ABSTRACT
The diffusion-dependent formation of pyrene excimers (excited dimers) was studied in normal and spherocytic red cell membranes. Pyrene emission was alternatively quenched in either bilayer half by non radiative energy transfer to haemoglobin. Pyrene excimer to monomer fluorescence intensity ratio, I'/I, was 0.35 +/- 0.03 (S.E.) in washed red blood cells obtained from normal donors (n = 8) and 0.45 + 0.03 (n = 13) in the corresponding isolated, haemoglobin-free resealed membranes (P less than 0.02). In the spherocytic condition the respective values were 0.28 +/- 0.01 (n = 9) and 0.53 +/- 0.03 (n = 9), P less than 0.001. In contrast to the decrease of I'/I in red cells as compared to isolated membranes, being 22% in normal cells and 47% in spherocytic ones, haemoglobin added to the exofacial side of isolated membranes, respectively, reduced I'/I by 18% and 5%. In normal red cell membranes, pyrene mobility appears to be higher in the inner monolayer than in the outer one. In spherocytic membranes our results indicate an enhanced transmembrane asymmetry in lipid monolayer fluidity, probably due to a defect of the membrane protein skeleton organization.