Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59.100
Filter
1.
PLoS One ; 19(5): e0303359, 2024.
Article in English | MEDLINE | ID: mdl-38728321

ABSTRACT

As-produced carbon nanotubes contain impurities which can dominate the properties of the material and are thus undesired. Herein we present a multi-step purification treatment that combines the use of steam and hydrochloric acid in an iterative manner. This allows the reduction of the iron content down to 0.2 wt. % in samples of single-walled carbon nanotubes (SWCNTs). Remarkably, Raman spectroscopy analysis reveals that this purification strategy does not introduce structural defects into the SWCNTs' backbone. To complete the study, we also report on a simplified approach for the quantitative assessment of iron using UV-Vis spectroscopy. The amount of metal in SWCNTs is assessed by dissolving in HCl the residue obtained after the complete combustion of the sample. This leads to the creation of hexaaquairon(III) chloride which allows the determination of the amount of iron, from the catalyst, by UV-Vis spectroscopy. The main advantage of the proposed strategy is that it does not require the use of additional complexing agents.


Subject(s)
Hydrochloric Acid , Iron , Nanotubes, Carbon , Spectrophotometry, Ultraviolet , Spectrum Analysis, Raman , Steam , Nanotubes, Carbon/chemistry , Iron/analysis , Iron/chemistry , Hydrochloric Acid/chemistry , Spectrum Analysis, Raman/methods
2.
J Sep Sci ; 47(9-10): e2400142, 2024 May.
Article in English | MEDLINE | ID: mdl-38726732

ABSTRACT

Catechins, renowned for their antioxidant properties and health benefits, are commonly present in beverages, particularly tea and wine. An efficient and cost-effective salting-out assisted liquid-liquid extraction (SALLE) method has been developed and validated for the simultaneous determination of six catechins and caffeine in tea and wine samples using high-performance liquid chromatography-ultraviolet (HPLC-UV). This method demonstrates outstanding performance: linearity (1-120 µg/mL, r2 > 0.999), accuracy (96.5%-103.4% recovery), and precision (≤14.7% relative standard deviation), meeting validation requirements set by the US Food and Drug Administration. The reduced sample size (0.1 g) minimizes matrix interferences and costs without compromising sensitivity. All analytes were detected in Camellia sinensis teas, with green tea displaying the highest total catechin content (47.5-100.1 mg/mL), followed by white and black teas. Analysis of wine samples reveals the presence of catechin in all red and white wines, and epigallocatechin gallate in all red wine samples, highlighting the impact of winemaking processes on catechin content. The SALLE-HPLC-UV approach represents a green alternative by eliminating organic waste, surpassing conventional dilution methods in specificity and sensitivity for catechin determination. AGREEprep assessment emphasizes the strengths of the SALLE procedure, including material reusability, throughput efficiency, minimal sample requirements, low energy consumption, and the absence of organic waste generation.


Subject(s)
Caffeine , Catechin , Liquid-Liquid Extraction , Tea , Wine , Chromatography, High Pressure Liquid/methods , Wine/analysis , Caffeine/analysis , Catechin/analysis , Tea/chemistry , Liquid-Liquid Extraction/methods , Spectrophotometry, Ultraviolet , Ultraviolet Rays
3.
Int J Mol Sci ; 25(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38732264

ABSTRACT

Pyridoxal and pyridoxal 5'-phosphate are aldehyde forms of B6 vitamin that can easily be transformed into each other in the living organism. The presence of a phosphate group, however, provides the related compounds (e.g., hydrazones) with better solubility in water. In addition, the phosphate group may sometimes act as a binding center for metal ions. In particular, a phosphate group can be a strong ligand for a gold(III) ion, which is of interest for researchers for the anti-tumor and antimicrobial potential of gold(III). This paper aims to answer whether the phosphate group is involved in the complex formation between gold(III) and hydrazones derived from pyridoxal 5'-phosphate. The answer is negative, since the comparison of the stability constants determined for the gold(III) complexes with pyridoxal- and pyridoxal 5'-phosphate-derived hydrazones showed a negligible difference. In addition, quantum chemical calculations confirmed that the preferential coordination of two series of phosphorylated and non-phosphorylated hydrazones to gold(III) ion is similar. The preferential protonation modes for the gold(III) complexes were also determined using experimental and calculated data.


Subject(s)
Gold , Hydrazones , Pyridoxal , Hydrazones/chemistry , Gold/chemistry , Pyridoxal/chemistry , Pyridoxal Phosphate/chemistry , Coordination Complexes/chemistry , Spectrophotometry, Ultraviolet , Molecular Structure
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124346, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38692105

ABSTRACT

Considering the health relevance of Chagas' disease, recent research efforts have focused on developing more efficient drug delivery systems containing nifurtimox (NFX). This paper comprehensively investigates NFX through conformational analysis and spectroscopic characterization. Using a conformer-rotamer ensemble sampling tool (CREST-xtb), five distinct conformers of NFX were sampled within a 3.0 kcal mol-1 relative energy window. Subsequently, such structures were used as inputs for geometry optimization by density functional theory (DFT) at B3LYP-def2-TZVP level of theory. Notably, harmonic vibrational frequencies were calculated to establish an in-depth comparison with experimental results and existing literature for the NFX or similar molecules and functional groups, thereby achieving a widely reasoned assignment of the mid-infrared band absorptions for the first time. Moreover, UV-VIS spectra of NFX were obtained in several solvents, enabling the determination of the molar absorptivity coefficient for the two electronic transitions observed for NFX. Among the aprotic solvents, a bathochromic effect was observed in the function of the dielectric constants. Furthermore, a hypochromic effect was observed when the drug was dissolved in protic solvents. These findings offer crucial support for new drug delivery systems containing NFX while demonstrating the potential of spectrophotometric studies in establishing quality control assays for NFX drug products.


Subject(s)
Chagas Disease , Molecular Conformation , Nifurtimox , Chagas Disease/drug therapy , Nifurtimox/chemistry , Spectrophotometry, Ultraviolet , Trypanocidal Agents/chemistry , Models, Molecular , Density Functional Theory , Trypanosoma cruzi/drug effects , Solvents/chemistry
5.
Methods Mol Biol ; 2788: 67-79, 2024.
Article in English | MEDLINE | ID: mdl-38656509

ABSTRACT

Derivatization of monosaccharides with 1-phenyl-3-methyl-5-pyrazolone (PMP) introduces two chromophores per sugar molecule. Their separation on a superficially porous C18 reverse-phase column, using common liquid chromatography equipment, results in short analysis times (under 20 min) and high sensitivity (limit of quantitation 1 nmol). This method allows for complex monosaccharide mixtures to be separated and quantified using a reasonably simple and safe derivatization procedure.


Subject(s)
Chromatography, Reverse-Phase , Monosaccharides , Chromatography, Reverse-Phase/methods , Monosaccharides/chemistry , Monosaccharides/analysis , Chromatography, High Pressure Liquid/methods , Spectrophotometry, Ultraviolet/methods , Edaravone/chemistry , Antipyrine/analogs & derivatives , Antipyrine/chemistry
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124338, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38678839

ABSTRACT

In this work, the interaction between different chloro-substituted phenylurea herbicides (diuron (DIU) and chlortoluron (CHL)) and BSA were investigated and compared at three different temperatures (283 K, 298 K and 310 K) adopting UV-vis, fluorescence, and circular dichroism spectra. The quenching mechanism of the interaction was also proposed. The energy transfer between BSA and DIU/CHL was investigated. The binding sites of DIU/CHL and BSA and the variations in the microenvironment of amino acid residues were studied. The changes of the secondary structure of BSA were analyzed. The results indicate that both DIU and CHL can significantly interact with BSA, and the degree of the interaction between DIU/CHL and BSA increases with the increase of the DIU/CHL concentration. The fluorescence quenching of BSA by DIU/CHL results from the combination of static and dynamic quenching. The DIU/CHL has a weak to moderate binding affinity for BSA, and the binding stoichiometry is 1:1. Their binding processes are spontaneous, and hydrophobic interaction, hydrogen bonds and van der Waals forces are the main interaction forces. DIU/CHL has higher affinity for subdomain IIA (Site I) of BSA than subdomain IIIA (Site II), and also interacts with tryptophan more than tyrosine residues. The energy transfer can occur from BSA to DIU/CHL. By comparison, the strength of the interaction of DIU-BSA is always greater than that of CHL-BSA, and DIU can destroy the secondary structure of BSA molecules greater than CHL and thus the potential toxicity of DIU is higher due to DIU with more chlorine substituents than CHL. It is expected that this study on the interaction can offer in-depth insights into the toxicity of phenylurea herbicides, as well as their impact on human and animal health at the molecular level.


Subject(s)
Herbicides , Serum Albumin, Bovine , Spectrometry, Fluorescence , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Herbicides/chemistry , Herbicides/metabolism , Animals , Cattle , Diuron/chemistry , Diuron/metabolism , Spectrophotometry, Ultraviolet , Binding Sites , Protein Binding , Circular Dichroism , Energy Transfer , Thermodynamics , Hydrogen Bonding
7.
Anal Bioanal Chem ; 416(12): 3007-3017, 2024 May.
Article in English | MEDLINE | ID: mdl-38565719

ABSTRACT

Enantioseparation of α -hydroxy acids is essential since specific enantiomers of these compounds can be used as disease biomarkers for diagnosis and prognosis of cancer, brain diseases, kidney diseases, diabetes, etc., as well as in the food industry to ensure quality. HPLC methods were developed for the enantioselective separation of 11 α -hydroxy acids using a superficially porous particle-based teicoplanin (TeicoShell) chiral stationary phase. The retention behaviors observed for the hydroxy acids were HILIC, reversed phase, and ion-exclusion. While both mass spectrometry and UV spectroscopy detection methods could be used, specific mobile phases containing ammonium formate and potassium dihydrogen phosphate, respectively, were necessary with each approach. The LC-MS mode was approximately two orders of magnitude more sensitive than UV detection. Mobile phase acidity and ionic strength significantly affected enantioresolution and enantioselectivity. Interestingly, higher ionic strength resulted in increased retention and enantioresolution. It was noticed that for formate-containing mobile phases, using acetonitrile as the organic modifier usually resulted in greater enantioresolution compared to methanol. However, sometimes using acetonitrile with high ammonium formate concentrations led to lengthy retention times which could be avoided by using methanol as the organic modifier. Additionally, the enantiomeric purities of single enantiomer standards were determined and it was shown that almost all standards contained some levels of enantiomeric impurities.


Subject(s)
Biomarkers , Hydroxy Acids , Mass Spectrometry , Biomarkers/analysis , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Stereoisomerism , Hydroxy Acids/analysis , Hydroxy Acids/chemistry , Spectrophotometry, Ultraviolet/methods , Limit of Detection , Liquid Chromatography-Mass Spectrometry
8.
Int J Pharm ; 656: 124090, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38582101

ABSTRACT

Advancements in industrial technologies and the application of quality by design (QbD) guidelines are shifting the attention of manufacturers towards innovative production techniques. In the pharmaceutical field, there is a significant focus on the implementation of continuous processes, in which the production stages are carried out continuously, without the need to interrupt the process and store the production intermediates, as in traditional batch production. Such innovative production techniques also require the development of proper analytical methods able to analyze the products in-line, while still being processed. The present study aims to compare a traditional batch manufacturing process with an alternative continuous one. To this end, a real pharmaceutical formulation was used, substituting the active pharmaceutical ingredient (API) with riboflavin, at the concentration of 2 %w/w. Moreover, a direct and non-destructive analytical method based on UV-Vis reflectance spectroscopy was applied for the quantification of riboflavin in the final tablets, and compared with a traditional absorbance analysis. Good results were obtained in the comparison of both the two manufacturing processes and the two analytical methods, with R2 higher than 0.9 for all the calculated calibration models and predicted riboflavin concentrations that never significantly overcame the 15 % limits recommended by the pharmacopeia. The continuous production method demonstrated to be as reliable as the batch one, allowing to save time and money in the production step. Moreover, UV-Vis reflectance was proved to be an interesting alternative to absorption spectroscopy, which, with the proper technology, could be implemented for in-line process control.


Subject(s)
Riboflavin , Spectrophotometry, Ultraviolet , Tablets , Technology, Pharmaceutical , Riboflavin/analysis , Riboflavin/chemistry , Technology, Pharmaceutical/methods , Spectrophotometry, Ultraviolet/methods , Drug Compounding/methods , Chemistry, Pharmaceutical/methods
9.
Sci Rep ; 14(1): 8146, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38584189

ABSTRACT

Chronic hepatitis B remains a worldwide health concern. Presently, many drugs, such as Clevudine and Telbivudine, are recommended for the treatment of chronic hepatitis B disease. For this purpose, the quantum chemical analysis of ELUMO-HOMO (Egap), ionization potential (IP), electron affinity (EA), electronegativity (EN), chemical hardness (η), chemical potential (µ), chemical softness (S), electrophilicity index (ω), electron accepting capability (ω+), electron-donating capability (ω-), Nucleophilicity index (N), additional electronic charge (∆Nmax), Optical softness (σ0) and Dipole Moment, IR and UV-Vis spectra, molecular electrostatic potential (MEP) profile, Mulliken charge analysis, natural bond orbital (NBO) were examined in this study. The dipole moment of the compounds suggests their binding pose and predicted binding affinity. The electrophilic and nucleophilic regions were identified, and techniques such as NBO, UV-Vis, and IR were used to gain insights into the molecular structure, electronic transitions, and potential drug design for Hepatitis B treatment. Calculations for this study were carried out using the Gaussian 09 program package coupled with the DFT/TDDFT technique. The hybrid B3LYP functional method and the 6-311++G(d, p) basis set were used for the calculations.


Subject(s)
Arabinofuranosyluracil/analogs & derivatives , Hepatitis B, Chronic , Humans , Models, Molecular , Telbivudine , Spectroscopy, Fourier Transform Infrared , Hepatitis B, Chronic/drug therapy , Quantum Theory , Spectrum Analysis, Raman , Spectrophotometry, Ultraviolet
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124258, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38599025

ABSTRACT

This research transformed MTX into smart nanoparticles that respond to the acidic conditions present in inflammation. These nanoparticles were then incorporated into a patch that dissolves over time, aiding their penetration. A method using UV-Vis spectrophotometry was validated to support the development of this new delivery system. This method was used to measure the quantity of MTX in the prepared patches in various scenarios: in laboratory solutions with pH 7.4 and pH 5.0, in skin tissue, and plasma. This validation was conducted in laboratory studies, tissue samples, and live subjects, adhering to established guidelines. The resulting calibration curve displayed a linear relationship (correlation coefficient 0.999) across these scenarios. The lowest quantity of MTX that could be accurately detected was 0.6 µg/mL in pH 7.4 solutions, 1.46 µg/mL in pH 5.0 solutions, 1.11 µg/mL in skin tissue, and 1.48 µg/mL in plasma. This validated method exhibited precision and accuracy and was not influenced by dilution effects. The method was effectively used to measure MTX levels in the developed patch in controlled lab settings and biological systems (in vitro, ex vivo, and in vivo). This showed consistent drug content in the patches, controlled release patterns over 24 h, and pharmacokinetic profiles spanning 48 h. However, additional analytical approaches were necessary for quantifying MTX in studies focused on the drug's effects on the body's functions.


Subject(s)
Colorimetry , Methotrexate , Nanoparticles , Skin , Spectrophotometry, Ultraviolet , Animals , Methotrexate/blood , Methotrexate/pharmacokinetics , Methotrexate/administration & dosage , Methotrexate/chemistry , Methotrexate/analysis , Hydrogen-Ion Concentration , Nanoparticles/chemistry , Skin/metabolism , Skin/chemistry , Colorimetry/methods , Rats , Drug Liberation , Male , Humans , Reproducibility of Results , Transdermal Patch , Rats, Wistar
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124265, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38626674

ABSTRACT

In recent years, extensive research has been directed towards understanding the interactions between various zinc complexes with DNA, specifically delving into their intercalation and binding behaviors. The binding of zinc complexes to DNA is particularly intriguing due to their distinctive intercalating capabilities. This study unveils a remarkable phenomenon observed with a specific Zn complex, ([B-Zn-N3], where B is a Schiff base ligand), during DNA intercalation investigations in the popular DMSO-Water binary solvent mixture. An unanticipated observation revealed time-dependent changes in the UV-visible absorption spectroscopic studies, coupled with the existence of an isosbestic point. This observation questions the stability of the intercalating agent itself during the intercalation process. The emergence of a decomposed product during the intercalation study has been confirmed through various analytical techniques, including CHN analysis, MALDI mass, XPS, Raman spectroscopy, and Powder XRD. The change in the chemical species on intercalation is further substantiated by theoretical studies, adding depth to our understanding of the intricate dynamics at play during DNA intercalation with the [B-Zn-N3] complex in the DMSO-Water system.


Subject(s)
DNA , Dimethyl Sulfoxide , Intercalating Agents , Water , Dimethyl Sulfoxide/chemistry , Intercalating Agents/chemistry , DNA/chemistry , DNA/metabolism , Water/chemistry , Spectrum Analysis, Raman , Zinc/chemistry , Spectrophotometry, Ultraviolet , Coordination Complexes/chemistry , Coordination Complexes/metabolism , Schiff Bases/chemistry
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124286, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38663135

ABSTRACT

A simple single step one pot multicomponent reaction was performed to synthesize N-(tert-butyl)-2-(furan-2-yl)imidazo[1,2-a]pyridine-3-amine (TBFIPA). The synthesized TBFIPA was subjected to library of cations to study its ability for selective and sensitive detection of specific metal ions. Selective detection of chromium ions by TBFIPA were found from the significant hypsochromic shift (335 nm â†’ 285 nm) in the UV-Visible spectra. The fluorescent TBFIPA displays complete quenching of fluorescence under UV lamp (365 nm) only in the presence of chromium without the interference of common metal ions. Binding constant (ka) obtained from Benesi-Hildebrand plot is 0.21 × 105 M-1, limit of detection (LOD) and limit of quantification (LOQ) of TBFIPA toward Cr3+ ions are 4.70 × 10-7 M and 1.56 × 10-7 M, respectively. The mechanism proposed during complex formation were supported by stoichiometric Job continuous variation plot, 1H NMR titration and ESI-MS spectroscopic data. All the experimental confirmation for complex formation were corroborated with theoretical DFT studies optimized using RB3LYP/6-31G(d) basis set. The selectivity and sensitivity of TBFIPA toward Cr3+ ions are found suitable to design a user-friendly silica based portable test kit. Alongside, TBFIPA was successfully utilized for imaging onion epidermal cells. Furthermore, the results obtained for biological, environmental, and industrial samples provided solid evidence to estimate chromium ions using TBFIPA in these real samples.


Subject(s)
Chromium , Fluorescent Dyes , Limit of Detection , Spectrometry, Fluorescence , Chromium/analysis , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Spectrometry, Fluorescence/methods , Onions/chemistry , Pyridines/chemistry , Spectrophotometry, Ultraviolet , Ions/analysis
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124290, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38669984

ABSTRACT

Hydrogen Peroxide (H2O2) is a highly hazardous, toxic, and carcinogenic chemical compound utilised in various industries-based applications. Despite strict restriction, they are deliberately added to food items such as milk as preservatives to increase its shelf life. Herein, we have formulated a green rapid colorimetric nanosensor for detection of H2O2 in milk using cotton leaves as both reducing and functionalizing agent for synthesis of silver nanoparticles (AgNPs). UV-Vis spectra exhibit a strong plasmonic peak at around 434 nm. X-Ray Diffraction (XRD) analysis was performed to determine the crystallinity of the nanoparticles. Field Emission Scanning Electron Microscope (FESEM) and Transmission Electron Microscope (TEM) characterizations revealed spherical morphology with size approximately âˆ¼16 nm. This functionalized nanoparticle could colorimetrically sense presence of H2O2 in milk samples both in liquid media and on paper substrates with Limit of Detection (LOD) of 8.46 ppm even in presence of other interfering substances in milk. This inexpensive route will pave the way for in depth research.


Subject(s)
Colorimetry , Hydrogen Peroxide , Limit of Detection , Metal Nanoparticles , Milk , Paper , Silver , Hydrogen Peroxide/analysis , Hydrogen Peroxide/chemistry , Milk/chemistry , Colorimetry/methods , Animals , Silver/chemistry , Metal Nanoparticles/chemistry , Nanostructures/chemistry , Spectrophotometry, Ultraviolet
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124313, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38676984

ABSTRACT

DNA is a key target for anticancer and antimicrobial drugs. Assessing the bioactivity of compounds involves in silico and instrumental studies to determine their affinity for biomolecules like DNA. This study explores the potential of the switchSense technique in rapidly evaluating compound bioactivity towards DNA. By combining switchSense with computational methods and UV-Vis spectrophotometry, various bioactive compounds' interactions with DNA were analyzed. The objects of the study were: netropsin (as a model compound that binds in the helical groove), as well as derivatives of pyrazine (PTCA), sulfonamide (NbutylS), and anthraquinone (AQ-NetOH). Though no direct correlation was found between switchSense kinetics and binding modes, this research suggests the technique's broader utility in assessing new compounds' interactions with DNA. used as analytes whose interactions with DNA have not been yet fully described in the literature.


Subject(s)
Anthraquinones , DNA , Spectrophotometry, Ultraviolet , DNA/chemistry , DNA/metabolism , Anthraquinones/chemistry , Anthraquinones/pharmacology , Netropsin/chemistry , Netropsin/metabolism , Netropsin/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfonamides/metabolism , Kinetics , Molecular Docking Simulation
15.
J Pharm Biomed Anal ; 244: 116127, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38554556

ABSTRACT

Antimicrobials, particularly antibiotics, are among the most common classes of drugs reported as substandard and falsified (SF) in developing countries. Therefore, it is important to develop simple and affordable analytical methods for the quality control of antimicrobial medicines. In this study, a liquid chromatographic method with ultraviolet detection (LC-UV) was developed and validated for the screening and quantification of 13 antimicrobial medicines and one beta-lactamase inhibitor in pharmaceutical formulations. LC separation was carried out on a Kinetex C18 column (150 mm × 4.6 mm, 2.6 µm) with gradient elution. The mobile phase consisted of mixtures of acetonitrile-water-10 mM phosphate buffer pH 3.5 at ratios of 3:92:5, v/v/v for mobile phase A and 50:45:5, v/v/v for mobile phase B with a flow rate of 0.5 mL/min. The screening method was intended for confirmation of the identity of the actives and validated for specificity and robustness, whereas the quantification method (using only a different detection wavelength) was further validated in terms of linearity, accuracy, sensitivity and precision (repeatability, intermediate precision). For all compounds, the method was found to be linear (r2 > 0.999), precise (%RSD < 1%), accurate (% recovery of 98-102%), sensitive, specific and robust. The developed LC method was successfully applied for the identification and assay of 12 antimicrobial samples from Ethiopia. Among the 12 samples analyzed, one (8.3%) product was confirmed to be falsified.


Subject(s)
Anti-Infective Agents , Reproducibility of Results , Chromatography, High Pressure Liquid/methods , Anti-Infective Agents/analysis , Quality Control , Chromatography, Liquid/methods , Spectrophotometry, Ultraviolet/methods , Limit of Detection , Anti-Bacterial Agents/analysis
16.
J Dent ; 144: 104951, 2024 May.
Article in English | MEDLINE | ID: mdl-38508441

ABSTRACT

OBJECTIVES: This study evaluated the efficacy of simulated brushing with toothpastes containing different concentrations of hydrogen peroxide (HP) in pulp chamber penetration and color change. Also, physical-chemical properties (concentration, pH and viscosity) were evaluated. METHODS: Forty-nine premolars were divided into seven groups (n = 7): untreated (control); whitening gel (White Class 6 %, 6 %BG) with one 90  min application (6 %BG 90  min) and 14 applications of 90  min (6 %BG 14×90 min); toothpastes (Colgate Luminous White Glow 3 %, 3 %TP; Crest 3D White Brilliance 4 %, 4 %TP; Colgate Optic White Pro-Series 5 %, 5 %TP) and 6 %BG toothbrushing for 14 applications of 90 s. HP penetration into the pulp chamber was measured through UV-Vis spectrophotometry and color change with a spectrophotometer (ΔEab, ΔE00, and ΔWID). Initial concentration, pH, and viscosity were measured through Titration, Digital pH-meter, and Rheometer, respectively. Statistical analysis used one-way ANOVA and Tukey's test (α = 0.05). RESULTS: 6 %BG (14×90 min) and 4 %TP groups showed acidic pH and higher concentrations of HP in the pulp chamber compared to the other groups (p < 0.05). On the other side, 3 %TP and 5 %TP groups showed alkaline pH, higher viscosity between the toothpastes and lower HP penetration (p < 0.05). The 6 %BG AH (14×90 min) group exhibited the most significant color change (ΔEab, ΔE00, and ΔWID) (p < 0.05). CONCLUSIONS: Brushing with whitening toothpaste with an acidic pH leads to greater HP penetration into pulp chamber; but, even when a high concentrated HP whitening toothpaste was used, a lower whitening effect was observed when compared to a two-week at-home bleaching. CLINICAL SIGNIFICANCE: Whitening toothpastes containing up to 5 % HP produced lower whitening effect than two-week at-home bleaching. Additionally, HP was detected within the pulp chamber which can potentially impact in tooth sensitivity.


Subject(s)
Color , Dental Pulp Cavity , Hydrogen Peroxide , Tooth Bleaching Agents , Tooth Bleaching , Toothbrushing , Toothpastes , Hydrogen Peroxide/chemistry , Humans , Tooth Bleaching Agents/pharmacokinetics , Tooth Bleaching Agents/chemistry , Hydrogen-Ion Concentration , Toothpastes/chemistry , Tooth Bleaching/methods , Dental Pulp Cavity/metabolism , Viscosity , Materials Testing , Time Factors , Spectrophotometry , Bicuspid , Spectrophotometry, Ultraviolet
17.
J Mol Graph Model ; 129: 108753, 2024 06.
Article in English | MEDLINE | ID: mdl-38461758

ABSTRACT

Through a comprehensive computational analysis utilizing Density Functional Theory (DFT), we clarify the electronic structure and spectroscopic properties of modified iron(II)-terpyridine derivatives, with the aim of enhancing the efficiency of Dye-Sensitized Solar Cells (DSSCs). We optimized a series of nineteen iron(II)-terpyridine derivatives and related compounds in acetonitrile (MeCN) as the solvent using TDDFT, evaluating their potential as dyes for DSSCs. From the conducted computations on the optimized geometries of the nineteen [Fe(Ln)2]2+ complexes, containing substituted terpyridine and related ligands L1-L19, we determined the wavelengths (λ in nm), transition energy (E in eV), oscillator strength (f), type of transitions, excited state lifetime (τ), light harvesting efficiency (LHE), frontier orbital character and their energies (ELUMO/EHOMO), natural transition orbitals (NTOs), injection driving force of a dye (ΔGinject), and regeneration driving force of a dye (ΔGregenerate). Results show that the theoretically calculated values for assessing dye efficiency in a DSSC correlate with available experimental values. The UV-visible spectra of [Fe(Ln)2]2+ exhibited a peak above 500 nm (λmax) in the visible region, attributed to the ligand-to-metal charge transfer band (LMCT) in literature, and a significant absorbance peak at approximately 300 nm (λA,max) in the UV region. The M06-D3/CEP-121G method replicated all reported λmax and λA,max values with a mean absolute deviation (MAD) of 21 and 18 nm, respectively. Our findings underscore the connections between electronic modifications and absorption spectra, emphasizing their impact on the light-harvesting capabilities and overall performance of DSSCs. This research contributes to the advancement of fundamental principles governing the design and optimization of novel photovoltaic materials, facilitating the development of more efficient and sustainable solar energy technologies.


Subject(s)
Coloring Agents , Solar Energy , Coloring Agents/chemistry , Iron , Spectrophotometry, Ultraviolet , Ferrous Compounds
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123948, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38309006

ABSTRACT

Binding characteristics of potent non-nucleoside HIV-1 reverse transcriptase inhibitors, 4-(2',6'-dimethyl-4'-formylphenoxy)-2-(5″-cyanopyridin-2″ylamino) quinoline (1) and 4-(2',6'-dimethyl-4'-cyanophenoxy)-2-(5″-cyanopyridin-2″ylamino) quinoline (2), to bovine serum albumin (BSA) under simulative physiological conditions were investigated by multiple spectroscopic and computational methods. The experimental results demonstrated that (1) and (2) bound to BSA at site III (subdomain IB), and quenched BSA fluorescence through a static quenching process. The binding interaction of (1) or (2) to BSA forms stable complexes with the binding constants (Kb) at the level of 104 L/mol and the number of binding site was determined to be 1 for both systems, indicating that new synthesized compounds occupied one site in BSA with moderate binding affinities. Based on the analysis of the thermodynamic parameters, it can be indicated that the main binding forces for interaction between BSA and both compounds were hydrogen bonding and van der Waals force. Synchronous fluorescence results revealed that the interaction of two compounds with BSA led to modifications in the microenvironment surrounding tryptophan residue of BSA. Circular dichroism spectra demonstrated alterations in the secondary structure of BSA induced by (1) and (2). Moreover, the experimental data of molecular docking and molecular dynamics (MD) simulations supported the results obtained from multiple spectroscopic techniques, confirming the binding interactions between both compounds and BSA.


Subject(s)
Quinolines , Serum Albumin, Bovine , Serum Albumin, Bovine/chemistry , Molecular Docking Simulation , Binding Sites , Circular Dichroism , Thermodynamics , Protein Binding , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
19.
Protein J ; 43(2): 274-282, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38265732

ABSTRACT

Cecropin A (1-7) is a cationic antimicrobial peptide which contain lots of basic amino acids. To understand the effect of basic amino acids on cecropin A (1-7), analogues CA2, CA3 and CA4 which have more arginine or lysine at the N-terminal or C-terminal were designed and synthesized. The interaction of cecropin A (1-7) and its analogs with DNA was studied using ultraviolet-visible spectroscopy, fluorescence spectroscopy and circular dichroism spectroscopy. Multispectral analysis showed that basic amino acids improved the interaction between the analogues and DNA. The interaction between CA4 and DNA is most pronounced. Fluorescence spectrum indicated that Ksv value of CA4 is 1.19 × 105  L mol-1 compared to original peptide cecropin A (1-7) of 3.73 × 104  L mol-1. The results of antimicrobial experiments with cecropin A (1-7) and its analogues showed that basic amino acids enhanced the antimicrobial effect of the analogues. The antimicrobial activity of CA4 against E. coli was eightfold higher than that of cecropin A (1-7). The importance of basic amino acid in peptides is revealed and provides useful information for subsequent studies of antimicrobial peptides.


Subject(s)
Circular Dichroism , DNA , Escherichia coli , Escherichia coli/drug effects , DNA/chemistry , DNA/metabolism , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Microbial Sensitivity Tests
20.
J Mol Recognit ; 37(2): e3074, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38168749

ABSTRACT

6-Bromobenzimidazole (6BBZ) has been calculated in this study utilizing the 6-311++G(d,p) basis set and the Becke-3-Lee-Yang-Parr density functional approaches. The basic frequencies and geometric optimization are known. FTIR, FT-Raman, and UV-Vis spectra of the substance are compared between its computed and observed values. The energy gap between highest occupied molecular orbital-lowest unoccupied molecular orbital and molecule electrostatic potentials has been represented by charge density distributions that may be associated with the biological response. Time-dependent density functional theory calculations in the gas phase and dimethyl sulfoxide were carried out to ascertain the electronic properties and energy gap values using the same basis set. Molecular orbital contributions are investigated using the overlap population, partial, and total densities of states. Natural bond analysis was found to have strong electron delocalization by means of π(C4-C9) → π*(C5-C6), LP (N1) → π*(C7-C8), and LP(Br12) → π*(C5-C6) interactions. The Fukui function and Mulliken analysis have been explored on the atomic charges of the molecule. The nuclear magnetic resonance chemical shifts for 1 H and 13 C have been computed using the gauge-independent atomic orbital technique. With the highest binding affinity (-6.2 kcal mol-1 ) against estrogen sulfotransferase receptor (PDB ID: 1AQU) and low IC50 value of 17.23 µg/mL, 6BBZ demonstrated potent action against the MCF-7 breast cancer cell line. Studies on the antibacterial activity and ADMET prediction of the molecule have also been carried out.


Subject(s)
Breast Neoplasms , Spectrum Analysis, Raman , Humans , Female , Models, Molecular , Molecular Conformation , Spectroscopy, Fourier Transform Infrared , Breast Neoplasms/drug therapy , Spectrophotometry, Ultraviolet , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...