Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 351
Filter
1.
PLoS One ; 19(7): e0303633, 2024.
Article in English | MEDLINE | ID: mdl-38980882

ABSTRACT

Estimating the densities of marine prey observed in animal-borne video loggers when encountered by foraging predators represents an important challenge for understanding predator-prey interactions in the marine environment. We used video images collected during the foraging trip of one chinstrap penguin (Pygoscelis antarcticus) from Cape Shirreff, Livingston Island, Antarctica to develop a novel approach for estimating the density of Antarctic krill (Euphausia superba) encountered during foraging activities. Using the open-source Video and Image Analytics for a Marine Environment (VIAME), we trained a neural network model to identify video frames containing krill. Our image classifier has an overall accuracy of 73%, with a positive predictive value of 83% for prediction of frames containing krill. We then developed a method to estimate the volume of water imaged, thus the density (N·m-3) of krill, in the 2-dimensional images. The method is based on the maximum range from the camera where krill remain visibly resolvable and assumes that mean krill length is known, and that the distribution of orientation angles of krill is uniform. From 1,932 images identified as containing krill, we manually identified a subset of 124 images from across the video record that contained resolvable and unresolvable krill necessary to estimate the resolvable range and imaged volume for the video sensor. Krill swarm density encountered by the penguins ranged from 2 to 307 krill·m-3 and mean density of krill was 48 krill·m-3 (sd = 61 krill·m-3). Mean krill biomass density was 25 g·m-3. Our frame-level image classifier model and krill density estimation method provide a new approach to efficiently process video-logger data and estimate krill density from 2D imagery, providing key information on prey aggregations that may affect predator foraging performance. The approach should be directly applicable to other marine predators feeding on aggregations of prey.


Subject(s)
Euphausiacea , Predatory Behavior , Spheniscidae , Animals , Spheniscidae/physiology , Euphausiacea/physiology , Predatory Behavior/physiology , Antarctic Regions , Population Density , Video Recording/methods , Image Processing, Computer-Assisted/methods
2.
J Exp Biol ; 227(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38826104

ABSTRACT

Once a year, penguins undergo a catastrophic moult, replacing their entire plumage during a fasting period on land or on sea-ice during which time individuals can lose 45% of their body mass. In penguins, new feather synthesis precedes the loss of old feathers, leading to an accumulation of two feather layers (double coat) before the old plumage is shed. We hypothesized that the combination of the high metabolism required for new feather synthesis and the potentially high thermal insulation linked to the double coat could lead to a thermal challenge requiring additional peripheral circulation to thermal windows to dissipate the extra heat. To test this hypothesis, we measured the surface temperature of different body regions of captive gentoo penguins (Pygoscelis papua) throughout the moult under constant environmental conditions. The surface temperature of the main body trunk decreased during the initial stages of the moult, suggesting greater thermal insulation. In contrast, the periorbital region, a potential proxy of core temperature in birds, increased during these same early moulting stages. The surface temperature of the bill, flipper and foot (thermal windows) tended to initially increase during the moult, highlighting the likely need for extra heat dissipation in moulting penguins. These results raise questions regarding the thermoregulatory capacities of penguins in the wild during the challenging period of moulting on land in the current context of global warming.


Subject(s)
Body Temperature , Feathers , Molting , Spheniscidae , Animals , Spheniscidae/physiology , Molting/physiology , Feathers/physiology , Body Temperature Regulation/physiology , Male , Female
3.
PLoS One ; 19(6): e0303834, 2024.
Article in English | MEDLINE | ID: mdl-38837960

ABSTRACT

We derive an equation that applies for the wing-beat frequency of flying animals and to the fin-stroke frequency of diving animals like penguins and whales. The equation states that the wing/fin-beat frequency is proportional to the square root of the animal's mass divided by the wing area. Data for birds, insects, bats, and even a robotic bird-supplemented by data for whales and penguins that must swim to stay submerged-show that the constant of proportionality is to a good approximation the same across all species; thus the equation is universal. The wing/fin-beat frequency equation is derived by dimensional analysis, which is a standard method of reasoning in physics. We finally demonstrate that a mathematically even simpler expression without the animal mass does not apply.


Subject(s)
Flight, Animal , Wings, Animal , Animals , Wings, Animal/physiology , Wings, Animal/anatomy & histology , Flight, Animal/physiology , Animal Fins/physiology , Chiroptera/physiology , Whales/physiology , Spheniscidae/physiology , Birds/physiology , Models, Biological , Swimming/physiology , Insecta/physiology
4.
Nat Commun ; 15(1): 4419, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811565

ABSTRACT

Emperor penguins (Aptenodytes forsteri) are under increasing environmental pressure. Monitoring colony size and population trends of this Antarctic seabird relies primarily on satellite imagery recorded near the end of the breeding season, when light conditions levels are sufficient to capture images, but colony occupancy is highly variable. To correct population estimates for this variability, we develop a phenological model that can predict the number of breeding pairs and fledging chicks, as well as key phenological events such as arrival, hatching and foraging times, from as few as six data points from a single season. The ability to extrapolate occupancy from sparse data makes the model particularly useful for monitoring remotely sensed animal colonies where ground-based population estimates are rare or unavailable.


Subject(s)
Remote Sensing Technology , Spheniscidae , Animals , Spheniscidae/physiology , Remote Sensing Technology/methods , Breeding , Antarctic Regions , Seasons , Reproduction/physiology , Population Density , Population Dynamics , Female
5.
Biol Open ; 13(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38639412

ABSTRACT

Penguins are proficient swimmers, and their survival depends on their ability to catch prey. The diving behaviour of these fascinating birds should then minimize the associated energy cost. For the first time, the energy cost of penguin dives is computed from the free-ranging dive data, on the basis of an existing biomechanical model. Time-resolved acceleration and depth data collected for 300 dives of little penguins (Eudyptula minor) are specifically employed to compute the bird dive angles and swimming speeds, which are needed for the energy estimate. We find that the numerically obtained energy cost by using the free-ranging dive data is not far from the minimum cost predicted by the model. The outcome, therefore, supports the physical soundness of the chosen model; however, it also suggests that, for closer agreement, one should consider previously neglected effects, such as those due to water currents and those associated with motion unsteadiness. Additionally, from the free-ranging dive data, we calculate hydrodynamic forces and non-dimensional indicators of propulsion performance - Strouhal and Reynolds numbers. The obtained values further confirm that little penguins employ efficient propulsion mechanisms, in agreement with previous investigations.


Subject(s)
Diving , Spheniscidae , Swimming , Animals , Spheniscidae/physiology , Biomechanical Phenomena , Diving/physiology , Swimming/physiology , Locomotion/physiology , Energy Metabolism
6.
J Therm Biol ; 121: 103850, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38608548

ABSTRACT

Assessing the physiological stress responses of wild animals opens a window for understanding how organisms cope with environmental challenges. Since stress response is associated with changes in body temperature, the use of body surface temperature through thermal imaging could help to measure acute and chronic stress responses non-invasively. We used thermal imaging, acute handling-stress protocol and an experimental manipulation of corticosterone (the main glucocorticoid hormone in birds) levels in breeding king penguins (Aptenodytes patagonicus), to assess: 1. The potential contribution of the Hypothalamo-Pituitary-Adrenal (HPA) axis in mediating chronic and acute stress-induced changes in adult surface temperature, 2. The influence of HPA axis manipulation on parental investment through thermal imaging of eggs and brooded chicks, and 3. The impact of parental treatment on offspring thermal's response to acute handling. Maximum eye temperature (Teye) increased and minimum beak temperature (Tbeak) decreased in response to handling stress in adults, but neither basal nor stress-induced surface temperatures were significantly affected by corticosterone implant. While egg temperature was not significantly influenced by parental treatment, we found a surprising pattern for chicks: chicks brooded by the (non-implanted) partner of corticosterone-implanted individuals exhibited higher surface temperature (both Teye and Tbeak) than those brooded by glucocorticoid-implanted or control parents. Chick's response to handling in terms of surface temperature was characterized by a drop in both Teye and Tbeak independently of parental treatment. We conclude that the HPA axis seems unlikely to play a major role in determining chronic or acute changes in surface temperature in king penguins. Changes in surface temperature may primarily be mediated by the Sympathetic-Adrenal-Medullary (SAM) axis in response to stressful situations. Our experiment did not reveal a direct impact of parental HPA axis manipulation on parental investment (egg or chick temperature), but a potential influence on the partner's brooding behaviour.


Subject(s)
Corticosterone , Hypothalamo-Hypophyseal System , Spheniscidae , Stress, Physiological , Animals , Spheniscidae/physiology , Spheniscidae/blood , Corticosterone/blood , Hypothalamo-Hypophyseal System/physiology , Hypothalamo-Hypophyseal System/metabolism , Female , Male , Pituitary-Adrenal System/physiology , Pituitary-Adrenal System/metabolism , Body Temperature
7.
Behav Processes ; 218: 105032, 2024 May.
Article in English | MEDLINE | ID: mdl-38657758

ABSTRACT

Group-living animals, including penguins, exhibit affiliative behaviors such as grooming (preening) and proximity. Such behaviors in non-primate animals have been less studied than those in primates. Our research focused on 20 identifiable Humboldt penguins in a zoo, analyzing kin relationships and reciprocity in preening and proximity by employing a 5-minute scan sampling method to observe and record individual behavior. Our findings revealed that preening and proximity were more prevalent among mate pairs. However, among non-mate pairs, such behaviors were more commonly observed between siblings and parent-offspring pairs. Notably, the individuals preened on each other simultaneously in all instances. This study highlights the potential influence of kin selection in shaping the affiliative behavior of penguins. Additionally, our findings indicate that penguins gain benefits from mutual preening. This study contributes to our understanding of social behaviors in non-primate species and emphasizes the need for further comparative studies of various animal taxa to elucidate the evolution of sociality.


Subject(s)
Animals, Zoo , Grooming , Social Behavior , Spheniscidae , Animals , Spheniscidae/physiology , Grooming/physiology , Male , Female , Behavior, Animal/physiology
8.
Vet Res Commun ; 48(3): 1621-1630, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38433171

ABSTRACT

The aim of this study was to determine the minimum anesthetic concentration of isoflurane (MACISO) and sevoflurane (MACSEVO) and evaluate the cardiorespiratory changes induced by varying fractions of inspired oxygen (FiO2) in Magellanic penguins (Spheniscus magellanicus). Twenty adult penguins (3.53 ± 0.44 kg) of undetermined sex were used. Both MACISO (n = 9) and MACSEVO (n = 13) were established using an up-and-down design. Next, twelve mechanically ventilated penguins were maintained at 1 MACISO or 1 MACSEVO (n = 6 per group) with the FiO2 initially set at 1.0. Three FiO2 values (0.6, 0.4 and 0.2) were then held constant during anesthesia for 20 minutes each. Arterial blood samples were collected for gas analysis after the 20-minute period for each FiO2. Mean ± SD MACISO was 1.93 ± 0.10% and MACSEVO was 3.53 ± 0.13%. Other than heart rate at 0.6 FiO2 (86 ± 11 beats/minute in MACISO and 132 ± 37 beats/minute in MACSEVO; p = 0.041), no significant cardiorespiratory differences were detected between groups. In both groups, decreasing the FiO2 produced increased pH values and reduced partial pressures of carbon dioxide and bicarbonate. Partial pressures of oxygen (PaO2) gradually lowered from 1.0 FiO2 through 0.2 FiO2, though hypoxemia (PaO2 < 80 mmHg) occurred only with the latter FiO2. The MACISO and the MACSEVO for the Magellanic penguin fell within the upper range of reported avian MAC estimates. To prevent hypoxemia in healthy, mechanically ventilated, either isoflurane- or sevoflurane-anesthetized Magellanic penguins, a minimum FiO2 of 0.4 should be used.


Subject(s)
Anesthetics, Inhalation , Isoflurane , Oxygen , Sevoflurane , Spheniscidae , Animals , Spheniscidae/physiology , Isoflurane/pharmacology , Isoflurane/administration & dosage , Sevoflurane/pharmacology , Anesthetics, Inhalation/pharmacology , Anesthetics, Inhalation/administration & dosage , Oxygen/blood , Heart Rate/drug effects , Male , Anesthesia, Inhalation/veterinary , Female , Blood Gas Analysis/veterinary
9.
Sci Total Environ ; 922: 171249, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38431169

ABSTRACT

How Antarctic species are facing historical and new stressors remains under-surveyed and risks to wildlife are still largely unknown. Adélie penguins Pygoscelis adeliae are well-known bioindicators and sentinels of Antarctic ecosystem changes, a true canary in the coal mine. Immuno-haematological parameters have been proved to detect stress in wild animals, given their rapid physiological response that allows them tracking environmental changes and thus inferring habitat quality. Here, we investigated variation in Erythrocyte Nuclear Abnormalities (ENAs) and White Blood Cells (WBCs) in penguins from three clustered colonies in the Ross Sea, evaluating immuno-haematological parameters according to geography, breeding stage, and individual penguin characteristics such as sex, body condition and nest quality. Concentrations of mercury (Hg) and stable isotopes of carbon and nitrogen (as proxies of the penguin's trophic ecology) were analysed in feathers to investigate the association between stress biomarkers and Hg contamination in Adélie penguins. Colony and breeding stage were not supported as predictors of immuno-haematological parameters. ENAs and WBCs were respectively ∼30 % and ∼20 % higher in male than in female penguins. Body condition influenced WBCs, with penguins in the best condition having a ∼22 % higher level of WBCs than those in the worst condition. Nest position affected the proportion of micronuclei (MNs), with inner-nesting penguins having more than three times the proportion of MNs than penguins nesting in peripheral positions. Heterophils:Lymphocytes (H:L) ratio was not affected by any of the above predictors. Multiple factors acting as stressors are expected to increase prominently in Antarctic wildlife in the near future, therefore extensive monitoring aimed to assess the health status of penguin populations is mandatory.


Subject(s)
Mercury , Spheniscidae , Animals , Male , Female , Ecosystem , Antarctic Regions , Ecology , Animals, Wild , Spheniscidae/physiology
10.
Anim Reprod Sci ; 263: 107448, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428346

ABSTRACT

The egg production of captive African penguins differs considerably between individuals. An understanding of the physiological differences in African penguins with relatively greater and lesser egg production is meaningful for the captive breeding program of this endangered species. The objective of this study was to investigate differential microbial composition and metabolites in captive African penguins with different egg production. Fecal samples were collected from captive female African penguins during the breeding season. The results of 16 S rRNA gene sequencing showed that African penguins with different egg production had similar microbial diversities, whereas a significant difference was observed between their microbial community structure. African penguins with relatively greater egg production exhibited a higher relative abundance of Alphaproteobacteria, Rhizobiales, Bradyrhizobiaceae, Bradyrhizobium and Bosea. Meanwhile, penguins with relatively lesser egg production had an increased proportion of Klebsiella and Plesiomonas. We further identified a total of 1858 metabolites in female African penguins by liquid chromatography-mass spectrometry analysis. Among these metabolites, 13 kinds of metabolites were found to be significantly differential between African penguins with different egg production. In addition, the correlation analysis revealed that the egg production had significant correlations with most of the differential microbial bacteria and metabolites. Our findings might aid in understanding the potential mechanism underlying the phenomenon of abnormal egg production in captive African penguins, and provide novel insights into the relationship between gut microbiota and reproduction in penguins.


Subject(s)
Gastrointestinal Microbiome , Spheniscidae , Humans , Female , Animals , Spheniscidae/physiology , Gastrointestinal Microbiome/genetics , Seasons
11.
Anim Cogn ; 27(1): 4, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38429425

ABSTRACT

Islands have always provided ideal natural laboratories for assessing ecological parameters influencing behaviour. One hypothesis that lends itself well to testing in island habitats suggests that animals frequenting highly variable environments should be motivated to approach and interact with (i.e. explore) novelty. Intra-species comparisons of populations living in ecologically different island habitats may, thus, help reveal the factors that modulate animals' responses to novelty. In this study, we presented novel objects to two geographically isolated breeding populations of the black-faced sheathbill (Chionis minor), a sedentary land-based bird that frequents remote sub-Antarctic islands. In the first population (Chionis minor ssp. crozettensis), the "Crozet group" (Baie du Marin, Ile de la Possession, Crozet Islands), breeding pairs inhabit a variable habitat close to penguin (Aptenodytes patagonicus) colonies. In the second population (Chionis minor ssp. minor), the "Kerguelen group" (île Verte, Morbihan gulf, Kerguelen Islands) breeding pairs live in penguin-free territories. In this latter population, the environment is less variable due to the presence of a broad intertidal zone which ensures year-round food availability. At both Kerguelen and Crozet, at least one breeding partner in all pairs approached at least one of the novel objects, and we found no significant differences in the latency of approach between the two populations. However, sheathbills at Crozet touched objects significantly more than birds at Kerguelen, and were also faster to touch them. We discuss how environmental variability, along with other potential influencing factors, may favour exploration of novelty in this wild insular bird.


Subject(s)
Charadriiformes , Spheniscidae , Animals , Spheniscidae/physiology , Ecosystem , Antarctic Regions , Food
12.
Environ Sci Technol ; 58(14): 6349-6358, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38531013

ABSTRACT

Mercury (Hg) biomonitoring requires a precise understanding of the internal processes contributing to disparities between the Hg sources in the environment and the Hg measured in the biota. In this study, we investigated the use of Hg stable isotopes to trace Hg accumulation in Adélie and emperor penguin chicks from four breeding colonies in Antarctica. Interspecific variation of Δ199Hg in penguin chicks reflects the distinct foraging habitats and Hg exposures in adults. Chicks at breeding sites where adult penguins predominantly consumed mesopelagic prey showed relatively lower Δ199Hg values than chicks that were primarily fed epipelagic krill. Substantial δ202Hg variations in chick tissues were observed in both species (Adélie: -0.11 to 1.13‰, emperor: -0.27 to 1.15‰), whereas only emperor penguins exhibited the lowest δ202Hg in the liver and the highest in the feathers. Our results indicate that tissue-specific δ202Hg variations and their positive correlations with % MeHg resulted from MeHg demethylation in the liver and kidneys of emperor penguin chicks, whereas Adélie penguin chicks showed different internal responses depending on their exposure to dietary MeHg. This study highlights the importance of considering intra- and interspecific variations in adult foraging ecology and MeHg demethylation when selecting penguin chicks for Hg biomonitoring.


Subject(s)
Mercury , Spheniscidae , Animals , Mercury Isotopes , Spheniscidae/physiology , Antarctic Regions , Biological Monitoring , Environmental Monitoring/methods , Mercury/analysis
13.
Environ Sci Technol ; 58(14): 6138-6148, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38533664

ABSTRACT

In vertebrates, fasting is an intricate physiological process associated with strong metabolic changes, yet its effect on pollutant residue variation is poorly understood. Here, we quantified long-term changes in plasma concentrations of 20 organochlorine and 16 perfluoroalkyl pollutants in king penguins Aptenodytes patagonicus during the breeding and molting fasts, which are marked by low and high levels of protein catabolism, respectively, and by strong lipid use. The profile of measured pollutants in plasma was dominated by perfluorooctanesulfonic acid (PFOS, initial relative contribution of 60%). Initial total pollutant concentrations were similar in molting (3.3-5.7 ng g-1 ww) and breeding penguins (range of 4.2-7.3 ng g-1 wet weight, ww). Long-term fasting (25 days) for molting and breeding led, respectively, to a 1.8- and 2.2-fold increase in total plasma pollutant concentrations, although the rate and direction of change were compound-specific. Hexachlorbenzene (HCB) and PFOS concentrations increased in plasma (net mobilization) during both types of fasting, likely due to lipid use. Plasma perfluoroundecanoate (PFUnDA) and perfluorotridecanoate (PFTrDA) concentrations increased in breeders (net mobilization) but decreased in molting individuals (net excretion), suggesting a significant incorporation of these pollutants into feathers. This study is a key contribution to our understanding of pollutant variation in blood during long-term fasting in wildlife.


Subject(s)
Environmental Pollutants , Spheniscidae , Humans , Animals , Spheniscidae/physiology , Animals, Wild , Plasma , Lipids
14.
Oecologia ; 204(3): 675-688, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38459994

ABSTRACT

Anthropogenic activities generate increasing disturbance in wildlife especially in extreme environments where species have to cope with rapid environmental changes. In Antarctica, while studies on human disturbance have mostly focused on stress response through physiological and behavioral changes, local variability in population dynamics has been addressed more scarcely. In addition, the mechanisms by which breeding communities are affected around research stations remain unclear. Our study aims at pointing out the fine-scale impact of human infrastructures on the spatial variability in Adélie penguin (Pygoscelis adeliae) colonies dynamics. Taking 24 years of population monitoring, we modeled colony breeding success and growth rate in response to both anthropic and land-based environmental variables. Building density around colonies was the second most important variable explaining spatial variability in breeding success after distance from skua nests, the main predators of penguins on land. Building density was positively associated with penguins breeding success. We discuss how buildings may protect penguins from avian predation and environmental conditions. The drivers of colony growth rate included topographical variables and the distance to human infrastructures. A strong correlation between 1-year lagged growth rate and colony breeding success was coherent with the use of public information by penguins to select their initial breeding site. Overall, our study brings new insights about the relative contribution and ecological implications of human presence on the local population dynamics of a sentinel species in Antarctica.


Subject(s)
Spheniscidae , Animals , Humans , Spheniscidae/physiology , Population Dynamics , Breeding , Antarctic Regions
15.
J Exp Biol ; 227(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38390686

ABSTRACT

Oxygen store management underlies dive performance and is dependent on the slow heart rate and peripheral vasoconstriction of the dive response to control tissue blood flow and oxygen uptake. Prior research has revealed two major patterns of muscle myoglobin saturation profiles during dives of emperor penguins. In Type A profiles, myoglobin desaturated rapidly, consistent with minimal muscle blood flow and low tissue oxygen uptake. Type B profiles, with fluctuating and slower declines in myoglobin saturation, were consistent with variable tissue blood flow patterns and tissue oxygen uptake during dives. We examined arterial and venous blood oxygen profiles to evaluate blood oxygen extraction and found two primary patterns of venous hemoglobin desaturation that complemented corresponding myoglobin saturation profiles. Type A venous profiles had a hemoglobin saturation that (a) increased/plateaued for most of a dive's duration, (b) only declined during the latter stages of ascent, and (c) often became arterialized [arterio-venous (a-v) shunting]. In Type B venous profiles, variable but progressive hemoglobin desaturation profiles were interrupted by inflections in the profile that were consistent with fluctuating tissue blood flow and oxygen uptake. End-of-dive saturation of arterial and Type A venous hemoglobin saturation profiles were not significantly different, but did differ from those of Type B venous profiles. These findings provide further support that the dive response of emperor penguins is a spectrum of cardiac and vascular components (including a-v shunting) that are dependent on the nature and demands of a given dive and even of a given segment of a dive.


Subject(s)
Diving , Spheniscidae , Animals , Spheniscidae/physiology , Diving/physiology , Myoglobin , Oxygen , Hemoglobins
16.
Science ; 382(6674): 994-995, 2023 12.
Article in English | MEDLINE | ID: mdl-38033078

ABSTRACT

Chinstrap penguins fall asleep thousands of times per day in the wild.


Subject(s)
Sleep , Spheniscidae , Animals , Antarctic Regions , Spheniscidae/physiology
17.
Science ; 382(6674): 1026-1031, 2023 12.
Article in English | MEDLINE | ID: mdl-38033080

ABSTRACT

Microsleeps, the seconds-long interruptions of wakefulness by eye closure and sleep-related brain activity, are dangerous when driving and might be too short to provide the restorative functions of sleep. If microsleeps do fulfill sleep functions, then animals faced with a continuous need for vigilance might resort to this sleep strategy. We investigated electroencephalographically defined sleep in wild chinstrap penguins, at sea and while nesting in Antarctica, constantly exposed to an egg predator and aggression from other penguins. The penguins nodded off >10,000 times per day, engaging in bouts of bihemispheric and unihemispheric slow-wave sleep lasting on average only 4 seconds, but resulting in the accumulation of >11 hours of sleep for each hemisphere. The investment in microsleeps by successfully breeding penguins suggests that the benefits of sleep can accrue incrementally.


Subject(s)
Cerebrum , Sleep, Slow-Wave , Spheniscidae , Animals , Antarctic Regions , Eye , Spheniscidae/physiology , Wakefulness , Time Factors , Cerebrum/physiology
18.
Proc Biol Sci ; 290(2008): 20231029, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37817600

ABSTRACT

Variation in formant frequencies has been shown to affect social interactions and sexual competition in a range of avian species. Yet, the anatomical bases of this variation are poorly understood. Here, we investigated the morphological correlates of formants production in the vocal apparatus of African penguins. We modelled the geometry of the supra-syringeal vocal tract of 20 specimens to generate a population of virtual vocal tracts with varying dimensions. We then estimated the acoustic response of these virtual vocal tracts and extracted the centre frequency of the first four predicted formants. We demonstrate that: (i) variation in length and cross-sectional area of vocal tracts strongly affects the formant pattern, (ii) the tracheal region determines most of this variation, and (iii) the skeletal size of penguins does not correlate with the trachea length and consequently has relatively little effect on formants. We conclude that in African penguins, while the variation in vocal tract geometry generates variation in resonant frequencies supporting the discrimination of conspecifics, such variation does not provide information on the emitter's body size. Overall, our findings advance our understanding of the role of formant frequencies in bird vocal communication.


Subject(s)
Spheniscidae , Animals , Spheniscidae/physiology , Vocalization, Animal/physiology , Body Size , Acoustics , Communication
19.
Physiol Biochem Zool ; 96(3): 177-191, 2023.
Article in English | MEDLINE | ID: mdl-37278584

ABSTRACT

AbstractIn vertebrates, developmental conditions can have long-term effects on individual performance. It is increasingly recognized that oxidative stress could be one physiological mechanism connecting early-life experience to adult phenotype. Accordingly, markers of oxidative status could be useful for assessing the developmental constraints encountered by offspring. Although some studies have demonstrated that developmental constraints are associated with high levels of oxidative stress in offspring, it remains unclear how growth, parental behavior, and brood competition may altogether affect oxidative stress in long-lived species in the wild. Here, we investigated this question in a long-lived Antarctic bird species by testing the impact of brood competition (e.g., brood size and hatching order) on body mass and on two markers of oxidative damage in Adélie penguin chicks. We also examined the influence of parental effort (i.e., foraging trip duration) and parental body condition on chick body mass and oxidative damage. First, we found that brood competition and parental traits had significant impacts on chick body mass. Second, we found that chick age and, to a lesser extent, chick body mass were two strong determinants of the levels of oxidative damage in Adélie penguin chicks. Finally, and importantly, we also found that brood competition significantly increased the levels of one marker of oxidative damage and was associated with a lower survival probability. However, parental effort and parental condition were not significantly linked to chick levels of oxidative damage. Overall, our study demonstrates that sibling competition can generate an oxidative cost even for this long-lived Antarctic species with a limited brood size (maximum of two chicks).


Subject(s)
Spheniscidae , Animals , Spheniscidae/physiology , Antarctic Regions , Oxidative Stress
20.
Mar Pollut Bull ; 193: 115195, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37356128

ABSTRACT

A goal for conservation biologists is to show that policies enacted on behalf of an imperiled species results in direct benefits for it. In Argentina, tens of thousands of Magellanic penguins (Spheniscus magellanicus) were estimated to have died from chronic oil pollution each year through the early 1980s. From 1982 to 1990, surveys at sites along approximately 900 km of Chubut Province coastline found that >60 % of penguin carcasses had evidence of oiling in some years. In response to these findings, as well as pressure from non-governmental organizations and the public, provincial and federal authorities in Chubut moved the commercial tanker lanes 20 nautical miles farther offshore in 1997 and required oil tankers to have double hulls. During a second round of surveys in 2001, using most of the same sites as the first survey period, the number of dead and oiled penguins dropped effectively to zero. A policy change not only led to fewer oiled penguins, but also likely increased the survival of adult Magellanic penguins near some of their most significant breeding colonies in Argentina.


Subject(s)
Petroleum Pollution , Spheniscidae , Animals , Argentina , Spheniscidae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...