Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 383
Filter
1.
Sci Rep ; 14(1): 15296, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961203

ABSTRACT

Blast wave exposure, a leading cause of hearing loss and balance dysfunction among military personnel, arises primarily from direct mechanical damage to the mechanosensory hair cells and supporting structures or indirectly through excessive oxidative stress. We previously reported that HK-2, an orally active, multifunctional redox modulator (MFRM), was highly effective in reducing both hearing loss and hair cells loss in rats exposed to a moderate intensity workday noise that likely damages the cochlea primarily from oxidative stress versus direct mechanical trauma. To determine if HK-2 could also protect cochlear and vestibular cells from damage caused primarily from direct blast-induced mechanical trauma versus oxidative stress, we exposed rats to six blasts of 186 dB peak SPL. The rats were divided into four groups: (B) blast alone, (BEP) blast plus earplugs, (BHK-2) blast plus HK-2 and (BEPHK-2) blast plus earplugs plus HK-2. HK-2 was orally administered at 50 mg/kg/d from 7-days before to 30-day after the blast exposure. Cochlear and vestibular tissues were harvested 60-d post-exposure and evaluated for loss of outer hair cells (OHC), inner hair cells (IHC), auditory nerve fibers (ANF), spiral ganglion neurons (SGN) and vestibular hair cells in the saccule, utricle and semicircular canals. In the untreated blast-exposed group (B), massive losses occurred to OHC, IHC, ANF, SGN and only the vestibular hair cells in the striola region of the saccule. In contrast, rats treated with HK-2 (BHK-2) sustained significantly less OHC (67%) and IHC (57%) loss compared to the B group. OHC and IHC losses were smallest in the BEPHK-2 group, but not significantly different from the BEP group indicating lack of protective synergy between EP and HK-2. There was no loss of ANF, SGN or saccular hair cells in the BHK-2, BEP and BEPHK-2 groups. Thus, HK-2 not only significantly reduced OHC and IHC damage, but completely prevented loss of ANF, SGN and saccule hair cells. The powerful protective effects of this oral MFRM make HK-2 an extremely promising candidate for human clinical trials.


Subject(s)
Blast Injuries , Hair Cells, Vestibular , Spiral Ganglion , Animals , Spiral Ganglion/drug effects , Spiral Ganglion/pathology , Rats , Blast Injuries/prevention & control , Hair Cells, Vestibular/drug effects , Hair Cells, Vestibular/metabolism , Male , Oxidation-Reduction , Rats, Sprague-Dawley , Cochlea/drug effects , Cochlea/pathology , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/pathology , Oxidative Stress/drug effects , Hearing Loss, Noise-Induced/prevention & control , Hearing Loss, Noise-Induced/pathology
2.
J Biomed Mater Res B Appl Biomater ; 112(7): e35439, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38923766

ABSTRACT

Sensorineural hearing loss (SNHL) is mainly caused by injury or loss of hair cells (HCs) and associated spiral ganglion neurons (SGNs) in the inner ear. At present, there is still no effective treatment for SNHL in clinic. Recently, advances in organoid bring a promising prospect for research and treatment of SNHL. Meanwhile, three-dimensional (3D) printing provides a tremendous opportunity to construct versatile organoids for tissue engineering and regenerative medicine. In this study, gelatin (Gel), sodium alginate (SA), and polyvinyl alcohol (PVA) were used to fabricate biomimetic scaffold through 3D printing. The organ of Corti derived from neonatal mice inner ear was seeded on the PVA/Gel/SA scaffold to construct organ of Corti organoid. Then, the organ of Corti organoid was used to study the potential protective effects of berberine sulfate on neomycin-juried auditory HCs and SGNs. The results showed that the PVA/Gel/SA biomimetic 3D scaffolds had good cytocompatibilities and mechanical properties. The constructed organoid could maintain organ of Corti activity well in vitro. In addition, the injury intervention results showed that berberine sulfate could significantly inhibit neomycin-induced HC and SGN damage. This study suggests that the fabricated organoid is highly biomimetic to the organ of Corti, which may provide an effective model for drug development, cell and gene therapy for SNHL.


Subject(s)
Berberine , Organ of Corti , Tissue Scaffolds , Animals , Organ of Corti/drug effects , Mice , Berberine/pharmacology , Berberine/chemistry , Tissue Scaffolds/chemistry , Organoids/metabolism , Organoids/drug effects , Printing, Three-Dimensional , Alginates/chemistry , Alginates/pharmacology , Gelatin/chemistry , Gelatin/pharmacology , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/metabolism , Tissue Engineering , Polyvinyl Alcohol/chemistry , Polyvinyl Alcohol/pharmacology , Hearing Loss, Sensorineural , Spiral Ganglion/drug effects , Spiral Ganglion/metabolism
3.
Sci Rep ; 14(1): 10910, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740884

ABSTRACT

Transforming growth factor-ß (TGF-ß) signaling plays a significant role in multiple biological processes, including inflammation, immunity, and cell death. However, its specific impact on the cochlea remains unclear. In this study, we aimed to investigate the effects of TGF-ß signaling suppression on auditory function and cochlear pathology in mice with kanamycin-induced ototoxicity. Kanamycin and furosemide (KM-FS) were systemically administered to 8-week-old C57/BL6 mice, followed by immediate topical application of a TGF-ß receptor inhibitor (TGF-ßRI) onto the round window membrane. Results showed significant TGF-ß receptor upregulation in spiral ganglion neurons (SGNs) after KM-FA ototoxicity, whereas expression levels in the TGF-ßRI treated group remained unchanged. Interestingly, despite no significant change in cochlear TGF-ß expression after KM-FS ototoxicity, TGF-ßRI treatment resulted in a significant decrease in TGF-ß signaling. Regarding auditory function, TGF-ßRI treatment offered no therapeutic effects on hearing thresholds and hair cell survival following KM-FS ototoxicity. However, SGN loss and macrophage infiltration were significantly increased with TGF-ßRI treatment. These results imply that inhibition of TGF-ß signaling after KM-FS ototoxicity promotes cochlear inflammation and SGN degeneration.


Subject(s)
Kanamycin , Ototoxicity , Signal Transduction , Transforming Growth Factor beta , Animals , Mice , Cochlea/metabolism , Cochlea/drug effects , Cochlea/pathology , Furosemide/pharmacology , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/pathology , Kanamycin/toxicity , Mice, Inbred C57BL , Ototoxicity/etiology , Ototoxicity/metabolism , Ototoxicity/pathology , Signal Transduction/drug effects , Spiral Ganglion/drug effects , Spiral Ganglion/metabolism , Spiral Ganglion/pathology , Transforming Growth Factor beta/metabolism
4.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791192

ABSTRACT

The synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) are the most vulnerable structures in the noise-exposed cochlea. Cochlear synaptopathy results from the disruption of these synapses following noise exposure and is considered the main cause of poor speech understanding in noisy environments, even when audiogram results are normal. Cochlear synaptopathy leads to the degeneration of SGNs if damaged IHC-SGN synapses are not promptly recovered. Oxidative stress plays a central role in the pathogenesis of cochlear synaptopathy. C-Phycocyanin (C-PC) has antioxidant and anti-inflammatory activities and is widely utilized in the food and drug industry. However, the effect of the C-PC on noise-induced cochlear damage is unknown. We first investigated the therapeutic effect of C-PC on noise-induced cochlear synaptopathy. In vitro experiments revealed that C-PC reduced the H2O2-induced generation of reactive oxygen species in HEI-OC1 auditory cells. H2O2-induced cytotoxicity in HEI-OC1 cells was reduced with C-PC treatment. After white noise exposure for 3 h at a sound pressure of 118 dB, the guinea pigs intratympanically administered 5 µg/mL C-PC exhibited greater wave I amplitudes in the auditory brainstem response, more IHC synaptic ribbons and more IHC-SGN synapses according to microscopic analysis than the saline-treated guinea pigs. Furthermore, the group treated with C-PC had less intense 4-hydroxynonenal and intercellular adhesion molecule-1 staining in the cochlea compared with the saline group. Our results suggest that C-PC improves cochlear synaptopathy by inhibiting noise-induced oxidative stress and the inflammatory response in the cochlea.


Subject(s)
Cochlea , Intercellular Adhesion Molecule-1 , Noise , Oxidative Stress , Phycocyanin , Synapses , Animals , Oxidative Stress/drug effects , Guinea Pigs , Phycocyanin/pharmacology , Phycocyanin/therapeutic use , Cochlea/metabolism , Cochlea/drug effects , Cochlea/pathology , Synapses/drug effects , Synapses/metabolism , Noise/adverse effects , Intercellular Adhesion Molecule-1/metabolism , Hearing Loss, Noise-Induced/drug therapy , Hearing Loss, Noise-Induced/metabolism , Hearing Loss, Noise-Induced/pathology , Reactive Oxygen Species/metabolism , Male , Spiral Ganglion/drug effects , Spiral Ganglion/metabolism , Spiral Ganglion/pathology , Hydrogen Peroxide/metabolism , Hair Cells, Auditory, Inner/drug effects , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory, Inner/pathology , Antioxidants/pharmacology , Cell Line , Hearing Loss, Hidden
5.
Neurosci Lett ; 772: 136493, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35114332

ABSTRACT

Autophagy plays a pathogenic role in neurodegenerative disease. However, the involvement of autophagy in the pathogenesis of age-related hearing loss (ARHL) remains obscure. Naturally aged C57BL/6J mice were used to identify the role of autophagy in ARHL, and rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, was administered for 34 weeks to explore the potential therapeutic effect of rapamycin in ARHL. We found that the number of autophagosomes and the expression of microtubule-associated protein 1 light chain 3B (LC3B) decreased as the mice aged. The expression of autophagy-related (Atg) proteins, including Beclin1 and Atg5, and the ratio of LC3-II/I was reduced in aged mice, while mTOR activity in aged mice gradually increased. Rapamycin improved the auditory brainstem response (ABR) threshold (at 8, 12, and 24 kHz). Further exploration demonstrated that spiral ganglion neuron (SGN) density was enhanced in response to administration of rapamycin. The rate of apoptosis in the basal turn SGNs was decreased, whereas autophagy activity was increased in the experimental group. Meanwhile, mTOR activity in the experimental group was decreased. Our findings indicate that age-related deficiency in autophagy may lead to increased apoptosis of aged SGNs. Rapamycin enhances autophagy of SGNs by inhibiting mTOR activation, resulting in amelioration of ARHL. Therapeutic strategy targeting autophagy may provide a potential approach for treating ARHL.


Subject(s)
Aging/pathology , Autophagy , Hearing Loss/drug therapy , Sirolimus/pharmacology , Spiral Ganglion/drug effects , Aging/metabolism , Animals , Autophagy-Related Protein 5/metabolism , Beclin-1/metabolism , Evoked Potentials, Auditory, Brain Stem , Hearing Loss/metabolism , Hearing Loss/physiopathology , Male , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/metabolism , Sirolimus/therapeutic use , Spiral Ganglion/metabolism , Spiral Ganglion/physiopathology , TOR Serine-Threonine Kinases/metabolism
6.
Med Sci Monit ; 27: e933278, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34657931

ABSTRACT

BACKGROUND Sodium salicylate (SS) induces excitotoxicity of spiral ganglion neurons (SGNs) by inhibiting the response of γ-aminobutyric acid type A receptors (GABAARs). Our previous studies have shown that SS can increase the internalization of GABAARs on SGNs, which involves dopamine D1-like receptors (D1Rs) and related signaling pathways. In this study, we aimed to explore the role of D1Rs and their downstream molecule protein kinase C (PKC) in the process of SS inhibiting GABAARs. MATERIAL AND METHODS The expression of D1Rs and GABARγ2 on rat cochlear SGNs cultured in vitro was tested by immunofluorescence. Then, the SGNs were exposed to SS, D1R agonist (SKF38393), D1R antagonist (SCH23390), clathrin/dynamin-mediated endocytosis inhibitor (dynasore), and PKC inhibitor (Bisindolylmaleimide I). Western blotting and whole-cell patch clamp technique were used to assess the changes of surface and total protein of GABARγ2 and GABA-activated currents. RESULTS Immunofluorescence showed that D1 receptors (DRD1) were expressed on SGNs. Data from western blotting showed that SS promoted the internalization of cell surface GABAARs, and activating D1Rs had the same result. Inhibiting D1Rs and PKC decreased the internalization of GABAARs. Meanwhile, the phosphorylation level of GABAARγ2 S327 affected by PKC was positively correlated with the degree of internalization of GABAARs. Moreover, whole-cell patch clamp recording showed that inhibition of D1Rs or co-inhibition of D1Rs and PKC attenuated the inhibitory effect of SS on GABA-activated currents. CONCLUSIONS D1Rs mediate the GABAAR internalization induced by SS via a PKC-dependent manner and participate in the excitotoxic process of SGNs.


Subject(s)
Ototoxicity/pathology , Protein Kinase C/metabolism , Receptors, Dopamine D1/metabolism , Receptors, GABA-A/metabolism , Sodium Salicylate/adverse effects , Spiral Ganglion/pathology , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology , Animals , Benzazepines , Cells, Cultured , Disease Models, Animal , Female , Humans , Hydrazones/pharmacology , Male , Models, Animal , Neurons/drug effects , Neurons/metabolism , Ototoxicity/etiology , Patch-Clamp Techniques , Primary Cell Culture , Rats , Receptors, Dopamine D1/agonists , Receptors, Dopamine D1/antagonists & inhibitors , Spiral Ganglion/cytology , Spiral Ganglion/drug effects
7.
J Neurosci ; 41(43): 8859-8875, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34551939

ABSTRACT

Neural response properties that typify primary sensory afferents are critical to fully appreciate because they establish and, ultimately represent, the fundamental coding design used for higher-level processing. Studies illuminating the center-surround receptive fields of retinal ganglion cells, for example, were ground-breaking because they determined the foundation of visual form detection. For the auditory system, a basic organizing principle of the spiral ganglion afferents is their extensive electrophysiological heterogeneity establishing diverse intrinsic firing properties in neurons throughout the spiral ganglion. Moreover, these neurons display an impressively large array of neurotransmitter receptor types that are responsive to efferent feedback. Thus, electrophysiological diversity and its neuromodulation are a fundamental encoding mechanism contributed by the primary afferents in the auditory system. To place these features into context, we evaluated the effects of hyperpolarization and cAMP on threshold level as indicators of overall afferent responsiveness in CBA/CaJ mice of either sex. Hyperpolarization modified threshold gradients such that distinct voltage protocols could shift the relationship between sensitivity and stimulus input to reshape resolution. This resulted in an "accordion effect" that appeared to stretch, compress, or maintain responsivity across the gradient of afferent thresholds. cAMP targeted threshold and kinetic shifts to rapidly adapting neurons, thus revealing multiple cochleotopic properties that could potentially be independently regulated. These examples of dynamic heterogeneity in primary auditory afferents not only have the capacity to shift the range, sensitivity, and resolution, but to do so in a coordinated manner that appears to orchestrate changes with a seemingly unlimited repertoire.SIGNIFICANCE STATEMENT How do we discriminate the more nuanced qualities of the sound around us? Beyond the basics of pitch and loudness, aspects, such as pattern, distance, velocity, and location, are all attributes that must be used to encode acoustic sensations effectively. While higher-level processing is required for perception, it would not be unexpected if the primary auditory afferents optimized receptor input to expedite neural encoding. The findings reported herein are consistent with this design. Neuromodulation compressed, expanded, shifted, or realigned intrinsic electrophysiological heterogeneity to alter neuronal responses selectively and dynamically. This suggests that diverse spiral ganglion phenotypes provide a rich substrate to support an almost limitless array of coding strategies within the first neural element of the auditory pathway.


Subject(s)
Action Potentials/physiology , Spiral Ganglion/physiology , Action Potentials/drug effects , Animals , Cyclic AMP/pharmacology , Female , Male , Mice , Mice, Inbred CBA , Organ Culture Techniques , Spiral Ganglion/cytology , Spiral Ganglion/drug effects
8.
Neuroreport ; 32(13): 1134-1139, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34284444

ABSTRACT

The hemorheologic drug pentoxifylline is applied for the treatment of sudden sensorineural hearing loss and tinnitus to improve cochlear microcirculation. Recent studies also suggest protective and trophic effects on neuronal cells. Because the preservation of sensorineural structures of the inner ear is fundamental for normal hearing and hearing restoration with auditory prostheses, pentoxifylline and neurotrophic factors such as brain-derived neurotrophic factor (BDNF) are promising candidates to treat degenerative disorders of the inner ear. We used an in-vitro model to determine the neurotrophic effects of these factors on spiral ganglion cells from postnatal rats. Pentoxifylline, alone and in combination with BDNF, was added at various concentrations to the cultured cells. Cells were immunolabeled and analyzed to determine neuronal survival, neurite length, neuronal branching and morphology. Pentoxifylline did not significantly increase or decrease neuronal survival, neurite length and neuronal branching compared to control cultures. Analysis of cellular morphology showed that diverse neuronal subtypes developed in the presence of pentoxifylline. Our data revealed that pentoxifylline did not interfere with the robust neurotrophic effects of BDNF on spiral ganglion neurons when cultured cells were treated with pentoxifylline and BDNF simultaneously. The results of our study do not suggest major neurotrophic effects of pentoxifylline on cultured spiral ganglion neurons. Because pentoxifylline has no detrimental effects on spiral ganglion neurons and does not reduce the effects of BDNF, both agents could be combined to treat diseases of the inner ear provided that future in vivo experiments and clinical studies support these findings.


Subject(s)
Brain-Derived Neurotrophic Factor/pharmacology , Cell Survival/drug effects , Neuronal Outgrowth/drug effects , Neurons/drug effects , Pentoxifylline/pharmacology , Spiral Ganglion/drug effects , Animals , Phosphodiesterase Inhibitors/pharmacology , Rats , Rats, Sprague-Dawley
9.
Int J Mol Sci ; 22(12)2021 Jun 13.
Article in English | MEDLINE | ID: mdl-34199197

ABSTRACT

In the cochlea, non-sensory supporting cells are directly connected to adjacent supporting cells via gap junctions that allow the exchange of small molecules. We have previously shown that the pharmacological regulation of gap junctions alleviates cisplatin (CDDP)-induced ototoxicity in animal models. In this study, we aimed to identify specific small molecules that pass through gap junctions in the process of CDDP-induced auditory cell death and suggest new mechanisms to prevent hearing loss. We found that the cyclic adenosine monophosphate (cAMP) inducer forskolin (FSK) significantly attenuated CDDP-induced auditory cell death in vitro and ex vivo. The activation of cAMP/PKA/CREB signaling was observed in organ of Corti primary cells treated with FSK, especially in supporting cells. Co-treatment with gap junction enhancers such as all-trans retinoic acid (ATRA) and quinoline showed potentiating effects with FSK on cell survival via activation of cAMP/PKA/CREB. In vivo, the combination of FSK and ATRA was more effective for preventing ototoxicity compared to either single treatment. Our study provides the new insight that gap junction-mediated intercellular communication of cAMP may prevent CDDP-induced ototoxicity.


Subject(s)
Cell Communication , Cisplatin/adverse effects , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Gap Junctions/metabolism , Ototoxicity/metabolism , Signal Transduction , A549 Cells , Animals , Cell Communication/drug effects , Cell Death/drug effects , Colforsin/pharmacology , Colforsin/therapeutic use , Connexin 26/metabolism , Gap Junctions/drug effects , Hair Cells, Auditory/metabolism , HeLa Cells , Hearing Loss/chemically induced , Hearing Loss/drug therapy , Hearing Loss/prevention & control , Humans , Mice , Protective Agents/pharmacology , Rats, Sprague-Dawley , Signal Transduction/drug effects , Sodium-Potassium-Exchanging ATPase/metabolism , Spiral Ganglion/drug effects , Spiral Ganglion/pathology , Tretinoin/pharmacology , Tretinoin/therapeutic use
10.
Neurosci Lett ; 744: 135565, 2021 01 23.
Article in English | MEDLINE | ID: mdl-33359086

ABSTRACT

To identify the role of RIP3 in ouabain-induced necroptosis and offer clinical implications to prevent spiral ganglion neurons (SGNs) from death, ouabain was applied in SGNs derived from fetal rats and injected into Sprague-Dawley rats to construct injury model in vitro and in vivo, respectively. The necroptosis rate of SGNs was determined by flow cytometry and MTT assays. The protein levels and phosphorylation of RIP3 were evaluated using western blotting and immunofluorescence. SGNs injury was observed using H&E staining and immunofluorescence. The hearing function of rats was evaluated by the auditory brainstem response (ABR) and Distortion Product Otoacoustic Emissions (DPOAE) methods. Ouabain caused dose-dependent necroptosis in SGNs and significant loss of SGNs of the cochlear axis in vivo. RIP3 and pRIP3 were upregulated with SGNs injury promoted, and RIP3 overexpression promoted ouabain-induced necroptosis in SGNs in vitro, which could be suppressed by necrostatin-1. RIP3 knockdown inhibited ouabain-induced necroptosis and reduced the phosphorylation of MLKL but no RIP3-dependent effect on the level of MLKL. RIP3 inhibition in vivo protected rats from ouabain-induced hearing damage with reducing ABR threshold shifts and promoting DPOAE amplitudes, while overexpression of RIP3 enhanced ouabain-induced injury that could be partially reversed by necrostatin-1. A decrease of SGNs density and an upregulation of pRIP3 were observed with RIP3 overexpression, which was in contrast when RIP3 was silenced. Therefore, RIP3 was essential for mediating necroptosis in ouabain-induced SGNs damage. Targeting RIP3 may prevent SGNs from death in clinical practice, and finally help the treatment of sensorineural hearing loss.


Subject(s)
Necroptosis/physiology , Neurons/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/biosynthesis , Spiral Ganglion/metabolism , Animals , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Female , Male , Necroptosis/drug effects , Neurons/drug effects , Neurons/pathology , Ouabain/pharmacology , Rats , Rats, Sprague-Dawley , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Spiral Ganglion/drug effects , Spiral Ganglion/pathology
11.
Int J Mol Sci ; 21(18)2020 Sep 13.
Article in English | MEDLINE | ID: mdl-32933159

ABSTRACT

The administration of immune checkpoint inhibitors (ICIs) often leads to immune-related adverse events. However, their effect on auditory function is largely unexplored. Thorough preclinical studies have not been published yet, only sporadic cases and pharmacovigilance reports suggest their significance. Here we investigated the effect of anti-PD-1 antibody treatment (4 weeks, intraperitoneally, 200 µg/mouse, 3 times/week) on hearing function and cochlear morphology in C57BL/6J mice. ICI treatment did not influence the hearing thresholds in click or tone burst stimuli at 4-32 kHz frequencies measured by auditory brainstem response. The number and morphology of spiral ganglion neurons were unaltered in all cochlear turns. The apical-middle turns (<32 kHz) showed preservation of the inner and outer hair cells (OHCs), whilst ICI treatment mitigated the age-related loss of OHCs in the basal turn (>32 kHz). The number of Iba1-positive macrophages has also increased moderately in this high frequency region. We conclude that a 4-week long ICI treatment does not affect functional and morphological integrity of the inner ear in the most relevant hearing range (4-32 kHz; apical-middle turns), but a noticeable preservation of OHCs and an increase in macrophage activity appeared in the >32 kHz basal part of the cochlea.


Subject(s)
Antibodies, Monoclonal/pharmacology , Auditory Threshold/drug effects , Cochlea/drug effects , Hair Cells, Auditory, Outer/drug effects , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Evoked Potentials, Auditory, Brain Stem/drug effects , Hearing , Immune Checkpoint Inhibitors/pharmacology , Male , Mice , Mice, Inbred C57BL , Spiral Ganglion/drug effects
12.
J Int Adv Otol ; 16(2): 218-221, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32510456

ABSTRACT

OBJECTIVES: The aim of this study was to assess whether nivolumab is ototoxic in rats and whether this ototoxicity is dose-dependent. MATERIALS AND METHODS: Twelve rats were divided into two groups: Group 1 (control group, 6 rats, 12 ears) received intraperitoneal saline for 14 days. Group 2 (study group, 6 rats, 12 ears) and received two doses of 3 mg/kg intraperitoneal nivolumab within 14 days. Auditory brainstem responses (ABRs) were performed preoperatively and 4 and 8 weeks postoperatively. We compared between the groups, morphologic appearance of spiral ganglion cells and organ of Corti and density of spiral ganglion cells (measured with conventional light microscope connected to a personal computer). RESULTS: In our control group, both spiral ganglion and organ of corti had a normal morphological appearance. In our study group, spiral ganglion cells had a normal morphological appearance. However, some sections showed possibly mild degenerative changes in the organ of corti. Of 12 samples in the study group, four had a significant loss of density of spiral ganglion cells compared to the control group. The baseline ABR thresholds did not significantly differ between the groups (p=0.713). There was no statistically significant difference between the groups regarding ABR thresholds at week 4 (p=0.347). However, a statistically significant difference was observed in the ABR thresholds at week 8 (p=0.045). CONCLUSION: The results of our study showed that nivolumab treatment has ototoxic effects. Based on our results, we recommend monitoring the changes in the hearing ability of chemotherapy patients.


Subject(s)
Antineoplastic Agents, Immunological/toxicity , Nivolumab/toxicity , Ototoxicity/etiology , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Organ of Corti/drug effects , Ototoxicity/pathology , Rats , Spiral Ganglion/drug effects
13.
Neurosci Lett ; 732: 135089, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32464263

ABSTRACT

Actinomycin-D (Act-D) is a highly effective chemotherapeutic agent that induces apoptosis in systemic tissues. Act-D combined with other chemotherapeutic agents exhibits ototoxic effects and causes hearing impairment. To investigate the potential toxic effects of Act-D in the inner ear, we treated cochlear organotypic cultures with varying concentrations of Act-D for different durations. For the first time, we found that Act-D specifically induced HC loss and apoptosis in a dose- and time-dependent manner but not neuronal degeneration. Co-treatment with benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD-FMK), a pan cysteine protease inhibitor, significantly reduced HC loss and apoptosis induced by Act-D, indicating increased cell survival. Taken together, Act-D exposure has ototoxic effects on the auditory system, while z-VAD-FMK prevents Act-D-induced hair cell damage.


Subject(s)
Amino Acid Chloromethyl Ketones/pharmacology , Dactinomycin/toxicity , Hair Cells, Auditory/drug effects , Animals , Apoptosis/drug effects , Caspase 3/metabolism , Caspase Inhibitors , Cell Survival/drug effects , Cochlear Nerve/drug effects , Culture , Cysteine Proteinase Inhibitors/pharmacology , Humans , Infant, Newborn , Organ of Corti/drug effects , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species , Spiral Ganglion/drug effects
14.
Curr Pharm Des ; 25(45): 4820-4826, 2019.
Article in English | MEDLINE | ID: mdl-31692421

ABSTRACT

BACKGROUND: The current study was conducted to examine the specific activation of pro-inflammatory cytokines (PICs), namely IL-1ß, IL-6 and TNF-α in the cochlear spiral ganglion of rats after ototoxicity induced by cisplatin. Since γ-aminobutyric acid (GABA) and its receptors are involved in pathophysiological processes of ototoxicity, we further examined the role played by PICs in regulating expression of GABA transporter type 1 and 3 (GAT-1 and GAT-3), as two essential subtypes of GATs responsible for the regulation of extracellular GABA levels in the neuronal tissues. METHODS: ELISA and western blot analysis were employed to examine the levels of PICs and GATs; and auditory brainstem response was used to assess ototoxicity induced by cisplatin. RESULTS: IL-1ß, IL-6 and TNF-α as well as their receptors were significantly increased in the spiral ganglion of ototoxic rats as compared with sham control animals (P<0.05, ototoxic rats vs. control rats). Cisplatin-ototoxicity also induced upregulation of the protein levels of GAT-1 and GAT-3 in the spiral ganglion (P<0.05 vs. controls). In addition, administration of inhibitors to IL-1ß, IL-6 and TNF-α attenuated amplification of GAT-1 and GAT-3 and improved hearing impairment induced by cisplatin. CONCLUSION: Our data indicate that PIC signals are activated in the spiral ganglion during cisplatin-ototoxicity which thereby leads to upregulation of GABA transporters. As a result, it is likely that de-inhibition of GABA system is enhanced in the cochlear spiral ganglion. This supports a role for PICs in engagement of the signal mechanisms associated with cisplatin-ototoxicity, and has pharmacological implications to target specific PICs for GABAergic dysfunction and vulnerability related to cisplatin-ototoxicity.


Subject(s)
Cisplatin/toxicity , Cytokines/physiology , GABA Plasma Membrane Transport Proteins/physiology , Ototoxicity , Spiral Ganglion/drug effects , Animals , Cochlea/innervation , Rats
15.
Biomed Res Int ; 2019: 7878906, 2019.
Article in English | MEDLINE | ID: mdl-31687397

ABSTRACT

It has been reported that paclitaxel administration could cause sensorineural hearing loss, and Wnt activation is important for the development and cell protection of mouse cochlea. However, the effect of Wnt signaling in spiral ganglion neurons (SGNs) damage induced by paclitaxel has not yet been elucidated. In this study, we explored the effect of paclitaxel on SGNs in the mouse cochlea and the neuroprotective effects of Wnt signaling pathway against paclitaxel-induced SGN damage by using Wnt agonist/antagonists in vitro. We first found that paclitaxel treatment resulted in a degenerative change and reduction of cell numbers in SGNs and induced caspase-mediated apoptosis in SGNs. The expression levels of ß-catenin and C-myc were increased, thus indicating Wnt signaling was activated in SGNs after paclitaxel treatment. The activation of Wnt signaling pathway protected against SGN loss after exposure to paclitaxel, whereas the suppression of Wnt signaling in SGNs made them more vulnerable to paclitaxel treatment. We also showed that activation of Wnt signaling in SGNs inhibited caspase-mediated apoptosis. Our findings demonstrated that Wnt signaling had an important role in protecting SGNs against paclitaxel-induced damage and thus might be an effective therapeutic target for the prevention of paclitaxel-induced SGN death.


Subject(s)
Cochlea/drug effects , Neurons/drug effects , Neuroprotective Agents/pharmacology , Paclitaxel/pharmacology , Spiral Ganglion/drug effects , Wnt Signaling Pathway/drug effects , Animals , Apoptosis/drug effects , Caspases/metabolism , Cell Count/methods , Cell Death/drug effects , Cell Survival/drug effects , Cochlea/metabolism , Cytoprotection/drug effects , Mice , Neurons/metabolism , beta Catenin/metabolism
16.
Audiol Neurootol ; 24(5): 237-244, 2019.
Article in English | MEDLINE | ID: mdl-31574511

ABSTRACT

INTRODUCTION: In recent years, the preservation of residual hearing has become a major factor in patients undergoing cochlear implantation (CI). In studies attempting to pharmaceutically improve hearing preservation rates, glucocorticoids (GCs) applied perioperatively in many institutions have emerged as a promising treatment regimen. Although dexamethasone is most commonly used and has been applied successfully by various research groups, recently pharmacological properties have been reported to be relatively unsuitable for topical delivery to the inner ear. Consequently other glucocorticoids merit further evaluation. The aim of this study was therefore to evaluate the otoprotective effects of the topical application of a sustained-release triamcinolone acetonide (TAAC) hydrogel in CI with hearing preservation. METHODS: Normal-hearing pigmented guinea pigs were randomized into a group receiving a single dose of a 6% TAAC poloxamer 407 hydrogel, a group receiving a 30% TAAC hydrogel and a control group. All hydrogel applications were performed 1 day prior to CI. After a cochleostomy was drilled, a specifically designed silicone electrode was inserted into the scala tympani for 5 mm. Frequency-specific compound action potentials of the auditory nerve (0.5-32 kHz) were measured pre- and directly postoperatively as well as on days 3, 7, 14, 21, and 28. Finally, temporal bones were harvested for histological evaluation. RESULTS: Application of the TAAC hydrogels resulted in significantly reduced hearing threshold shifts in low, middle and high frequencies and improved spiral ganglion cell survival in the second turn of the cochlea. Outer hair cell numbers in the basal and second turn of the cochlea were slightly reduced after TAAC application. CONCLUSION: In summary, we were able to demonstrate functional benefits of a single preoperative application of a TAAC hydrogel in a guinea pig model for CI, which persisted until the end of the observational period, that is, 28 days after surgery.


Subject(s)
Cochlear Implantation/adverse effects , Cochlear Implants , Hearing Loss/prevention & control , Hearing/drug effects , Hydrogels/administration & dosage , Triamcinolone Acetonide/administration & dosage , Action Potentials/drug effects , Animals , Cell Survival/drug effects , Cochlea/drug effects , Cochlea/surgery , Delayed-Action Preparations/administration & dosage , Guinea Pigs , Hearing Loss/etiology , Hearing Tests , Spiral Ganglion/drug effects
17.
Nat Commun ; 10(1): 4150, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31515474

ABSTRACT

Cisplatin is one of the most widely used chemotherapeutic drugs for the treatment of cancer. Unfortunately, one of its major side effects is permanent hearing loss. Here, we show that glutathione transferase α4 (GSTA4), a member of the Phase II detoxifying enzyme superfamily, mediates reduction of cisplatin ototoxicity by removing 4-hydroxynonenal (4-HNE) in the inner ears of female mice. Under cisplatin treatment, loss of Gsta4 results in more profound hearing loss in female mice compared to male mice. Cisplatin stimulates GSTA4 activity in the inner ear of female wild-type, but not male wild-type mice. In female Gsta4-/- mice, cisplatin treatment results in increased levels of 4-HNE in cochlear neurons compared to male Gsta4-/- mice. In CBA/CaJ mice, ovariectomy decreases mRNA expression of Gsta4, and the levels of GSTA4 protein in the inner ears. Thus, our findings suggest that GSTA4-dependent detoxification may play a role in estrogen-mediated neuroprotection.


Subject(s)
Cisplatin/adverse effects , Glutathione Transferase/metabolism , Ototoxicity/enzymology , Animals , Auditory Threshold/drug effects , Capillaries/pathology , Cochlea/enzymology , Cochlea/pathology , Cochlea/physiopathology , Crosses, Genetic , DNA Damage/genetics , Evoked Potentials, Auditory, Brain Stem/drug effects , Female , Gene Expression Regulation/drug effects , Glutathione Transferase/deficiency , Hearing Loss/complications , Hearing Loss/enzymology , Hearing Loss/physiopathology , Male , Mice, Inbred CBA , Ototoxicity/complications , Ototoxicity/pathology , Ototoxicity/physiopathology , Oxidative Stress/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spiral Ganglion/drug effects , Spiral Ganglion/pathology
18.
J Neuroinflammation ; 16(1): 156, 2019 Jul 27.
Article in English | MEDLINE | ID: mdl-31351490

ABSTRACT

BACKGROUND: Pneumococcal meningitis is associated with high risk of neurological sequelae such as cognitive impairment and hearing loss. These sequelae are due to parenchymal brain and inner ear damage primarily induced by the excessive inflammatory reaction in response to bacterial brain invasion. Metformin-a biguanide drug to treat diabetes mellitus type 2-was recently found to suppress neuroinflammation and induce neuroregeneration. This study evaluated the effect of metformin adjunctive to antibiotics on neuroinflammation, brain and inner ear damage, and neurofunctional outcome in experimental pediatric pneumococcal meningitis. METHODS: Eleven-day-old Wistar rats were infected intracisternally with 5.22 ± 1.27 × 103 CFU Streptococcus pneumoniae and randomized for treatment with metformin (50 mg/kg, i.p., once daily for 3 weeks) plus ceftriaxone (100 mg/kg, i.p., bid, n = 61) or ceftriaxone monotherapy (n = 79). Cortical damage and hippocampal apoptosis were evaluated histomorphometrically 42 h post infection. Cerebrospinal fluid cytokine levels were analyzed during acute infection. Five weeks post infection, auditory brainstem responses were measured to determine hearing thresholds. Spiral ganglion neuron density and abundance of recently proliferated and integrated hippocampal granule neurons were assessed histologically. Additionally, the anti-inflammatory effect of metformin was studied in primary rat astroglial cells in vitro. RESULTS: Upon pneumococcal infection, metformin treatment significantly reduced levels of inflammatory cytokines and nitric oxide production in cerebrospinal fluid and in astroglial cell cultures in vitro (p < 0.05). Compared to animals receiving ceftriaxone monotherapy, adjunctive metformin significantly reduced cortical necrosis (p < 0.02) during acute infection and improved median click-induced hearing thresholds (60 dB vs. 100 dB, p < 0.002) 5 weeks after infection. Adjuvant metformin significantly improved pure tone hearing thresholds at all assessed frequencies compared to ceftriaxone monotherapy (p < 0.05) and protected from PM-induced spiral ganglion neuron loss in the inner ear (p < 0.05). CONCLUSION: Adjuvant metformin reduces brain injury during pneumococcal meningitis by decreasing the excessive neuroinflammatory response. Furthermore, it protects spiral ganglion neurons in the inner ear and improves hearing impairments after experimental pneumococcal meningitis. These results identify adjuvant metformin as a promising therapeutic option to improve the outcome after pediatric pneumococcal meningitis.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Ceftriaxone/therapeutic use , Hearing Loss/drug therapy , Meningitis, Pneumococcal/drug therapy , Metformin/therapeutic use , Neuroprotective Agents/therapeutic use , Animals , Anti-Bacterial Agents/administration & dosage , Apoptosis/drug effects , Ceftriaxone/administration & dosage , Cytokines/cerebrospinal fluid , Disease Models, Animal , Drug Therapy, Combination , Hearing Loss/cerebrospinal fluid , Hippocampus/drug effects , Meningitis, Pneumococcal/cerebrospinal fluid , Metformin/administration & dosage , Neurons/drug effects , Neuroprotective Agents/administration & dosage , Rats , Rats, Wistar , Spiral Ganglion/drug effects , Treatment Outcome
19.
J Cell Mol Med ; 23(8): 5098-5107, 2019 08.
Article in English | MEDLINE | ID: mdl-31207045

ABSTRACT

The objective of this study was to elucidate whether paeoniflorin (PF) exerted an effect on cisplatin-induced spiral ganglion neuron (SGN) damage, with special attention given to the role of PINK1/BAD pathway in this process. Middle cochlear turn culture and C57BL/6 mice were utilized to identify the character of PF in vitro and in vivo. We found that cisplatin treatment led to SGN damage, in which reactive oxygen species (ROS) generation increased, PINK1 expression decreased, BAD accumulation on mitochondria raised and mitochondrial apoptotic pathway activated. Conversely, we demonstrated that PF pre-treatment obviously mitigated cisplatin-induced SGN damage. Mechanistic studies showed that PF could reduce ROS levels, increase PINK1 expression, decrease the BAD accumulation on mitochondria and, thus, alleviate the activated mitochondrial apoptosis in SGNs caused by cisplatin. Overall, the findings from this work reveal the important role of PF and provide another strategy against cisplatin-induced ototoxicity.


Subject(s)
Cochlea/drug effects , Glucosides/pharmacology , Monoterpenes/pharmacology , Protein Kinases/genetics , Spiral Ganglion/metabolism , bcl-Associated Death Protein/genetics , Animals , Apoptosis/drug effects , Cell Survival/drug effects , Cells, Cultured , Cisplatin/adverse effects , Cisplatin/pharmacology , Cochlea/metabolism , Cochlea/pathology , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/pathology , Humans , Mice , Mitochondria/drug effects , Mitochondria/genetics , Neurons/drug effects , Neurons/pathology , Protective Agents/pharmacology , Reactive Oxygen Species/metabolism , Spiral Ganglion/drug effects , Spiral Ganglion/pathology
20.
J Assoc Res Otolaryngol ; 20(5): 475-487, 2019 10.
Article in English | MEDLINE | ID: mdl-31236744

ABSTRACT

Gentamicin, one of the most widely used aminoglycoside antibiotics, is known to have toxic effects on the inner ear. Taken up by cochlear hair cells and spiral ganglion neurons (SGNs), gentamicin induces the accumulation of reactive oxygen species (ROS) and initiates apoptosis or programmed cell death, resulting in a permanent and irreversible hearing loss. Since the survival of SGNs is specially required for cochlear implant, new procedures that prevent SGN cell loss are crucial to the success of cochlear implantation. ROS modulates the activity of the mammalian target of rapamycin (mTOR) signaling pathway, which mediates apoptosis or autophagy in cells of different organs. However, whether mTOR signaling plays an essential role in the inner ear and whether it is involved in the ototoxic side effects of gentamicin remain unclear. In the present study, we found that gentamicin induced apoptosis and cell loss of SGNs in vivo and significantly decreased the density of SGN and outgrowth of neurites in cultured SGN explants. The phosphorylation levels of ribosomal S6 kinase and elongation factor 4E binding protein 1, two critical kinases in the mTOR complex 1 (mTORC1) signaling pathway, were modulated by gentamicin application in the cochlea. Meanwhile, rapamycin, a specific inhibitor of mTORC1, was co-applied with gentamicin to verify the role of mTOR signaling. We observed that the density of SGN and outgrowth of neurites were significantly increased by rapamycin treatment. Our finding suggests that mTORC1 is hyperactivated in the gentamicin-induced degeneration of SGNs, and rapamycin promoted SGN survival and outgrowth of neurites.


Subject(s)
Gentamicins/toxicity , Nerve Degeneration/chemically induced , Sirolimus/pharmacology , Spiral Ganglion/drug effects , Animals , Cells, Cultured , Female , Male , Mechanistic Target of Rapamycin Complex 1/physiology , Mechanistic Target of Rapamycin Complex 2/physiology , Mice , Mice, Inbred C57BL , Nerve Degeneration/prevention & control , Ribosomal Protein S6 Kinases, 70-kDa/physiology , Signal Transduction/physiology , Spiral Ganglion/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...