Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.680
Filter
1.
J Med Chem ; 67(8): 6839-6853, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38590144

ABSTRACT

Cisplatin (cDDP) resistance is a matter of concern in triple-negative breast cancer therapeutics. We measured the metabolic response of cDDP-sensitive (S) and -resistant (R) MDA-MB-231 cells to Pd2Spermine(Spm) (a possible alternative to cDDP) compared to cDDP to investigate (i) intrinsic response/resistance mechanisms and (ii) the potential cytotoxic role of Pd2Spm. Cell extracts were analyzed by untargeted nuclear magnetic resonance metabolomics, and cell media were analyzed for particular metabolites. CDDP-exposed S cells experienced enhanced antioxidant protection and small deviations in the tricarboxylic acid cycle (TCA), pyrimidine metabolism, and lipid oxidation (proposed cytotoxicity signature). R cells responded more strongly to cDDP, suggesting a resistance signature of activated TCA cycle, altered AMP/ADP/ATP and adenine/uracil fingerprints, and phospholipid biosynthesis (without significant antioxidant protection). Pd2Spm impacted more markedly on R/S cell metabolisms, inducing similarities to cDDP/S cells (probably reflecting high cytotoxicity) and strong additional effects indicative of amino acid depletion, membrane degradation, energy/nucleotide adaptations, and a possible beneficial intracellular γ-aminobutyrate/glutathione-mediated antioxidant mechanism.


Subject(s)
Antineoplastic Agents , Cisplatin , Drug Resistance, Neoplasm , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Cisplatin/pharmacology , Drug Resistance, Neoplasm/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Female , Spermine/pharmacology , Spermine/metabolism , Palladium/chemistry , Palladium/pharmacology
2.
Int J Mol Sci ; 25(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473823

ABSTRACT

The work presents the synthesis of a series of linear polyamidoamines by polycondensation of sebacoyl dichloride with endogenous polyamines: putrescine, spermidine, spermine, and norspermidine-a biogenic polyamine not found in the human body. During the synthesis carried out via interfacial reaction, hydrophilic, semi-crystalline polymers with an average viscosity molecular weight of approximately 20,000 g/mol and a melting point of approx. 130 °C were obtained. The structure and composition of the synthesized polymers were confirmed based on NMR and FTIR studies. The cytotoxicity tests performed on human fibroblasts and keratinocytes showed that the polymers obtained with spermine and norspermidine were strongly cytotoxic, but only in high concentrations. All the other examined polymers did not show cytotoxicity even at concentrations of 2000 µg/mL. Simultaneously, the antibacterial activity of the obtained polyamides was confirmed. These polymers are particularly active against E. Coli, and virtually all the polymers obtained demonstrated a strong inhibitory effect on the growth of cells of this strain. Antimicrobial activity of the tested polymer was found against strains like Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa. The broadest spectrum of bactericidal action was demonstrated by polyamidoamines obtained from spermine, which contains two amino groups in the repeating unit of the chain. The obtained polymers can be used as a material for forming drug carriers and other biologically active compounds in the form of micro- and nanoparticles, especially as a component of bactericidal creams and ointments used in dermatology or cosmetology.


Subject(s)
Escherichia coli , Spermidine/analogs & derivatives , Spermine , Humans , Spermine/pharmacology , Polyamines/pharmacology , Anti-Bacterial Agents/pharmacology , Polymers/pharmacology
3.
Endocrinology ; 165(3)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38195178

ABSTRACT

Type 1 diabetes (T1D) is an autoimmune disease leading to dysfunction and loss of insulin-secreting ß cells. In ß cells, polyamines have been implicated in causing cellular stress and dysfunction. An inhibitor of polyamine biosynthesis, difluoromethylornithine (DFMO), has been shown to delay T1D in mouse models and preserve ß-cell function in humans with recent-onset T1D. Another small molecule, N1,N11-diethylnorspermine (DENSpm), both inhibits polyamine biosynthesis and accelerates polyamine metabolism and is being tested for efficacy in cancer clinical trials. In this study, we show that DENSpm depletes intracellular polyamines as effectively as DFMO in mouse ß cells. RNA-sequencing analysis, however, suggests that the cellular responses to DENSpm and DFMO differ, with both showing effects on cellular proliferation but the latter showing additional effects on mRNA translation and protein-folding pathways. In the low-dose streptozotocin-induced mouse model of T1D, DENSpm, unlike DFMO, did not prevent or delay diabetes outcomes but did result in improvements in glucose tolerance and reductions in islet oxidative stress. In nonobese diabetic (NOD) mice, short-term DENSpm administration resulted in a slight reduction in insulitis and proinflammatory Th1 cells in the pancreatic lymph nodes. Longer term treatment resulted in a dose-dependent increase in mortality. Notwithstanding the efficacy of both DFMO and DENSpm in reducing potentially toxic polyamine levels in ß cells, our results highlight the discordant T1D outcomes that result from differing mechanisms of polyamine depletion and, more importantly, that toxic effects of DENSpm may limit its utility in T1D treatment.


Subject(s)
Antineoplastic Agents , Diabetes Mellitus, Type 1 , Humans , Animals , Mice , Polyamines/metabolism , Eflornithine/pharmacology , Eflornithine/therapeutic use , Antineoplastic Agents/pharmacology , Spermine/pharmacology , Spermine/metabolism , Cytokines , Diabetes Mellitus, Type 1/drug therapy
4.
Plant Physiol Biochem ; 207: 108379, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38266560

ABSTRACT

White clover is widely cultivated as a leguminous forage or ground cover plant worldwide. However, soil salinization decreases its yield and quality. Aims of the present experiment were to elucidate the impact of seed pretreatment with spermidine (Spd) or spermine (Spm) on amylolysis, Na+/K+ accumulation, and metabolic homeostasis during germination. Seed was soaked in distilled water (control), Spd or Spm solution and then germinated under optimal or salt stress conditions for 7 days. Results showed that germination vigor, germination percentage, or seed vigour index of seeds pretreatment with Spd increased by 7%, 11%, or 70% when compared with water-pretreated seeds under salt stress, respectively. Germination percentage or seed vigour index of seeds pretreatment with Spm increased by 17% or 78% than water-pretreated seeds under saline condition, respectively. In response to salt stress, accelerated amylolysis via activation of ß-amylase activity was induced by Spd or Spm pretreatment. Spd or Spm pretreatment also significantly enhanced accumulation of diverse amino acids, organic acids, sugars, and other metabolites (putrescine, myo-inositol, sorbitol, daidzein etc.) associated with enhanced osmotic adjustment, antioxidant capacity, and energy supply during germination under salt stress. In addition, Spd or Spm pretreatment not only significantly reduced salt-induced K+ loss and overaccumulation of Na+, but also improved the ratio of K+ to Na+, contributing to Na+ and K+ balance in seedlings. In response to salt stress, seeds pretreatment with Spd or Spm up-regulated transcription level of NHX2 related to enhancement in compartmentation of Na+ from cytoplasm to vacuole, thus reducing Na+ toxicity in cytoplasm. Spm priming also uniquely up-regulated transcription levels of SKOR, HKT1, and HAL2 associated with K+ and Na + homeostasis and decline in cytotoxicity under salt stress.


Subject(s)
Germination , Spermidine , Spermidine/pharmacology , Spermidine/metabolism , Spermine/pharmacology , Spermine/metabolism , Seeds/metabolism , Seedlings/metabolism , Homeostasis , Water/metabolism , Medicago
5.
Microbiol Spectr ; 12(1): e0356823, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38095461

ABSTRACT

IMPORTANCE: This is the first study that attempted to demonstrate the mechanisms of reactive oxygen species (ROS) generation by spermine (Spm) in Mycobacterium tuberculosis (M.tb). Furthermore, this is the first study to demonstrate that it is able to enhance the activity of currently available and World Health Organization (WHO)-approved tuberculosis (TB) drugs. Spermine can easily be obtained since it is already found in our diet. Moreover, as opposed to conventional antibiotics, it is less toxic to humans since it is found in millimolar concentrations in the body. Finally, with the difficulty of curing TB with conventional antibiotics, this study suggests that less toxic molecules, such as Spm, could in a long-term perspective be incorporated in a TB regimen to boost the treatment.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Spermine/pharmacology , Spermine/therapeutic use , Isoniazid , Rifampin/therapeutic use , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Microbial Sensitivity Tests
6.
Neurosci Res ; 198: 21-29, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37429464

ABSTRACT

In the present study, we attempted to temporally and quantitatively analyze the functional contributions of Ca2+-permeable (CP) α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) during long-term potentiation (LTP) expression using electrophysiological and pharmacological approaches. In hippocampal CA1 neurons, using 1-naphthyl acetyl spermine (NASPM), a CP-AMPAR antagonist, we began by demonstrating that NASPM-sensitive components, probably including the GluA1 homomer, functionally contributed to about 15% of AMPAR-mediated EPSC amplitude in basal conditions. Then, when NASPM was treated at different time points (3-30 min) after LTP induction, it was found that LTP was almost completely impaired at 3 or 10 min but maintained at 20 or 30 min, although its potentiation was reduced. Further temporal and quantitative analysis revealed that the functional expression of CP-AMPARs began increasing approximately 20 min after LTP induction and reached more than twice the basal level at 30 min. These results suggest that CP-AMPARs in the first 3-10 min of LTP might play an important role in LTP maintenance. Moreover, their decay time was also significantly increased at 30 min, suggesting that CP-AMPARs changed not only quantitatively in LTP but also qualitatively.


Subject(s)
Long-Term Potentiation , Receptors, AMPA , Long-Term Potentiation/physiology , Receptors, AMPA/metabolism , Hippocampus/metabolism , Spermine/pharmacology , Calcium/metabolism , Synapses/metabolism
7.
Dev Med Child Neurol ; 66(4): 445-455, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37469105

ABSTRACT

Bachmann-Bupp syndrome (BABS) is a neurodevelopmental disorder characterized by developmental delay, hypotonia, and varying forms of non-congenital alopecia. The condition is caused by 3'-end mutations of the ornithine decarboxylase 1 (ODC1) gene, which produce carboxy (C)-terminally truncated variants of ODC, a pyridoxal 5'-phosphate-dependent enzyme. C-terminal truncation of ODC prevents its ubiquitin-independent proteasomal degradation and leads to cellular accumulation of ODC enzyme that remains catalytically active. ODC is the first rate-limiting enzyme that converts ornithine to putrescine in the polyamine pathway. Polyamines (putrescine, spermidine, spermine) are aliphatic molecules found in all forms of life and are important during embryogenesis, organogenesis, and tumorigenesis. BABS is an ultra-rare condition with few reported cases, but it serves as a convincing example for drug repurposing therapy. α-Difluoromethylornithine (DFMO, also known as eflornithine) is an ODC inhibitor with a strong safety profile in pediatric use for neuroblastoma and other cancers as well as West African sleeping sickness (trypanosomiasis). Patients with BABS have been treated with DFMO and have shown improvement in hair growth, muscle tone, and development.


Subject(s)
Putrescine , Spermidine , Humans , Child , Putrescine/metabolism , Putrescine/pharmacology , Spermidine/metabolism , Spermidine/pharmacology , Polyamines/metabolism , Polyamines/pharmacology , Spermine/metabolism , Spermine/pharmacology , Eflornithine/pharmacology
8.
Molecules ; 28(21)2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37959847

ABSTRACT

Polyamines participate in the processes of cell growth and development. The degradation branch of their metabolism involves amine oxidases. The oxidation of spermine, spermidine and putrescine releases hydrogen peroxide and the corresponding aminoaldehyde. Polyamine-derived aminoaldehydes have been found to be cytotoxic, and they represent the subject of this review. 3-aminopropanal disrupts the lysosomal membrane and triggers apoptosis or necrosis in the damaged cells. It is implicated in the pathogenesis of cerebral ischemia. Furthermore, 3-aminopropanal yields acrolein through the elimination of ammonia. This reactive aldehyde is also generated by the decomposition of aminoaldehydes produced in the reaction of serum amine oxidase with spermidine or spermine. In addition, acrolein is a common environmental pollutant. It causes covalent modifications of proteins, including carbonylation, the production of Michael-type adducts and cross-linking, and it has been associated with inflammation-related diseases. APAL and acrolein are detoxified by aldehyde dehydrogenases and other mechanisms. High-performance liquid chromatography, immunochemistry and mass spectrometry have been largely used to analyze the presence of polyamine-derived aminoaldehydes and protein modifications elicited by their effect. However, the main and still open challenge is to find clues for discovering clear linkages between aldehyde-induced modifications of specific proteins and the development of various diseases.


Subject(s)
Acrolein , Polyamines , Acrolein/pharmacology , Spermidine/pharmacology , Spermine/pharmacology , Aldehydes/pharmacology
9.
BMC Plant Biol ; 23(1): 575, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37978429

ABSTRACT

BACKGROUND: Two spotted spider mite, Tetranychus urticae (Acari: Tetranychidae) is one of the most important plant pests in the world. Due to increased resistance of mites to acaricides, it is necessary to use other methods such as inducing resistance in plants by natural compounds for pests' management. Polyamins such as spermine are effective in increasing plant resistance to biotic and abiotic stressors. In this research, the effect of spermine treatments in cucumber plants on life table parameters of T. urticae was investigated. Also, top-down effect of spermine and T. urticae on cucumber biochemical parameters was measured. In the experiments, 1, 2 and 3 mM spermine concentrations were used. RESULTS: Amongst the spermine treatments, those mites that fed on cucumbers which received 1 mM spermine showed the shortest protonymphal period and higher ovipositon period, fecundity, gross and net reproductive rates and life expectancy compare to control. Treatment with 2 mM spermine lead to the longest teleochrysalis period and shortest range of age-stage-specific fecundity period. In addition, 2 mM spermine lowered intrinsic and finite rate of population increase in T. urticae. The longest larval period of T. urticae was observed in 3 mM spermine. Feeding of T. urticae from cucumber plants increased hydrogen peroxide (H2O2), malondialdehyde (MDA) content, electrolyte leakage (EL) level and ascorbate peroxidase (APX) activity but inhibited catalase (CAT) activity in this plant. Infested cucumber plants treated with 2 mM spermine showed lower H2O2 and MDA content and highest activity of APX and CAT on day 1 and 3 compare to the others. The 3 mM spermine increased H2O2 content in infested plants during the whole experiment as well as non-infested plants in day 5 and 9 only. This treatment induced the highest MDA content and lowest catalase activity on day1, 3 and 5 of experiment in infested plants. CONCLUSION: This study showed that 2 mM spermine was the only effective concentration that reduce cucumber sensitivity to T. urticae. The trend of changes in biochemical parameters, especially H2O2, in 3 mM spermine was abnormal, and this concentration could be considered toxic.


Subject(s)
Cucumis sativus , Tetranychidae , Animals , Spermine/pharmacology , Hydrogen Peroxide , Catalase
10.
Braz J Biol ; 83: e273886, 2023.
Article in English | MEDLINE | ID: mdl-37851771

ABSTRACT

Small fruits such as strawberries, are a good source of natural antioxidants. In recent decades, many efforts have been made to increase the shelf life of strawberries and maintain its nutritional value in post-harvest conditions. In the present study, the effects of spermine (Spm) and spermidine (Spd) (0, 1.0 and 1.5 mM) on the post-harvest life and quality of strawberry fruits during the 3rd, 6th, and 12th days of storage, were investigated. Applications of Spm and Spd decreased the rate of weight loss, fruit decay, soluble solids content, fruit juice pH and taste index during the storage period in compared to the control. However, titratable acids and vitamin C contents, tissue stiffness, phenolic compounds and antioxidant activity increased in compared to the control. These growth regulators prevented the aging and loss of bioactive compounds of the fruit by increasing the antioxidant activity and preventing the destruction of the fruit tissue. Among the studied treatments, applications of 1.5 mM of Spm and Spd were the most effective treatments to enhance the storage life and quality characters of strawberry fruits.


Subject(s)
Fragaria , Spermidine , Spermidine/pharmacology , Spermidine/analysis , Spermine/pharmacology , Spermine/analysis , Antioxidants/pharmacology , Antioxidants/analysis , Fruit
11.
Int J Mol Sci ; 24(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37686212

ABSTRACT

The aging of the global population has necessitated the identification of effective anti-aging technologies based on scientific evidence. Polyamines (putrescine, spermidine, and spermine) are essential for cell growth and function. Age-related reductions in polyamine levels have been shown to be associated with reduced cognitive and physical functions. We have previously found that the expression of spermine oxidase (SMOX) increases with age; however, the relationship between SMOX expression and cellular senescence remains unclear. Therefore, we investigated the relationship between increased SMOX expression and cellular senescence using human-liver-derived HepG2 cells. Intracellular spermine levels decreased and spermidine levels increased with the serial passaging of cells (aged cells), and aged cells showed increased expression of SMOX. The levels of acrolein-conjugated protein, which is produced during spermine degradation, also increases. Senescence-associated ß-gal activity was increased in aged cells, and the increase was suppressed by MDL72527, an inhibitor of acetylpolyamine oxidase (AcPAO) and SMOX, both of which are enzymes that catalyze polyamine degradation. DNA damage accumulated in aged cells and MDL72527 reduced DNA damage. These results suggest that the SMOX-mediated degradation of spermine plays an important role in cellular senescence. Our results demonstrate that cellular senescence can be controlled by inhibiting spermine degradation using a polyamine-catabolizing enzyme inhibitor.


Subject(s)
Spermidine , Spermine , Humans , Spermidine/pharmacology , Spermine/pharmacology , Cellular Senescence , Aging , Polyamines
12.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37698248

ABSTRACT

Autophagy can inhibit ovarian senescence induced by oxidative stress and regulate follicle development and atresia, but its mechanism is still unclear. Exogenous spermidine can induce autophagy and scavenge reactive oxygen species (ROS). In this experiment, oxidative stress in Sichuan white geese ovaries and follicular granulosa cells (GCs) was caused by 3-nitropropionic acid (3-NPA) and spermidine was added to explore the effect of exogenous spermidine inducing autophagy and inhibiting oxidative stress in vivo and in vitro. Research results showed that putrescine, spermidine and spermine contents in goose ovaries in the group treated with spermidine combined with 3-NPA were 2.70, 1.94, and 1.70 times higher than those in the group treated with 3-NPA, respectively (P < 0.05). The contents of spermidine and spermine in GCs were 1.37 and 0.89 times higher in the spermidine in combination with the 3-NPA group than in the 3-NPA group, respectively (P < 0.05). LC3 and p62 were mainly expressed in the follicular granulosa layer. The LC3-II/I ratio and p62 level in GCs in the spermidine combined with 3-NPA treatment group were 1.37 and 0.77 times higher than that of the 3-NPA treatment group, respectively (P < 0.05). 3-NPA treatment significantly increased ROS level and the apoptosis rate in GCs, while the combined treatment of spermidine and 3-NPA reversed this change (P < 0.05). In conclusion, spermidine alleviated the oxidative damage induced by 3-NPA by improving the antioxidant capacity of ovaries and follicular GCs of Sichuan white geese and may be alleviated by inducing autophagy in GCs.


This study investigated the effects of exogenous spermidine on oxidative stress induced by 3-nitropropionic acid (3-NPA) in ovaries and granulosa cells of Sichuan white geese. In ovarian tissue, spermidine can reduce malondialdehyde accumulation induced by 3-NPA by increasing antioxidant enzyme activity, thus alleviating the oxidative damage induced by 3-NPA. In addition, spermidine can also improve the morphological structure of follicles and alleviate the structural damage caused by 3-NPA. Our results showed that autophagy-associated proteins are mainly concentrated in the granulosa layer of follicles and spermidine can alter their expression. Subsequently, we found that spermidine could induce autophagy and reduce the accumulation of reactive oxygen species and apoptosis rate induced by 3-NPA in granulosa cells. Therefore, we speculate that spermidine can alleviate oxidative stress induced by 3-NPA by inducing autophagy in granulosa cells. In conclusion, spermidine can relieve oxidative stress induced by 3-NPA by increasing the activity of antioxidant enzymes, and may also relieve oxidative stress by inducing autophagy.


Subject(s)
Antioxidants , Geese , Female , Animals , Antioxidants/metabolism , Ovary , Reactive Oxygen Species/metabolism , Spermidine/pharmacology , Spermidine/metabolism , Spermine/pharmacology , Spermine/metabolism , Granulosa Cells/metabolism , Oxidative Stress , Autophagy , Apoptosis
13.
Int J Biol Macromol ; 252: 126246, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37567520

ABSTRACT

Root bark (Lycii cortex) of Lycium contains high contents of characteristic bioactive compounds, including kukoamine A (KuA) and kukoamine B (KuB). RIPENING INHIBITOR (RIN) is well known as a master regulator of Solanaceaous fruit ripening. However, the role of RIN in the biosynthetic pathway of KuA in Lycium remains unclear. In this study, integrated transcriptomic, metabolomic analyses and hairy root system are used to characterize the role of RIN in KuA biosynthesis in Lycium. The ultra performance liquid chromatography electrospray ionization tandem mass spectrometry analysis revealed that KuA was significantly induced in LrRIN1 RNAi lines and not detected in overexpression lines. A total of 20,913 differentially expressed genes (DEGs) and 60 differentially accumulated metabolites (DAMs) were detected in LrRIN1 transgenic hairy roots, which were used for weighted gene co-expression network analysis. Our result reveals a high association between KuA and structural genes in the phenolamide pathway, which shows a negative correlation with LrRIN1. In addition, overexpression of the polyamine pathway gene thermospermine synthase LcTSPMS, a potential target gene of Lycium RIN, increased the contents of both KuA and KuB in L. chinense hairy root, indicating that TSPMS is responsible for KuA biosynthesis and is also the common upstream biosynthetic gene for both KuA and KuB. Our results lay a solid foundation for uncovering the biosynthetic pathway of KuA, which will facilitate the molecular breeding and genetic improvement of Lycium species.


Subject(s)
Lycium , Lycium/chemistry , Spermine/pharmacology , Gene Expression Profiling , Fruit , Gene Expression Regulation, Plant
14.
Sci Adv ; 9(27): eadf8251, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37406129

ABSTRACT

Semen is an important vector for sexual HIV-1 transmission. Although CXCR4-tropic (X4) HIV-1 may be present in semen, almost exclusively CCR5-tropic (R5) HIV-1 causes systemic infection after sexual intercourse. To identify factors that may limit sexual X4-HIV-1 transmission, we generated a seminal fluid-derived compound library and screened it for antiviral agents. We identified four adjacent fractions that blocked X4-HIV-1 but not R5-HIV-1 and found that they all contained spermine and spermidine, abundant polyamines in semen. We showed that spermine, which is present in semen at concentrations up to 14 mM, binds CXCR4 and selectively inhibits cell-free and cell-associated X4-HIV-1 infection of cell lines and primary target cells at micromolar concentrations. Our findings suggest that seminal spermine restricts sexual X4-HIV-1 transmission.


Subject(s)
HIV Infections , HIV-1 , Humans , Spermidine/pharmacology , Spermine/pharmacology , HIV Infections/drug therapy , Cell Line , Receptors, CXCR4
15.
Cell Rep ; 42(7): 112798, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37453063

ABSTRACT

In castration-resistant prostate cancer (CRPC), clinical response to androgen receptor (AR) antagonists is limited mainly due to AR-variants expression and restored AR signaling. The metabolite spermine is most abundant in prostate and it decreases as prostate cancer progresses, but its functions remain poorly understood. Here, we show spermine inhibits full-length androgen receptor (AR-FL) and androgen receptor splice variant 7 (AR-V7) signaling and suppresses CRPC cell proliferation by directly binding and inhibiting protein arginine methyltransferase PRMT1. Spermine reduces H4R3me2a modification at the AR locus and suppresses AR binding as well as H3K27ac modification levels at AR target genes. Spermine supplementation restrains CRPC growth in vivo. PRMT1 inhibition also suppresses AR-FL and AR-V7 signaling and reduces CRPC growth. Collectively, we demonstrate spermine as an anticancer metabolite by inhibiting PRMT1 to transcriptionally inhibit AR-FL and AR-V7 signaling in CRPC, and we indicate spermine and PRMT1 inhibition as powerful strategies overcoming limitations of current AR-based therapies in CRPC.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Receptors, Androgen/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Spermine/pharmacology , Signal Transduction , Androgen Receptor Antagonists/therapeutic use , Cell Line, Tumor , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/metabolism
16.
J Mater Chem B ; 11(25): 5752-5766, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37219356

ABSTRACT

Dental caries of permanent teeth is a common public health concern and has the second-highest incidence among global diseases. The exopolysaccharides (EPS) synthesized by Streptococcus mutans (S. mutans) are the principal virulence factor for cariogenic etiology. We previously discovered that an endogenous antisense vicR RNA (ASvicR) could significantly inhibit EPS synthesis in S. mutans and reduce its cariogenicity. However, ASvicR cannot be directly applied in the oral environment. An appropriate vector is of great need to protect ASvicR from being degraded by nucleases for effective gene delivery to S. mutans. Functionally modified starches shed light on this field because of their excellent biocompatibility and biodegradability. In this study, a biocompatible and biodegradable spermine-starch nanocomposite (SSN) was constructed for ASvicR delivery. Starch was cationically functionalized by grafting endogenous spermine to closely bind with the recombinant ASvicR plasmid. The SSN not only protected the recombinant ASvicR plasmid from DNase I but also achieved highly efficient gene transformation to S. mutans via the hydrolysis of α-amylase in the saliva. In addition, SSN-ASvicR was shown to endow ASvicR with an increasing transformation efficiency approximately four times that of the naked ASvicR plasmid, as well as allowing for targeting specificity to the transcription of the vicR gene and the suppression of biofilm organization via EPS digestion. In particular, SSN-ASvicR nanoparticles exhibited excellent biological safety and maintained oral microbiota homeostasis in vivo. The SSN can be prepared in a ready-to-use formulation for targeting cariogenic bacteria, thus demonstrating important prospects in the prevention of dental caries.


Subject(s)
Dental Caries , Nanoparticles , Humans , Starch , Streptococcus mutans/genetics , Spermine/pharmacology , Dental Caries/prevention & control
17.
Int J Mol Sci ; 24(7)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37047603

ABSTRACT

Daunomycin (DM), an anthracycline antibiotic, is frequently used to treat various cancers, but the direct effects of DM on gene expression and DNA structure are unclear. We used an in vitro cell-free system, optimized with spermine (SP), to study the effect of DM on gene expression. A bimodal effect of DM on gene expression, weak promotion followed by inhibition, was observed with increasing concentration of DM. We also performed atomic force microscopy observation to measure how DM affects the higher-order structure of DNA induced with SP. DM destroyed SP-induced flower-like conformations of DNA by generating double-strand breaks, and this destructive conformational change of DNA corresponded to the inhibitory effect on gene expression. Interestingly, the weakly enhanced cell-free gene expression occurred as DNA conformations were elongated or relaxed at lower DM concentrations. We expect these newly unveiled DM effects on gene expression and the higher-order structure of DNA will contribute further to the development and refinement of useful anticancer therapy chemicals.


Subject(s)
DNA , Daunorubicin , Daunorubicin/pharmacology , DNA/chemistry , Antibiotics, Antineoplastic/pharmacology , Spermine/pharmacology , Nucleic Acid Conformation , Gene Expression
18.
Elife ; 122023 04 12.
Article in English | MEDLINE | ID: mdl-37042655

ABSTRACT

Calcium-permeable AMPA-type glutamate receptors (CP-AMPARs) contribute to many forms of synaptic plasticity and pathology. They can be distinguished from GluA2-containing calcium-impermeable AMPARs by the inward rectification of their currents, which reflects voltage-dependent channel block by intracellular spermine. However, the efficacy of this weakly permeant blocker is differentially altered by the presence of AMPAR auxiliary subunits - including transmembrane AMPAR regulatory proteins, cornichons, and GSG1L - which are widely expressed in neurons and glia. This complicates the interpretation of rectification as a measure of CP-AMPAR expression. Here, we show that the inclusion of the spider toxin analog 1-naphthylacetyl spermine (NASPM) in the intracellular solution results in a complete block of GluA1-mediated outward currents irrespective of the type of associated auxiliary subunit. In neurons from GluA2-knockout mice expressing only CP-AMPARs, intracellular NASPM, unlike spermine, completely blocks outward synaptic currents. Thus, our results identify a functional measure of CP-AMPARs, that is unaffected by their auxiliary subunit content.


Subject(s)
Calcium , Spermine , Mice , Animals , Spermine/pharmacology , Spermine/metabolism , Calcium/metabolism , Receptors, AMPA/metabolism , Neurons/physiology , Calcium, Dietary , Membrane Proteins/metabolism
19.
Kidney Int ; 104(1): 90-107, 2023 07.
Article in English | MEDLINE | ID: mdl-37121432

ABSTRACT

The polyamines spermidine and spermine and their common precursor molecule putrescine are involved in tissue injury and repair. Here, we test the hypothesis that impaired polyamine homeostasis contributes to various kidney pathologies in mice during experimental models of ischemia-reperfusion, transplantation, rhabdomyolysis, cyclosporine treatment, arterial hypertension, diabetes, unilateral ureteral obstruction, high oxalate feeding, and adenine-induced injuries. We found a remarkably similar pattern in most kidney pathologies with reduced expression of enzymes involved in polyamine synthesis together with increased expression of polyamine degrading enzymes. Transcript levels of amine oxidase copper-containing 1 (Aoc1), an enzyme which catalyzes the breakdown of putrescine, were barely detectable by in situ mRNA hybridization in healthy kidneys. Aoc1 was highly expressed upon various experimental kidney injuries resulting in a significant reduction of kidney putrescine content. Kidney levels of spermine were also significantly reduced, whereas spermidine was increased in response to ischemia-reperfusion injury. Increased Aoc1 expression in injured kidneys was mainly accounted for by an Aoc1 isoform that harbors 22 additional amino acids at its N-terminus and shows increased secretion. Mice with germline deletion of Aoc1 and injured kidneys showed no decrease of kidney putrescine content; although they displayed no overt phenotype, they had fewer tubular casts upon ischemia-reperfusion injury. Hyperosmotic stress stimulated AOC1 expression at the transcriptional and post-transcription levels in metanephric explants and kidney cell lines. AOC1 expression was also significantly enhanced after kidney transplantation in humans. These data demonstrate that the kidneys respond to various forms of injury with down-regulation of polyamine synthesis and activation of the polyamine breakdown pathway. Thus, an imbalance in kidney polyamines may contribute to various etiologies of kidney injury.


Subject(s)
Amine Oxidase (Copper-Containing) , Reperfusion Injury , Humans , Mice , Animals , Polyamines/metabolism , Spermidine/metabolism , Putrescine/metabolism , Spermine/metabolism , Spermine/pharmacology , Acetyltransferases/genetics , Acetyltransferases/metabolism , Kidney/pathology , Amine Oxidase (Copper-Containing)/metabolism , Reperfusion Injury/pathology , Gene Expression
20.
J Gen Physiol ; 155(5)2023 05 01.
Article in English | MEDLINE | ID: mdl-36912700

ABSTRACT

The Vanilloid thermoTRP (TRPV1-4) subfamily of TRP channels are involved in thermoregulation, osmoregulation, itch and pain perception, (neuro)inflammation and immune response, and tight control of channel activity is required for perception of noxious stimuli and pain. Here we report voltage-dependent modulation of each of human TRPV1, 3, and 4 by the endogenous intracellular polyamine spermine. As in inward rectifier K channels, currents are blocked in a strongly voltage-dependent manner, but, as in cyclic nucleotide-gated channels, the blockade is substantially reduced at more positive voltages, with maximal blockade in the vicinity of zero voltage. A kinetic model of inhibition suggests two independent spermine binding sites with different affinities as well as different degrees of polyamine permeability in TRPV1, 3, and 4. Given that block and relief occur over the physiological voltage range of action potentials, voltage-dependent polyamine block may be a potent modulator of TRPV-dependent excitability in multiple cell types.


Subject(s)
Potassium Channels, Inwardly Rectifying , Spermine , Humans , Spermine/pharmacology , Spermine/metabolism , Polyamines/pharmacology , Polyamines/metabolism , Action Potentials/physiology , Potassium Channels, Inwardly Rectifying/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...