance mechanisms in sorghum and which an important taxonomic tool is for plant breeder that helps him in sorting the tolerant genotypes from the sensitive ones.


Subject(s)
Protein Stability , Salt Stress/genetics , Salt Tolerance/genetics , Sorghum/metabolism , Salt Stress/physiology , Salt Tolerance/physiology , Sorghum/drug effects
17.
Plant Cell Environ ; 44(3): 729-746, 2021 03.
Article in English | MEDLINE | ID: mdl-33245145

ABSTRACT

Elevated tropospheric ozone concentration (O3 ) significantly reduces photosynthesis and productivity in several C4 crops including maize, switchgrass and sugarcane. However, it is unknown how O3 affects plant growth, development and productivity in sorghum (Sorghum bicolor L.), an emerging C4 bioenergy crop. Here, we investigated the effects of elevated O3 on photosynthesis, biomass and nutrient composition of a number of sorghum genotypes over two seasons in the field using free-air concentration enrichment (FACE), and in growth chambers. We also tested if elevated O3 altered the relationship between stomatal conductance and environmental conditions using two common stomatal conductance models. Sorghum genotypes showed significant variability in plant functional traits, including photosynthetic capacity, leaf N content and specific leaf area, but responded similarly to O3 . At the FACE experiment, elevated O3 did not alter net CO2 assimilation (A), stomatal conductance (gs ), stomatal sensitivity to the environment, chlorophyll fluorescence and plant biomass, but led to reductions in the maximum carboxylation capacity of phosphoenolpyruvate and increased stomatal limitation to A in both years. These findings suggest that bioenergy sorghum is tolerant to O3 and could be used to enhance biomass productivity in O3 polluted regions.


Subject(s)
Ozone/pharmacology , Photosynthesis/drug effects , Sorghum/metabolism , Chlorophyll/metabolism , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Transpiration/drug effects , Sorghum/drug effects , Sorghum/growth & development , Sorghum/physiology
18.
Planta ; 252(5): 89, 2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33064214

ABSTRACT

MAIN CONCLUSION: Molecular function ofRING E3 ligase SbHCI1is involved in ABA-mediated basal heat stress tolerancein sorghum. Global warming generally reduces plant survival, owing to the negative effects of high temperatures on plant development. However, little is known about the role of Really Interesting New Gene (RING) E3 ligase in the heat stress responses of plants. As such, the aim of the present study was to characterize the molecular functions of the Sorghum bicolor ortholog of the Oryza sativa gene for Heat- and Cold-Induced RING finger protein 1 (SbHCI1). Subcellular localization revealed that SbHCI1 was mainly associated with the cytosol and that it moved to the Golgi apparatus under heat stress conditions. The fluorescent signals of SbHCI1 substrate proteins were observed to migrate to the cytoplasm under heat stress conditions. Bimolecular fluorescence complementation (BiFC) and yeast two-hybrid (Y2H) assays revealed that SbHCI1 physically interacted with OsHCI1 ortholog partner proteins in the cytoplasm. Moreover, an in vitro ubiquitination assay revealed that SbHCI1 polyubiquitinated each of the three interacting proteins. The ectopic overexpression of SbHCI1 in Arabidopsis revealed that the protein was capable of inducing abscisic acid (ABA)-hypersensitivity and basal heat stress tolerance. Therefore, SbHCI1 possesses E3 ligase activity and may function as a positive regulator of heat stress responses through the modulation of interacting proteins.


Subject(s)
Abscisic Acid , Hot Temperature , Plant Proteins , Sorghum , Stress, Physiological , Ubiquitin-Protein Ligases , Abscisic Acid/pharmacology , Arabidopsis/genetics , Droughts , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/enzymology , Sorghum/drug effects , Sorghum/enzymology , Sorghum/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
19.
PLoS One ; 15(10): e0233254, 2020.
Article in English | MEDLINE | ID: mdl-33052910

ABSTRACT

Herbicide application is crucial for weed management in most crop production systems, but for sorghum herbicide options are limited. Sorghum is sensitive to residual protoporphyrinogen oxidase (PPO)-inhibiting herbicides, such as fomesafen, and a long re-entry period is required before sorghum can be planted after its application. Improving sorghum for tolerance to such residual herbicides would allow for increased sorghum production and the expansion of herbicide options for growers. In this study, we observed sorghum tolerance to residual fomesafen. To investigate the underlying tolerance mechanism a genome-wide association mapping study was conducted using field-collected sorghum biomass panel (SBP) data, and a greenhouse assay was developed to confirm the field phenotypes. A total of 26 significant SNPs (FDR<0.05), spanning a 215.3 kb region on chromosome 3, were detected. The ten most significant SNPs included two in genic regions (Sobic.003G136800, and Sobic.003G136900) and eight SNPs in the intergenic region encompassing the genes Sobic.003G136700, Sobic.003G136800, Sobic.003G137000, Sobic.003G136900, and Sobic.003G137100. The gene Sobic.003G137100 (PPXI), which encodes the PPO1 enzyme, one of the targets of PPO-inhibiting herbicides, was located 12kb downstream of the significant SNP S03_13152838. We found that PPXI is highly conserved in sorghum and expression does not significantly differ between tolerant and sensitive sorghum lines. Our results suggest that PPXI most likely does not underlie the observed herbicide tolerance. Instead, the mechanism underlying herbicide tolerance in the SBP is likely metabolism-based resistance, possibly regulated by the action of multiple genes. Further research is necessary to confirm candidate genes and their functions.


Subject(s)
Benzamides/pharmacology , Herbicide Resistance , Polymorphism, Single Nucleotide , Protoporphyrinogen Oxidase/genetics , Sorghum/growth & development , Biomass , Chromosome Mapping , Chromosomes, Plant/genetics , Genome-Wide Association Study , Genotyping Techniques , Plant Proteins/antagonists & inhibitors , Plant Proteins/genetics , Protoporphyrinogen Oxidase/antagonists & inhibitors , Sorghum/drug effects , Sorghum/genetics
20.
Sci Rep ; 10(1): 12213, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32699377

ABSTRACT

The intensive application of agrochemicals in crops has negatively impacted the environment and other organisms. The use of naturally occurring compounds may be an alternative to mitigate these effects. Plants are secondary metabolite reservoirs and may present allelopathic activity, which is potentially interesting to be used in bioherbicide formulations. In this context, the present work aimed to evaluate the phytotoxic and cytotoxic effects of essential oils extracted from leaves of Sparattanthelium botocudorum and Sparattanthelium tupiniquinorum in bioassays with the plant models Lactuca sativa L. and Sorghum bicolor L. Moench. The essential oils were applied at concentrations of 3,000, 1,500, 750, 375 and 187.5 ppm. Chemical characterization of the oils was performed, and their impact on the percentage of germinated seeds, initial development of L. sativa and S. bicolor seedlings, and changes in the mitotic cycle of meristematic cells from L. sativa roots was evaluated. The major compound of the essential oils was germacrene D, followed by bicyclogermacrene, ß-elemene and germacrene A. The phytotoxicity assay showed that the essential oils of both species reduced the root and shoot growth in L. sativa and decreased the germination and shoot growth in S. bicolor. Inhibition was dependent on the tested oil concentration. In the cytotoxicity assay, a decrease in mitotic index and chromosomal and nuclear alterations were observed, which resulted from aneugenic and clastogenic action.


Subject(s)
Hernandiaceae/metabolism , Oils, Volatile/chemistry , Seedlings/drug effects , Volatile Organic Compounds/pharmacology , Chromatography, Gas , Germination/drug effects , Hernandiaceae/chemistry , Lactuca/drug effects , Lactuca/growth & development , Mitosis/drug effects , Oils, Volatile/analysis , Oils, Volatile/pharmacology , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Shoots/drug effects , Plant Shoots/growth & development , Seeds/growth & development , Sesquiterpenes, Germacrane/pharmacology , Sorghum/drug effects , Sorghum/growth & development , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...