Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 376
Filter
1.
PLoS One ; 19(4): e0301452, 2024.
Article in English | MEDLINE | ID: mdl-38557877

ABSTRACT

BACKGROUND AND AIM: Patient-reported outcome measures (PROMs) are recognized as valuable measures in the clinical setting. In 2018 we developed the Italian version of the "Hereditary Spastic Paraplegia-Self Notion and Perception Questionnaire" (HSP-SNAP), a disease-specific questionnaire that collects personal perception on motor symptoms related to HSP such as stiffness, weakness, imbalance, reduced endurance, fatigue and pain. In this study our primary aim was to assess the questionnaire validity and reliability. Our secondary aim was to characterize the symptoms "perceived" by patients with HSP and compare them with those "perceived" by age-matched healthy subjects. METHODS: The 12-item HSP-SNAP questionnaire was submitted to 20 external judges for comprehensibility and to 15 external judges for content validity assessment. We recruited 40 subjects with HSP and asked them to fill the questionnaire twice for test-retest procedure. They also completed the Medical Outcome Survey Short Form (SF-36) and were evaluated by the Spastic Paraplegia Rating Scale and the Six-Minute Walk Test. We also recruited 44 healthy subjects who completed the HSP-SNAP once to test score variability. RESULTS: The HSP-SNAP content validity index was high (0.8±0.1) and the test-retest analysis showed high reliability (ICC = 0.94). The mean HSP-SNAP score (score range 0-48) of the HSP group was 22.2±7.8, which was significantly lower than healthy subjects (43.1±6.3). The most commonly perceived symptom was stiffness, followed by weakness and imbalance. CONCLUSION: Although HSP-SNAP does not investigate non-motor symptoms and we validated only its Italian version, it showed good validity and reliability and it could be used in combination with other objective outcome measures for clinical purposes or as endpoints for future clinical rehabilitation studies. TRIAL REGISTRATION: Trial Registration: ClinicalTrial.gov, NCT04256681. Registered 3 February 2020.


Subject(s)
Spastic Paraplegia, Hereditary , Humans , Spastic Paraplegia, Hereditary/diagnosis , Reproducibility of Results , Paraplegia , Patient Reported Outcome Measures , Italy
4.
Continuum (Minneap Minn) ; 30(1): 119-132, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38330475

ABSTRACT

OBJECTIVE: This article provides an overview of genetic myelopathies, a diverse group of inherited, degenerative conditions that may be broadly categorized as motor neuron disorders, disorders of spinocerebellar degeneration, leukodystrophies, and hereditary spastic paraplegia. Clinical examples from each category are provided to illustrate the spectrum of genetic myelopathies and their distinguishing features that aid in differentiating genetic myelopathies from potentially treatable acquired causes of myelopathy. LATEST DEVELOPMENTS: Advances in genetic testing have vastly enhanced current knowledge of genetic myelopathies and the ability to diagnose and provide appropriate counseling to patients and their families. However, potential health care disparities in access to genetic testing is a topic that must be further explored. Although treatment for most of these conditions is typically supportive, there have been recent therapeutic breakthroughs in treatments for amyotrophic lateral sclerosis, spinal muscular atrophy, and Friedreich ataxia. ESSENTIAL POINTS: Genetic myelopathies may present with chronic and progressive symptoms, a family history of similar symptoms, and involvement of other structures outside of the spinal cord. Imaging often shows spinal cord atrophy, but cord signal change is rare. Exclusion of reversible causes of myelopathy is a key step in the diagnosis. There are many different causes of genetic myelopathies, and in some cases, symptoms may overlap, which underscores the utility of genetic testing in confirming the precise underlying neurologic condition.


Subject(s)
Amyotrophic Lateral Sclerosis , Muscular Atrophy, Spinal , Spastic Paraplegia, Hereditary , Spinal Cord Diseases , Humans , Amyotrophic Lateral Sclerosis/diagnosis , Muscular Atrophy, Spinal/diagnosis , Spastic Paraplegia, Hereditary/diagnosis , Spinal Cord Diseases/diagnosis , Spinal Cord Diseases/genetics , Spinal Cord Diseases/therapy
5.
Neurogenetics ; 25(2): 51-67, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38334933

ABSTRACT

Hereditary spastic paraparesis (HSP) is a group of central nervous system diseases primarily affecting the spinal upper motor neurons, with different inheritance patterns and phenotypes. SPG46 is a rare, early-onset and autosomal recessive HSP, linked to biallelic GBA2 mutations. About thirty families have been described worldwide, with different phenotypes like complicated HSP, recessive cerebellar ataxia or Marinesco-Sjögren Syndrome. Herein, we report five SPG46 patients harbouring five novel GBA2 mutations, the largest series described in Italy so far. Probands were enrolled in five different centres and underwent neurological examination, clinical cognitive assessment, column imaging for scoliosis assessment, ophthalmologic examination, brain imaging, GBA2 activity in peripheral blood cells and genetic testing. Their phenotype was consistent with HSP, with notable features like upper gaze palsy and movement disorders. We review demographic, genetic, biochemical and clinical information from all documented cases in the existing literature, focusing on the global distribution of cases, the features of the syndrome, its variable presentation, new potential identifying features and the significance of measuring GBA2 enzyme activity.


Subject(s)
Glucosylceramidase , Humans , Italy , Female , Glucosylceramidase/genetics , Male , Adult , Mutation/genetics , Phenotype , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/diagnosis , Adolescent , Pedigree , Child , Young Adult , Middle Aged
6.
Pediatr Neurol ; 152: 200-208, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38306901

ABSTRACT

BACKGROUND: Fatty acid 2-hydroxylase (FA2H) is encoded by the FA2H gene, with mutations therein leading to the neurodegenerative condition, spastic paraplegia-35 (SPG35). We aim to elucidate the genetic underpinnings of a nonconsanguineous Chinese family diagnosed with SPG35 by examining the clinical manifestations, scrutinizing genetic variants, and establishing the role of FA2H mutation in lipid metabolism. METHODS: Using next-generation sequencing analysis to identify the pathogenic gene in this pedigree and family cosegregation verification. The use of lipidomics of patient pedigree peripheral blood mononuclear cells further substantiated alterations in lipid metabolism attributable to the FA2H exon 1 deletion. RESULTS: The proband exhibited gait disturbance from age 5 years; he developed further clinical manifestations such as scissor gait and dystonia. His younger sister also presented with a spastic gait from the same age. We identified a homozygous deletion in the region of FA2H exon 1, spanning from chr16:74807867 to chr16: 74810391 in the patients. Lipidomic analysis revealed significant differences in 102 metabolites compared with healthy controls, with 62 metabolites increased and 40 metabolites decreased. We specifically zeroed in on 19 different sphingolipid metabolites, which comprised ceramides, ganglioside, etc., with only three of these sphingolipids previously reported. CONCLUSIONS: This is the first study of lipid metabolism in the blood of patients with SPG35. The results broaden our understanding of the SPG35 gene spectrum, offering insights for future molecular mechanism research and laying groundwork for determining metabolic markers.


Subject(s)
Heredodegenerative Disorders, Nervous System , Lipidomics , Spastic Paraplegia, Hereditary , Male , Humans , Child, Preschool , Homozygote , Leukocytes, Mononuclear/pathology , Sequence Deletion/genetics , Mutation , Exons/genetics , Pedigree , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/diagnosis , Paraplegia
7.
Mov Disord ; 39(4): 651-662, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38291924

ABSTRACT

BACKGROUND: Next-generation sequencing-based molecular assessment has benefited the diagnosis of hereditary spastic paraplegia (HSP) subtypes. However, the clinical and genetic spectrum of HSP due to large fragment deletions/duplications has yet to be fully defined. OBJECTIVE: We aim to better characterize the clinical phenotypes and genetic features of HSP and to provide new thoughts on diagnosis. METHODS: Whole-exome sequencing (WES) was performed in patients with clinically suspected HSP, followed by multiple ligation-dependent probe amplification (MLPA) sequentially carried out for those with negative findings in known causative genes. Genotype-phenotype correlation analyses were conducted under specific genotypes. RESULTS: We made a genetic diagnosis in 60% (162/270) of patients, of whom 48.9% (132/270) had 24 various subtypes due to point mutations (SPG4/SPG11/SPG35/SPG7/SPG10/SPG5/SPG3A/SPG2/SPG76/SPG30/SPG6/SPG9A/SPG12/SPG15/SPG17/SPG18/SPG26/SPG49/SPG55/SPG56/SPG57/SPG62/SPG78/SPG80). Thirty patients were found to have causative rearrangements by MLPA (11.1%), among which SPG4 was the most prevalent (73.3%), followed by SPG3A (16.7%), SPG6 (3.3%), SPG7 (3.3%), and SPG11 (3.3%). Clinical analysis showed that some symptoms were often related to specific subtypes, and rearrangement-related SPG3A patients seemingly had later onset. We observed a presumptive anticipation among SPG4 and SPG3A families due to rearrangement. CONCLUSIONS: Based on the largest known Asian HSP cohort, including the largest subgroup of rearrangement-related pedigrees, we gain a comprehensive understanding of the clinical and genetic spectrum of HSP. We propose a diagnostic flowchart to sequentially detect the causative genes in practice. Large fragment mutations account for a considerable proportion of HSP, and thus, MLPA screening acts as a beneficial supplement to routine WES. © 2024 International Parkinson and Movement Disorder Society.


Subject(s)
Spastic Paraplegia, Hereditary , Humans , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/diagnosis , Male , Female , Adult , Adolescent , Young Adult , Child , Middle Aged , Cohort Studies , Child, Preschool , Exome Sequencing/methods , Phenotype , Genetic Association Studies/methods , Mutation/genetics , Aged
8.
Pediatr Neurol ; 152: 93-97, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242023

ABSTRACT

BACKGROUND: HSP is a heterogeneous group of rare genetic diseases. In childhood, little is known of the development and psychological manifestations. METHODS: Retrospective analysis of 87 patients with childhood-onset HSP. Patient consent was obtained and data regarding gross motor, fine motor, and language development; equipment usage; surgical procedures; cognition; and mood were collected at each clinic visit and by phone call and analyzed using mean, median, range, and interquartile ranges (IQRs). RESULTS: The cohort contained 18 genetic types of HSP. Participant data ranged from birth to 36 years. Follow-up was variable spanning from a single clinic visit to 24 years of longitudinal visits. The mean age in months of sitting = 7.37, median = 6, range = 5 to 48, IQR = 0; crawling mean = 9.6, median = 9, range 7 to 23, IQR = 0; pulling to stand mean = 10.7, median 9, range: 9 to 36, IQR = 0; and the age for walking was mean = 16.25, median = 15, range = 11 to 63 IQR = 6. Eighteen patients did not achieve independent ambulation. Twenty-five were noted to have initial gait abnormalities. Median age for first word spoken was 12 months. Fifty-five of 87 participants were enrolled in mainstream or honors classes. Twenty-two of 87 had attention deficit disorder. Patients reported experiencing sadness around their diagnoses, and 26 of 87 reported being diagnosed with anxiety or depression. CONCLUSIONS: In childhood-onset HSP, motor disorder is the predominant feature; however, screening for attention deficit, anxiety, and depression is indicated.


Subject(s)
Cognition Disorders , Spastic Paraplegia, Hereditary , Humans , Infant , Spastic Paraplegia, Hereditary/diagnosis , Cross-Sectional Studies , Retrospective Studies , Cognition
10.
Am J Med Genet A ; 194(3): e63464, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37927245

ABSTRACT

Spastic paraplegia 3A (SPG3A) has long been considered as an autosomal dominant disorder till the report in 2014 and 2016 of two consanguineous Arabic families, showing that ATL1 mutations may cause autosomal recessive paraplegia. Here, a third report of a consanguineous Arabic family with recessive SPG3A is described. Exome sequencing reveals homozygosity for a novel likely pathogenic ATL1 splice donor variant (c.522+1G>T) in an affected 5-year-old infant whereas the parents, heterozygous carriers, are asymptomatic. The infant's phenotype is consistent with an early onset complicated SPG3A with severe progressive spasticity of the lower limbs and intellectual disability.


Subject(s)
GTP-Binding Proteins , Spastic Paraplegia, Hereditary , Child, Preschool , Humans , DNA Mutational Analysis , GTP-Binding Proteins/genetics , Membrane Proteins/genetics , Mutation , Pedigree , Spastic Paraplegia, Hereditary/diagnosis , Spastic Paraplegia, Hereditary/genetics
12.
Arq Neuropsiquiatr ; 81(11): 1000-1007, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38035585

ABSTRACT

BACKGROUND: Hereditary or familial spastic paraplegias (SPG) comprise a group of genetically and phenotypically heterogeneous diseases characterized by progressive degeneration of the corticospinal tracts. The complicated forms evolve with other various neurological signs and symptoms, including movement disorders and ataxia. OBJECTIVE: To summarize the clinical descriptions of SPG that manifest with movement disorders or ataxias to assist the clinician in the task of diagnosing these diseases. METHODS: We conducted a narrative review of the literature, including case reports, case series, review articles and observational studies published in English until December 2022. RESULTS: Juvenile or early-onset parkinsonism with variable levodopa-responsiveness have been reported, mainly in SPG7 and SPG11. Dystonia can be observed in patients with SPG7, SPG11, SPG22, SPG26, SPG35, SPG48, SPG49, SPG58, SPG64 and SPG76. Tremor is not a frequent finding in patients with SPG, but it is described in different types of SPG, including SPG7, SPG9, SPG11, SPG15, and SPG76. Myoclonus is rarely described in SPG, affecting patients with SPG4, SPG7, SPG35, SPG48, and SPOAN (spastic paraplegia, optic atrophy, and neuropathy). SPG4, SPG6, SPG10, SPG27, SPG30 and SPG31 may rarely present with ataxia with cerebellar atrophy. And autosomal recessive SPG such as SPG7 and SPG11 can also present with ataxia. CONCLUSION: Patients with SPG may present with different forms of movement disorders such as parkinsonism, dystonia, tremor, myoclonus and ataxia. The specific movement disorder in the clinical manifestation of a patient with SPG may be a clinical clue for the diagnosis.


ANTECEDENTES: As paraplegias espásticas hereditárias ou familiares (SPG) compreendem um grupo de doenças geneticamente e fenotipicamente heterogêneas caracterizadas por degeneração progressiva dos tratos corticospinais. As formas complicadas evoluem com vários outros sinais e sintomas neurológicos, incluindo distúrbios do movimento e ataxia. OBJETIVO: Resumir as descrições clínicas de SPG que se manifestam com distúrbios do movimento ou ataxias para auxiliar o clínico na tarefa de diagnosticar essas doenças. MéTODOS: Realizamos uma revisão da literatura, incluindo relatos de casos, séries de casos, artigos de revisão e estudos observacionais publicados em inglês até dezembro de 2022. RESULTADOS: O parkinsonismo juvenil ou de início precoce com resposta variável à levodopa foi relatado principalmente em SPG7 e SPG11. A distonia pode ser observada em pacientes com SPG7, SPG11, SPG22, SPG26, SPG35, SPG48, SPG49, SPG58, SPG64 e SPG76. O tremor não é um achado frequente em pacientes com SPG, mas é descrito em diferentes tipos de SPG, incluindo SPG7, SPG9, SPG11, SPG15 e SPG76. A mioclonia é raramente descrita em SPG, afetando pacientes com SPG4, SPG7, SPG35, SPG48 e SPOAN (paraplegia espástica, atrofia óptica e neuropatia). SPG4, SPG6, SPG10, SPG27, SPG30 e SPG31 podem raramente apresentar ataxia com atrofia cerebelar. E SPG autossômico recessivo, como SPG7 e SPG11, também pode apresentar ataxia. CONCLUSãO: Indivíduos com SPG podem apresentar diferentes formas de distúrbios do movimento, como parkinsonismo, distonia, tremor, mioclonia e ataxia. O distúrbio específico do movimento na manifestação clínica de um paciente com SPG pode ser uma pista clínica para o diagnóstico.


Subject(s)
Dystonia , Movement Disorders , Parkinsonian Disorders , Spastic Paraplegia, Hereditary , Humans , Spastic Paraplegia, Hereditary/diagnosis , Mutation , Tremor/diagnosis , Tremor/etiology , Dystonia/diagnosis , Dystonia/etiology , Ataxia , Parkinsonian Disorders/diagnosis , Proteins/genetics
13.
Genes (Basel) ; 14(9)2023 09 03.
Article in English | MEDLINE | ID: mdl-37761896

ABSTRACT

Hereditary spastic paraplegia (HSP) is characterized by progressive lower limb spasticity. There is no disease-modifying treatment currently available. Therefore, standardized, validated outcome measures to facilitate clinical trials are urgently needed. We performed a scoping review of outcome measures and biomarkers for HSP to provide recommendations for future studies and identify areas for further research. We searched Embase, Medline, Scopus, Web of Science, and the Central Cochrane database. Seventy studies met the inclusion criteria, and eighty-three outcome measures were identified. The Spastic Paraplegia Rating Scale (SPRS) was the most widely used (27 studies), followed by the modified Ashworth Scale (18 studies) and magnetic resonance imaging (17 studies). Patient-reported outcome measures (PROMs) were infrequently used to assess treatment outcomes (28% of interventional studies). Diffusion tensor imaging, gait analysis and neurofilament light chain levels were the most promising biomarkers in terms of being able to differentiate patients from controls and correlate with clinical disease severity. Overall, we found variability and inconsistencies in use of outcome measures with a paucity of longitudinal data. We highlight the need for (1) a standardized set of core outcome measures, (2) validation of existing biomarkers, and (3) inclusion of PROMs in HSP clinical trials.


Subject(s)
Spastic Paraplegia, Hereditary , Humans , Spastic Paraplegia, Hereditary/diagnosis , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/therapy , Diffusion Tensor Imaging , Paraplegia , Biomarkers , Outcome Assessment, Health Care
14.
Ann Clin Transl Neurol ; 10(11): 2139-2148, 2023 11.
Article in English | MEDLINE | ID: mdl-37752894

ABSTRACT

OBJECTIVE: Hereditary spastic paraplegia (HSP) has been reported rarely because of a monoallelic variant in ERLIN2. The present study aimed at describing a novel autosomal dominant ERLIN2 pedigree in a Chinese family and exploring the possible mechanism of HSP caused by ERLIN2 variants. METHODS: The proband and his family underwent a comprehensive medical history inquiry and neurological examinations. Whole-exome sequencing was performed on the proband, and Sanger sequencing was performed on some family members. HeLa cell lines and mouse primary cortical neurons were used for immunofluorescence (IF) and reverse transcription-PCR (RT-PCR). RESULTS: Seven patients were clinically diagnosed with pure spastic paraplegia in four consecutive generations with the autosomal dominant inheritance model. All patients presented juvenile-adolescent onset and gradually worsening pure HSP phenotype. Whole-exome sequencing of the proband and Sanger sequencing of all available family members identified a novel heterozygous c.212 T>C (p.V71A) variant in exon 8 of the ERLIN2 gene. The c.212 T>C demonstrated a high pathogenic effect score through functional prediction. RT-PCR and IF analysis of overexpressed V71A revealed an altered ER morphology and increased XBP-1S mRNA levels, suggesting the activation of ER stress. Overexpression of V71A in primary cultured cortical neurons promoted axon growth. INTERPRETATION: The novel c.212 T>C heterozygous variant in human ERLIN2 caused pure HSP. Moreover, c.212 T>C heterozygous variant in ERLIN2 increased ER stress and affected axonal development.


Subject(s)
Spastic Paraplegia, Hereditary , Adolescent , Animals , Mice , Humans , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/diagnosis , Mutation , East Asian People , HeLa Cells , Endoplasmic Reticulum Stress/genetics , Membrane Proteins/genetics
15.
Orphanet J Rare Dis ; 18(1): 249, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37644478

ABSTRACT

BACKGROUND: Hereditary spastic paraplegias (HSPs) cause characteristic gait impairment leading to an increased risk of stumbling or even falling. Biomechanically, gait deficits are characterized by reduced ranges of motion in lower body joints, limiting foot clearance and ankle range of motion. To date, there is no standardized approach to continuously and objectively track the degree of dysfunction in foot elevation since established clinical rating scales require an experienced investigator and are considered to be rather subjective. Therefore, digital disease-specific biomarkers for foot elevation are needed. METHODS: This study investigated the performance of machine learning classifiers for the automated detection and classification of reduced foot dorsiflexion and clearance using wearable sensors. Wearable inertial sensors were used to record gait patterns of 50 patients during standardized 4 [Formula: see text] 10 m walking tests at the hospital. Three movement disorder specialists independently annotated symptom severity. The majority vote of these annotations and the wearable sensor data were used to train and evaluate machine learning classifiers in a nested cross-validation scheme. RESULTS: The results showed that automated detection of reduced range of motion and foot clearance was possible with an accuracy of 87%. This accuracy is in the range of individual annotators, reaching an average accuracy of 88% compared to the ground truth majority vote. For classifying symptom severity, the algorithm reached an accuracy of 74%. CONCLUSION: Here, we show that the present wearable gait analysis system is able to objectively assess foot elevation patterns in HSP. Future studies will aim to improve the granularity for continuous tracking of disease severity and monitoring therapy response of HSP patients in a real-world environment.


Subject(s)
Spastic Paraplegia, Hereditary , Humans , Adult , Spastic Paraplegia, Hereditary/diagnosis , Algorithms , Gait , Hospitals , Machine Learning
16.
Mov Disord ; 38(9): 1750-1755, 2023 09.
Article in English | MEDLINE | ID: mdl-37394769

ABSTRACT

OBJECTIVES: To diagnose the molecular cause of hereditary spastic paraplegia (HSP) observed in a four-generation family with autosomal dominant inheritance. METHODS: Multiplex ligation-dependent probe amplification (MLPA), whole-exome sequencing (WES), and RNA sequencing (RNA-seq) of peripheral blood leukocytes were performed. Reverse transcription polymerase chain reaction (RT-PCR) and Sanger sequencing were used to characterize target regions of SPAST. RESULTS: A 121-bp AluYb9 insertion with a 30-bp poly-A tail flanked by 15-bp direct repeats on both sides was identified in the edge of intron 16 in SPAST that segregated with the disease phenotype. CONCLUSIONS: We identified an intronic AluYb9 insertion inducing splicing alteration in SPAST causing pure HSP phenotype that was not detected by routine WES analysis. Our findings suggest RNA-seq is a recommended implementation for undiagnosed cases by first-line diagnostic approaches. © 2023 International Parkinson and Movement Disorder Society.


Subject(s)
Spastic Paraplegia, Hereditary , Humans , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/diagnosis , Spastin/genetics , Adenosine Triphosphatases/genetics , Phenotype , Introns/genetics , Mutation
17.
Sensors (Basel) ; 23(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37514857

ABSTRACT

Hereditary spastic paraplegia (HSP) is characterised by progressive lower-limb spasticity and weakness resulting in ambulation difficulties. During clinical practice, walking is observed and/or assessed by timed 10-metre walk tests; time, feasibility, and methodological reliability are barriers to detailed characterisation of patients' walking abilities when instrumenting this test. Wearable sensors have the potential to overcome such drawbacks once a validated approach is available for patients with HSP. Therefore, while limiting patients' and assessors' burdens, this study aims to validate the adoption of a single lower-back wearable inertial sensor approach for step detection in HSP patients; this is the first essential algorithmic step in quantifying most gait temporal metrics. After filtering the 3D acceleration signal based on its smoothness and enhancing the step-related peaks, initial contacts (ICs) were identified as positive zero-crossings of the processed signal. The proposed approach was validated on thirteen individuals with HSP while they performed three 10-metre tests and wore pressure insoles used as a gold standard. Overall, the single-sensor approach detected 794 ICs (87% correctly identified) with high accuracy (median absolute errors (mae): 0.05 s) and excellent reliability (ICC = 1.00). Although about 12% of the ICs were missed and the use of walking aids introduced extra ICs, a minor impact was observed on the step time quantifications (mae 0.03 s (5.1%), ICC = 0.89); the use of walking aids caused no significant differences in the average step time quantifications. Therefore, the proposed single-sensor approach provides a reliable methodology for step identification in HSP, augmenting the gait information that can be accurately and objectively extracted from patients with HSP during their clinical assessment.


Subject(s)
Gait Disorders, Neurologic , Spastic Paraplegia, Hereditary , Humans , Spastic Paraplegia, Hereditary/diagnosis , Reproducibility of Results , Gait , Walking , Gait Disorders, Neurologic/diagnosis
18.
Neurosci Lett ; 812: 137399, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37473796

ABSTRACT

BACKGROUND: Hereditary spastic paraplegia 4 (SPG4) caused by spastin (SPAST) gene mutations accounts for 40-45% of hereditary spastic paraplegia (HSP) cases. To search for more genetic evidences for the pathogenesis of HSP, the SPAST genotype and clinical phenotype of a Chinese Han SPG4 family were analysed in this study. METHODS: The clinical data of the proband and his family members were collected. Whole genomic DNA was extracted from peripheral blood, and the gene detection and pathogenicity analysis of mutations were conducted using whole-exome sequencing technology. Suspected pathogenic mutations were identified. Verification within this family was conducted by Sanger sequencing. RESULTS: Eight (4 males and 4 females) of 20 members in 4 generations had SPG4. All patients presented with the high feet arches (pes cavus), the abnormal gait, the active tendon reflexes of the upper limbs, the hyperreflexia of the lower limbs, and the positive ankle clonus and Babinski's signs bilaterally. In the proband, we found a heterozygous mutation c.1495C > T in SPAST gene, which was associated with the autosomal dominant SPG4. Both the daughters and granddaughters of the proband in this family were verified to carry this mutation. The clinical characteristics of the SPG4 patients in this family are in line with the simple type of HSP. Heterozygous c.1495C > T is a pathogenic mutation in this family. CONCLUSION: In this study, we identified a c.1495C > T mutation in the SPAST gene in a Han Chinese family, enriching the mutation spectrum of SPG4.


Subject(s)
Spastic Paraplegia, Hereditary , Humans , Male , Female , Spastic Paraplegia, Hereditary/diagnosis , Spastin/genetics , East Asian People , Mutation
19.
J Hum Genet ; 68(10): 689-697, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37308565

ABSTRACT

Hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurodegenerative disorders characterized by progressive spasticity and weakness in the lower extremities. To date, a total of 88 types of SPG are known. To diagnose HSP, multiple technologies, including microarray, direct sequencing, multiplex ligation-dependent probe amplification, and short-read next-generation sequencing, are often chosen based on the frequency of HSP subtypes. Exome sequencing (ES) is commonly used. We used ES to analyze ten cases of HSP from eight families. We identified pathogenic variants in three cases (from three different families); however, we were unable to determine the cause of the other seven cases using ES. We therefore applied long-read sequencing to the seven undetermined HSP cases (from five families). We detected intragenic deletions within the SPAST gene in four families, and a deletion within PSEN1 in the remaining family. The size of the deletion ranged from 4.7 to 12.5 kb and involved 1-7 exons. All deletions were entirely included in one long read. We retrospectively performed an ES-based copy number variation analysis focusing on pathogenic deletions, but were not able to accurately detect these deletions. This study demonstrated the efficiency of long-read sequencing in detecting intragenic pathogenic deletions in ES-negative HSP patients.


Subject(s)
Adenosine Triphosphatases , Spastic Paraplegia, Hereditary , Humans , Adenosine Triphosphatases/genetics , Exome/genetics , Mutation , DNA Copy Number Variations , Retrospective Studies , Spastin/genetics , Spastic Paraplegia, Hereditary/diagnosis , Spastic Paraplegia, Hereditary/genetics , Paraplegia/genetics
20.
Article in Russian | MEDLINE | ID: mdl-37315258

ABSTRACT

A rare case of autosomal dominant spastic paraplegia in a 36-year-old female with two reported earlier mutations of most common spastic paraplegia forms: SPG4 (mutation p.Cys28Leufs*20 in SPAST gene) and SPG3 (mutation p.Val405Met in ATL1 gene) is presented. The mutations detected by massively parallel sequencing (MPS) panel were inherited from affected mother and clinically unaffected father, respectively. The proband, her 61-year-old mother and deceased grandfather had 'uncomplicated' paraplegia with onset in 4th decade. The 67-year-old father had no even minimal subclinical signs of the disease and no affected relatives, detection of his low-penetrating ATL1 mutation was unexpected. MPS methods are the most informative for identifying a patient and/or family members with a combined hereditary neurological pathology, especially a combination of similar forms of heterogeneous groups, such as spastic paraplegia.


Subject(s)
Paraplegia , Spastic Paraplegia, Hereditary , Adult , Aged , Female , Humans , Middle Aged , High-Throughput Nucleotide Sequencing , Mothers , Mutation , Paraplegia/diagnosis , Paraplegia/genetics , Spastic Paraplegia, Hereditary/diagnosis , Spastic Paraplegia, Hereditary/genetics , Spastin/genetics , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...