Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Dis ; 108(9): 2653-2657, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38640431

ABSTRACT

The African planthopper Leptodelphax maculigera (Hemiptera: Delphacidae) has been recently reported in many places in Brazil in association with maize. Its occurrence in maize production fields in Brazil has brought concerns to the corn production chain regarding the possibility of this planthopper to be a vector for maize bushy stunt phytoplasma (MBSP), corn stunt spiroplasma (Spiroplasma kunkelii), maize rayado fino virus (MRFV), and maize striate mosaic virus (MSMV). The phytoplasma and spiroplasma, which are bacteria belonging to the class Mollicutes, and the two viruses are associated with the corn stunt disease complex. Given the presence of the African planthopper species and the corn stunt complex in Brazil, we further investigated the abundance of this planthopper species in the State of Santa Catarina, Brazil, and whether the planthopper can carry the four pathogens. We inspected 12 maize production fields in different municipalities in the state for 20 weeks, using two yellow sticky traps for each maize field. The sticky traps were replaced weekly. A total of 130 specimens of L. maculigera were captured, with a great discrepancy in quantity among locations and weeks. We detected the mollicute MBSP and the viruses MRFV and MSMV in L. maculigera, whereas S. kunkelii was absent in the assessed African planthopper samples. The molecular detection of the phytoplasma and the viruses in field-collected African planthoppers is strong evidence that this insect species has the ability to acquire those pathogens through feeding from the phloem of diseased maize plants. Nonetheless, transmission capacity needs to be experimentally proven to assert L. maculigera as a vector for the corn-stunting pathogens.


Subject(s)
Hemiptera , Phytoplasma , Plant Diseases , Zea mays , Animals , Hemiptera/virology , Hemiptera/microbiology , Zea mays/microbiology , Plant Diseases/virology , Plant Diseases/microbiology , Phytoplasma/physiology , Phytoplasma/isolation & purification , Brazil , Spiroplasma/physiology , Spiroplasma/isolation & purification , Insect Vectors/virology , Insect Vectors/microbiology , Plant Viruses/physiology , Plant Viruses/isolation & purification
2.
Neotrop Entomol ; 47(4): 440-446, 2018 Aug.
Article in English | MEDLINE | ID: mdl-28620748

ABSTRACT

Richness and abundance of facultative symbionts vary strongly with aphid species and genotype, symbiont strain, host plant, biogeography, and a number of abiotic factors. Despite indications that aphids in the same ecological niche show similar levels of facultative symbiont richness, existing reports do not consider the potential role of host plants on aphid microbial community. Little is known about how oligophagy and polyphagy may be influenced by secondary symbiont distribution, mainly because studies on secondary symbiont diversity are biased towards polyphagous aphids from the Northern Hemisphere. Here, we demonstrate the richness and abundance of the most common aphid-associated facultative symbionts in two tropical aphid species, the oligophagous Aphis (Toxoptera) citricidus (Kirkaldy) (Hemiptera: Aphididae) and the polyphagous Aphis aurantii (Boyer de Fonscolombe) (Hemiptera: Aphididae). Aphis citricidus is restricted to Citrus sp. host plants and closely related genera, whereas A. aurantii successfully exploits a wide variety of host plants from different families. Both were collected in the same ecological niche and our data basically indicated the same richness of secondary symbionts, but the abundance at which secondary symbionts occurred was very distinct between the two species. Spiroplasma was the most abundant facultative symbiont associated with A. citricidus and A. aurantii in the ecological niche studied. Single and multiple secondary symbiont infections were observed, but diversity of multiple infections was particularly high in A. citricidus. We discuss our findings and suggest hypotheses to explain causes and consequences of the differences in secondary symbiont diversity observed between these two aphid species.


Subject(s)
Aphids/microbiology , Symbiosis , Animals , Buchnera/isolation & purification , DNA, Bacterial/genetics , Plants , Rickettsia/isolation & purification , Species Specificity , Spiroplasma/isolation & purification
3.
Insect Sci ; 24(3): 511-521, 2017 Jun.
Article in English | MEDLINE | ID: mdl-26773849

ABSTRACT

Facultative bacterial endosymbionts in insects have been under intense study during the last years. Endosymbionts can modify the insect's phenotype, conferring adaptive advantages under environmental stress. This seems particularly relevant for a group of worldwide agricultural aphid pests, because endosymbionts modify key fitness-related traits, including host plant use, protection against natural enemies and heat tolerance. Aimed to understand the role of facultative endosymbionts on the success of introduced aphid pests, the distribution and abundance of 5 facultative endosymbionts (Hamiltonella defensa, Regiella insecticola, Serratia symbiotica, Rickettsia and Spiroplasma) were studied and compared in 4 cereal aphids (Sitobion avenae, Diuraphis noxia, Metopolophium dirhodum and Schizaphis graminium) and in the pea aphid Acyrthosiphon pisum complex from 2 agroclimatic zones in Chile. Overall, infections with facultative endosymbionts exhibited a highly variable and characteristic pattern depending on the aphid species/host race and geographic zone, which could explain the success of aphid pest populations after their introduction. While S. symbiotica and H. defensa were the most frequent endosymbionts carried by the A. pisum pea-race and A. pisum alfalfa-race aphids, respectively, the most frequent facultative endosymbiont carried by all cereal aphids was R. insecticola. Interestingly, a highly variable composition of endosymbionts carried by S. avenae was also observed between agroclimatic zones, suggesting that endosymbionts are responding differentially to abiotic variables (temperature and precipitations). In addition, our findings constitute the first report of bacterial endosymbionts in cereal aphid species not screened before, and also the first report of aphid endosymbionts in Chile.


Subject(s)
Aphids/microbiology , Enterobacteriaceae/isolation & purification , Symbiosis , Animals , Rickettsia/isolation & purification , Spiroplasma/isolation & purification
4.
Microbiologyopen ; 3(3): 341-55, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24771723

ABSTRACT

Two species of Spiroplasma (Mollicutes) bacteria were isolated from and described as pathogens of the European honey bee, Apis mellifera, ~30 years ago but recent information on them is lacking despite global concern to understand bee population declines. Here we provide a comprehensive survey for the prevalence of these two Spiroplasma species in current populations of honey bees using improved molecular diagnostic techniques to assay multiyear colony samples from North America (U.S.A.) and South America (Brazil). Significant annual and seasonal fluctuations of Spiroplasma apis and Spiroplasma melliferum prevalence in colonies from the U.S.A. (n = 616) and Brazil (n = 139) occurred during surveys from 2011 through 2013. Overall, 33% of U.S.A. colonies and 54% of Brazil colonies were infected by Spiroplasma spp., where S. melliferum predominated over S. apis in both countries (25% vs. 14% and 44% vs. 38% frequency, respectively). Colonies were co-infected by both species more frequently than expected in both countries and at a much higher rate in Brazil (52%) compared to the U.S.A. (16.5%). U.S.A. samples showed that both species were prevalent not only during spring, as expected from prior research, but also during other seasons. These findings demonstrate that the model of honey bee spiroplasmas as springtime-restricted pathogens needs to be broadened and their role as occasional pathogens considered in current contexts.


Subject(s)
Bees/microbiology , Spiroplasma/isolation & purification , Animals , Bacterial Load , Brazil , Seasons , Spiroplasma/classification , Spiroplasma/genetics , United States
5.
Phytopathology ; 103(2): 129-34, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23013451

ABSTRACT

Corn stunt disease has become a factor limiting maize production in some areas of the Americas in recent years. Although resistant maize genotypes have been developed in the past, this resistance has been unstable over time or in some geographical locations. To better understand disease components that could affect the stability of host resistance, we assessed the genome variability of the etiologic agent, Spiroplasma kunkelii. Isolates were obtained from a number of areas, and characterized molecularly by amplification of several regions of the spiroplasma chromosome and sequencing of specific gene fragments. The degree of polymorphism between isolates of different geographic origins was low, and the level of genomic variability was similar within isolates of different countries. Polymorphism among isolates was found in viral insertions and in the sequence of Skarp, a gene that encodes a membrane protein implicated in attachment to insect cells. The results suggest that the genome composition of this species is highly conserved among isolates. Hence, it is unlikely that the instability of maize resistance is due to generation of new pathotypes of S. kunkelii. Instead, other components of this complex pathosystem could account for the breakdown of resistance.


Subject(s)
Genome, Bacterial/genetics , Plant Diseases/microbiology , Polymorphism, Genetic/genetics , Spiroplasma/genetics , Zea mays/microbiology , Argentina , Bacterial Proteins/genetics , Brazil , Costa Rica , DNA, Bacterial/chemistry , Disease Resistance , Genotype , Geography , Mexico , Phylogeny , Plant Leaves/microbiology , Sequence Analysis, DNA , Spiroplasma/isolation & purification , United States
6.
Microb Ecol ; 64(3): 794-801, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22562106

ABSTRACT

Spiroplasma endosymbionts are maternally transmitted bacteria that may kill infected sons resulting in the production of female-biased broods. The prevalence of male killers varies considerably both between and within species. Here, we evaluate the spatial and temporal status of male-killing and non-male-killing Spiroplasma infection in three Brazilian populations of Drosophila melanogaster, nearly a decade after the first occurrence report for this species. The incidence of the male-killing Spiroplasma ranged from close to 0 to 17.7 % (so far the highest estimate for a Drosophila species) with a suggestion of temporal decline in a population. We also found non-male-killing Spiroplasma coexisting in one population at lower prevalence (3-5 %), and we did not detect it in the other two. This may be taken as a suggestion of a spreading advantage conferred by the male-killing strategy. Sequencing two loci, we identified the phylogenetic position of Spiroplasma strains from the three localities, showing that all strains group closely in the poulsonii clade. Due to intensive sampling effort, we were able to test the association between Spiroplasma infections and another widespread endosymbiont, Wolbachia, whose prevalence ranged from 81.8 to 100 %. The prevalence of Wolbachia did not differ between Spiroplasma-infected and uninfected strains in our largest sample nor were the prevalences of the two endosymbionts associated across localities.


Subject(s)
Drosophila melanogaster/microbiology , Spiroplasma/genetics , Spiroplasma/physiology , Wolbachia/physiology , Animals , Brazil , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Female , Male , Phylogeny , Polymerase Chain Reaction , Prevalence , Sex Factors , Sex Ratio , Species Specificity , Spiroplasma/classification , Spiroplasma/isolation & purification , Symbiosis , Wolbachia/genetics , Wolbachia/isolation & purification
7.
J Invertebr Pathol ; 107(3): 225-8, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21586290

ABSTRACT

Here we report the presence of Spiroplasma 16S rRNA in populations of two parasitic Leptus mites (Leptus sayi; Leptus lomani) and their Agathemera walking stick hosts. In walking sticks Spiroplasmas were detected in the gut, as well as muscle-tissues, but not in eggs. Throughout Argentina 15.4% of L. sayi populations and 14.3% of L. lomani populations surveyed screened positive for Spiroplasma. Phylogenetic analyses (ML, BCMC) place all sequences within the Ixodetis group. Most sequences form a well-supported sister subclade to the rest of Ixodetis. We briefly discuss the role of Leptus mites in the natural transmission of Spiroplasma.


Subject(s)
Arachnid Vectors/microbiology , Insecta/microbiology , Mites/microbiology , Spiroplasma/isolation & purification , Animals , Arachnid Vectors/physiology , Insecta/parasitology , Mites/physiology , Phylogeny , Polymerase Chain Reaction , Spiroplasma/genetics
8.
Environ Entomol ; 36(5): 1066-72, 2007 Oct.
Article in English | MEDLINE | ID: mdl-18284730

ABSTRACT

Although the corn leafhopper Dalbulus maidis (DeLong and Wolcott) is the most important vector of maize pathogens in Latin America, little is known about how and where it overwinters (passes the dry season), particularly in Mexico. The objectives of this study were (1) to monitor the abundance of D. maidis adults throughout the dry season in maize and maize-free habitats and (2) to determine where and how D. maidis adults, exposed or nonexposed to the maize pathogen Spiroplasma kunkelii Whitcomb, overwinter in a maize-free habitat. Work for the first objective was done during the two consecutive dry seasons of 1999-2000 and 2000-2001; the second objective was done during the dry seasons of 2003-2004 and 2005-2006. During the dry winter seasons, D. maidis was prevalent as long as maize was present in irrigated areas. The leafhopper was found in 52 of the 58 irrigated maize fields sampled in Mexico at the end of the dry seasons of 1999-2000 and 2000-2001. However, leafhopper adults were not found in nonirrigated maize-free habitats at high elevation during the dry winter season (February, March, and April), although leafhopper adults were prevalent on perennial wild grasses in January after maize harvest. Additional experiments revealed, however, that corn leafhopper adults, although few in number, survived the entire dry season in these nonirrigated maize-free fields. Also, no detectable difference in survival existed between leafhoppers exposed and those not exposed to S. kunkelli during the two dry seasons in the maize-free habitat.


Subject(s)
Ecosystem , Hemiptera , Zea mays/parasitology , Animals , Hemiptera/virology , Host-Pathogen Interactions , Mexico , Seasons , Spiroplasma/isolation & purification , Zea mays/virology
SELECTION OF CITATIONS
SEARCH DETAIL