Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters











Publication year range
1.
World J Microbiol Biotechnol ; 38(1): 7, 2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34837108

ABSTRACT

In anaerobic digestion of agro-industrial effluents and livestock wastes, concentrations of ammoniacal nitrogen above 800 mg L-1 are reported to lead to the eutrophication of water bodies. Through the metabolic versatility of microalgae, this nitrogen source can be used and removed, producing carotenoids, phycobiliproteins, polyhydroxyalkanoates, and fatty acids of industrial interest. The challenge of making it feasible is the toxicity of ammoniacal nitrogen to microalgae. Therefore, three strategies were evaluated. The first one was to find species of cyanobacteria with high ammoniacal nitrogen removal efficiency comparing Arthrospira platensis, Synechocystis D202, and Spirulina labyrinthiformis cultivations. The most promising species was cultivated in the second strategy, where cell acclimatization and increasing of the inoculum were evaluated. The cultivation condition that culminated in the best efficiency of ammoniacal nitrogen removal was combined with the third strategy, which consisted of conducting the fed-batch bioprocess. In the batch mode, ammoniacal nitrogen was supplied only once in one fed and was present in high initial concentrations. In fed-batch, multiple feedings with low concentrations of ammoniacal nitrogen were used to decrease the inhibitory effect of ammoniacal nitrogen. Arthrospira platensis showed high potential for ammoniacal nitrogen removal. Using the highest initial cell concentration of Arthrospira platensis cultivated by fed-batch, an increase in the consumption of NH3 to 165.1 ± 1.8 mg L-1 and an ammoniacal nitrogen removal efficiency close to 90% were observed. Under this condition, 180.52 ± 11.67 mg g-1 of phycocyanin was attained. Also, the fed-batch cultivations have the potential to reduce the biomass cost production by 33% in comparison to batch experiments.


Subject(s)
Ammonia/metabolism , Cyanobacteria/growth & development , Nitrogen/metabolism , Batch Cell Culture Techniques , Biodegradation, Environmental , Cyanobacteria/metabolism , Phycocyanin/metabolism , Spirulina/growth & development , Spirulina/metabolism , Synechocystis/growth & development , Synechocystis/metabolism
2.
Bioprocess Biosyst Eng ; 44(10): 2087-2097, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34027616

ABSTRACT

This study aimed to investigate the effects of magnetic field (MF) application (1, 12 and 24 h day -1) to Spirulina sp. LEB 18 in different photosynthesis cycles (dark and/or light) during short (15 days) and long periods (50 days) of cultivation. MF application was performed via two sources: ferrite magnets and solenoids. At the end of cultivation, the biomass was characterized in terms of lipids, proteins, and carbohydrates. In the 15 day cultures, the highest maximum biomass concentrations (2.06 g L-1 and 1.83 g L-1) were observed when 30 mT was applied for 24 h day -1 or 12 h day -1 (on the light cycle), respectively. MF application throughout cultivation (24 h day -1) for more than 30 days is not recommended. In all conditions, there was an increase in the lipid concentration (from 14 to 45%). The protein profile suggested important changes in photosystems I and II due to MF application. Cell morphology was not altered by MF application. In conclusion, the effects on the metabolism of Spirulina sp. are directly related to the photosynthesis cycle and time period in which the MF was applied.


Subject(s)
Lipid Metabolism , Magnetic Fields , Spirulina/growth & development , Bacterial Proteins/metabolism , Biomass , Carbohydrate Metabolism , Darkness , Photosynthesis , Spirulina/metabolism , Spirulina/physiology
3.
PLoS One ; 14(10): e0224294, 2019.
Article in English | MEDLINE | ID: mdl-31648264

ABSTRACT

Mixotrophic cultivation of microalgae provides a very promising alternative for producing carbohydrate-rich biomass to convert into bioethanol and value-added biocompounds, such as vitamins, pigments, proteins, lipids and antioxidant compounds. Spirulina platensis may present high yields of biomass and carbohydrates when it is grown under mixotrophic conditions using cheese whey. However, there are no previous studies evaluating the influence of this culture system on the profile of fatty acids or antioxidant compounds of this species, which are extremely important for food and pharmaceutical applications and would add value to the cultivation process. S. platensis presented higher specific growth rates, biomass productivity and carbohydrate content under mixotrophic conditions; however, the antioxidant capacity and the protein and lipid content were lower than that of the autotrophic culture. The maximum biomass yield was 2.98 ±0.07 g/L in growth medium with 5.0% whey. The phenolic compound concentration was the same for the biomass obtained under autotrophic and mixotrophic conditions with 2.5% and 5.0% whey. The phenolic compound concentrations showed no significant differences except for that in the growth medium with 10.0% whey, which presented an average value of 22.37±0.14 mg gallic acid/g. Mixotrophic cultivation of S. platensis using whey can be considered a viable alternative to reduce the costs of producing S. platensis biomass and carbohydrates, shorten cultivation time and produce carbohydrates, as it does not require adding expensive chemical nutrients to the growth medium and also takes advantage of cheese whey, an adverse dairy industry byproduct.


Subject(s)
Antioxidants/metabolism , Biomass , Dairying , Industrial Waste , Spirulina/growth & development , Spirulina/metabolism , Wastewater/chemistry , Carbohydrate Metabolism/drug effects , Spirulina/drug effects , Whey/metabolism
4.
Sci Total Environ ; 676: 356-367, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31048166

ABSTRACT

Nejayote and swine wastewater are highly pollutant effluents and a source of organic matter load that sometimes released into water bodies (rivers or lakes), soils or public sewer system, with or without partial treatments. Nejayote is a wastewater product of alkaline cooking of maize, whereas, swine wastewater results from the primary production of pigs for the meat market. Owing to the presence of environmentally related pollutants, both sources are considered the major cause of pollution and thus require urgent action. Herein, we report a synergistic approach to effectively use and/or treat Nejayote and swine wastewater as a cost-effective culture medium for microalgae growth, which ultimately induces the removal of polluting agents. In this study, the strains Arthrospira maxima and Chlorella vulgaris were grown using different dilutions of Nejayote and swine wastewater. Both wastewaters were used as the only source of macronutrients and trace elements for growth. For A. maxima, the treatment of 10% nejayote and 90% of water (T3) resulted in a cell growth of 32 × 104 cell/mL at 12 days (µmax = 0.27/d). While, a mixture of 25% swine wastewater, 25% nejayote and 50% water (T2) produced 32 × 104 cell/mL at 18 days (µmax = 0.16/d). A significant reduction was also noted as 92% from 138 mg/L of TN, 75% from 77 mg/L of TP, and 96% from 8903 mg/L of COD, among different treatments. For C. vulgaris, the treatment of 10% swine wastewater and 90% water (T1) gave a cell growth of 128 × 106 cell/mL (µmax = 0.57/d) followed by T3 yielded 62 × 106 cell/mL (µmax = 0.70/d) and T2 yielded 48 × 106 cell/mL (µmax = 0.54/d). Up to 91% reduction from 138 mg/L of TN, 85% from 19 mg/L of TP and 96% from 4870 mg/L of COD was also recorded. These results show that microalgae can be used to treat these types of wastewater while at the same time using them as a culture media for microalgae. The resultant biomass can additionally be used for getting other sub-products of commercial interest.


Subject(s)
Chlorella vulgaris/growth & development , Spirulina/growth & development , Waste Disposal, Fluid , Wastewater/microbiology , Animal Husbandry , Animals
5.
Int J Biol Macromol ; 123: 1241-1247, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30521909

ABSTRACT

This study focused on evaluating whether the injection of CO2, which is associated with the use of thermoelectric fly ashes and a reduced supply of nitrogen, affects the production of intracellular carbohydrates from Spirulina. For this purpose, the addition of 0.25 g L-1 of NaNO3, along with a 10% (v v-1) of CO2 injection, a flow rate of 0.3 vvm for 1 or 5 min, as well as 0, 120 and 160 ppm of fly ashes, was studied. The assays with 120 ppm of fly ashes presented the best kinetic parameters and CO2 biofixation rate, regardless of the CO2 injection time. Meanwhile, the experiments with 120 and 160 ppm of fly ash and CO2 injection for 1 min presented 63.3 and 61.0% (w w-1) of carbohydrates, respectively. Thus, this study represents an important strategy to increase the accumulation of carbohydrates in Spirulina, with potential application in the production of bioethanol.


Subject(s)
Carbohydrates/analysis , Carbon Dioxide/pharmacology , Coal Ash/pharmacology , Electricity , Nitrogen/pharmacology , Spirulina/chemistry , Temperature , Biofuels , Biomass , Carbon Cycle/drug effects , Ethanol/metabolism , Hydrogen-Ion Concentration , Microalgae/drug effects , Microalgae/growth & development , Spirulina/drug effects , Spirulina/growth & development
6.
Appl Biochem Biotechnol ; 186(1): 40-53, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29504073

ABSTRACT

Since cultivations of Arthrospira platensis have a high water demand, it is necessary to develop treatment methods for reusing the exhausted medium that may prevent environmental problems and obtaining useful biomass. The exhausted Schlösser medium obtained from A. platensis batch cultivation in bench-scale mini-tanks was treated by varying concentrations of different coagulants, ferric chloride (6, 10, and 14 mg L-1) or ferric sulfate (15, 25, and 35 mg L-1) and powdered activated carbon (PAC, 30 and 50 mg L-1). Such treated effluent was restored with NaNO3 and reused in new cultivations of A. platensis performed in Erlenmeyer flasks. Reusing media through the cultivation of A. platensis showed satisfactory results, particularly in the medium treated with ferric chloride and PAC. The maximum cell concentration obtained in the flasks was 1093 mg L-1, which corresponded to the medium treated with ferric chloride (6 mg L-1) and PAC (30 mg L-1). This cellular growth was higher than in the medium treated with ferric sulfate and PAC, in which values of maximum cell concentration did not exceed 796 mg L-1. The cultures in the media after treatment did not modify the biomass composition. Thus, combined coagulation/adsorption processes, commonly used in water treatment processes, can be efficient and viable for treating exhausted medium of A. platensis, allowing the production of such biomass with the reduction of production cost and saving water.


Subject(s)
Chlorides/chemistry , Culture Media , Ferric Compounds/chemistry , Sodium Nitrite/chemistry , Spirulina/growth & development , Water/chemistry , Adsorption , Biomass , Carbon/chemistry , Cost Savings , Nitrogen/metabolism , Spectrophotometry, Ultraviolet , Spirulina/metabolism
7.
Bioresour Technol ; 234: 472-475, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28342576

ABSTRACT

CO2 biofixation by microalgae and cyanobacteria is an environmentally sustainable way to mitigate coal burn gas emissions. In this work the microalga Chlorella fusca LEB 111 and the cyanobacteria Spirulina sp. LEB 18 were cultivated using CO2 from coal flue gas as a carbon source. The intermittent flue gas injection in the cultures enable the cells growth and CO2 biofixation by these microorganisms. The Chlorella fusca isolated from a coal power plant could fix 2.6 times more CO2 than Spirulina sp. The maximum daily CO2 from coal flue gas biofixation was obtained with Chlorella fusca (360.12±0.27mgL-1d-1), showing a specific growth rate of 0.17±<0.01d-1. The results demonstrated the Chlorella fusca LEB 111 and Spirulina sp. LEB 18 potential to fix CO2 from coal flue gas, and sequential biomass production with different biotechnological destinations.


Subject(s)
Air Pollutants/metabolism , Carbon Dioxide/metabolism , Chlorella/metabolism , Microalgae/metabolism , Spirulina/metabolism , Air Pollutants/analysis , Biodegradation, Environmental , Biotechnology , Carbon Dioxide/analysis , Chlorella/growth & development , Coal , Microalgae/growth & development , Power Plants , Spirulina/growth & development
8.
Bioresour Technol ; 224: 618-629, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27838319

ABSTRACT

Bioactivity and functional properties of cyanobacterial extract mostly depends on process of extraction, temperature and solvent used (polar or non-polar). To evaluate these parameters a design of experiment (DOE; using a 2k design) was performed with Arthrospira platensis. Extraction process was optimized through microwave-assisted extraction considering solvent ratio, temperature and time of extraction with polar (PS) and non-polar (NPS). Maximum extract yield obtained was 4.32±0.25% and 5.26±0.11% (w/w) respectively for PS and NPS. Maximum content of bioactive metabolites in PS extracts were thiamine (846.57±14.12µg/g), riboflavin (101.09±1.63µg/g), C-phycocyanin (2.28±0.10µg/g) and A-phycocyanin (4.11±0.03µg/g), while for NPS extracts were α-tocopherol (37.86±0.78µg/g), ß-carotene (123.64±1.45µg/g) and 19.44±0.21mg/g of fatty acids. A. platensis PS extracts showed high antimicrobial activity and PS extracts had antioxidant activity of 0.79±0.12µmolTE/g for FRAP assay, while for NPS extracts 1.03±0.08µmol α-TE/g for FRAP assay.


Subject(s)
Chemical Fractionation/methods , Microwaves , Spirulina/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Microbial Sensitivity Tests , Phenols/isolation & purification , Phycocyanin/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Solvents/chemistry , Spirulina/growth & development , Spirulina/metabolism , beta Carotene/isolation & purification
9.
J Sci Food Agric ; 97(3): 724-732, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27507218

ABSTRACT

The high protein level of various microalgal species is one of the main reasons to consider them an unconventional source of this compound. Spirulina platensis stands out for being one of the richest protein sources of microbial origin (460-630 g kg-1 , dry matter basis), having similar protein levels when compared to meat and soybeans. The use of S. platensis in food can bring benefits to human health owing to its chemical composition, since it has high levels of vitamins, minerals, phenolics, essential fatty acids, amino acids and pigments. Furthermore, the development of new protein sources to supply the shortage of this nutrient is an urgent need, and protein from S. platensis plays an important role in this scenario. In this sense, extraction processes that allow maximum protein yield and total utilization of biomass is an urgent need, and ultrasonic waves have proven to be an effective extraction technique. The number of scientific papers related to protein fraction from S. platensis is still limited; thus further studies on its functional and technological properties are needed. © 2016 Society of Chemical Industry.


Subject(s)
Bacterial Proteins/therapeutic use , Dietary Proteins/therapeutic use , Food Supply , Global Health , Microalgae/chemistry , Spirulina/chemistry , Amino Acids/analysis , Animal Feed/adverse effects , Animal Feed/economics , Animals , Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Dietary Proteins/chemistry , Dietary Proteins/economics , Dietary Proteins/isolation & purification , Evidence-Based Practice , Fermentation , Food Contamination/prevention & control , Food Supply/economics , Food Supply/history , History, 20th Century , History, 21st Century , Humans , Microalgae/growth & development , Microalgae/isolation & purification , Microalgae/metabolism , Nutritive Value , Photobioreactors , Protein Deficiency/economics , Protein Deficiency/prevention & control , Spirulina/growth & development , Spirulina/isolation & purification , Spirulina/metabolism
10.
Bioresour Technol ; 220: 62-67, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27566513

ABSTRACT

This study aimed at evaluating the influence of magnetic field on the growth and biomass composition of Spirulina sp., cultivated in vertical tubular photobioreactors. Magnetic fields of 5, 30 and 60mT generated by electric current and ferrite magnets were applied at different lengths of time. The magnetic field of 30 and 60mT for 1hd(-1) stimulated the growth, thus leading to higher biomass concentration by comparison with the control culture. Increase in productivity, protein and carbohydrate contents were 105.1% (60mT for 1hd(-1)), 16.6% (60mT for 24hd(-1)) and 133.2% (30mT for 24hd(-1)), respectively. These values were higher than the ones of the control. Results showed that magnetic field may influence the growth of Spirulina sp., since it triggers a stimulating effect and can leads to twofold biomass concentration in equal cultivation time periods.


Subject(s)
Cell Culture Techniques/methods , Magnetic Fields , Microalgae/growth & development , Spirulina/growth & development , Biomass , Carbohydrate Metabolism , Cell Culture Techniques/instrumentation , Hydrogen-Ion Concentration , Microalgae/metabolism , Photobioreactors , Spirulina/metabolism
11.
Braz. j. microbiol ; Braz. j. microbiol;47(2): 298-304, Apr.-June 2016. tab, graf
Article in English | LILACS | ID: lil-780847

ABSTRACT

Abstract Algae can tolerate a broad range of growing conditions but extreme conditions may lead to the generation of highly dangerous reactive oxygen species (ROS), which may cause the deterioration of cell metabolism and damage cellular components. The antioxidants produced by algae alleviate the harmful effects of ROS. While the enhancement of antioxidant production in blue green algae under stress has been reported, the antioxidant response to changes in pH levels requires further investigation. This study presents the effect of pH changes on the antioxidant activity and productivity of the blue green alga Spirulina (Arthrospira) platensis. The algal dry weight (DW) was greatly enhanced at pH 9.0. The highest content of chlorophyll a and carotenoids (10.6 and 2.4 mg/g DW, respectively) was recorded at pH 8.5. The highest phenolic content (12.1 mg gallic acid equivalent (GAE)/g DW) was recorded at pH 9.5. The maximum production of total phycobiliprotein (159 mg/g DW) was obtained at pH 9.0. The antioxidant activities of radical scavenging activity, reducing power and chelating activity were highest at pH 9.0 with an increase of 567, 250 and 206% compared to the positive control, respectively. Variation in the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) was also reported. While the high alkaline pH may favor the overproduction of antioxidants, normal cell metabolism and membrane function is unaffected, as shown by growth and chlorophyll content, which suggests that these conditions are suitable for further studies on the harvest of antioxidants from S. platensis.


Subject(s)
Spirulina/metabolism , Antioxidants/metabolism , Oxidation-Reduction , Phenols/metabolism , Phenols/chemistry , Chlorophyll/metabolism , Spirulina/growth & development , Spirulina/chemistry , Phycobiliproteins/metabolism , Phycobiliproteins/chemistry , Hydrogen-Ion Concentration , Antioxidants/chemistry
12.
Braz J Microbiol ; 47(2): 298-304, 2016.
Article in English | MEDLINE | ID: mdl-26991300

ABSTRACT

Algae can tolerate a broad range of growing conditions but extreme conditions may lead to the generation of highly dangerous reactive oxygen species (ROS), which may cause the deterioration of cell metabolism and damage cellular components. The antioxidants produced by algae alleviate the harmful effects of ROS. While the enhancement of antioxidant production in blue green algae under stress has been reported, the antioxidant response to changes in pH levels requires further investigation. This study presents the effect of pH changes on the antioxidant activity and productivity of the blue green alga Spirulina (Arthrospira) platensis. The algal dry weight (DW) was greatly enhanced at pH 9.0. The highest content of chlorophyll a and carotenoids (10.6 and 2.4mg/g DW, respectively) was recorded at pH 8.5. The highest phenolic content (12.1mg gallic acid equivalent (GAE)/g DW) was recorded at pH 9.5. The maximum production of total phycobiliprotein (159mg/g DW) was obtained at pH 9.0. The antioxidant activities of radical scavenging activity, reducing power and chelating activity were highest at pH 9.0 with an increase of 567, 250 and 206% compared to the positive control, respectively. Variation in the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) was also reported. While the high alkaline pH may favor the overproduction of antioxidants, normal cell metabolism and membrane function is unaffected, as shown by growth and chlorophyll content, which suggests that these conditions are suitable for further studies on the harvest of antioxidants from S. platensis.


Subject(s)
Antioxidants/metabolism , Spirulina/metabolism , Antioxidants/chemistry , Chlorophyll/metabolism , Chlorophyll A , Hydrogen-Ion Concentration , Oxidation-Reduction , Phenols/chemistry , Phenols/metabolism , Phycobiliproteins/chemistry , Phycobiliproteins/metabolism , Spirulina/chemistry , Spirulina/growth & development
13.
Appl Biochem Biotechnol ; 178(2): 418-29, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26453033

ABSTRACT

The concentration of carbon dioxide (CO2) in the atmosphere has increased from 280 to 400 ppm in the last 10 years, and the coal-fired power plants are responsible for approximately 22 % of these emissions. The burning of fossil fuel also produces a great amount of solid waste that causes serious industrial and environmental problems. The biological processes become interesting alternative in combating pollution and developing new products. The objective of this study was to evaluate the CO2 biofixation potential of microalgae that were grown using gaseous effluents and solid residues of thermoelectric origin. The microalgae Chlorella fusca LEB 111 presented higher rate of CO2 biofixation (42.8 %) (p < 0.01) than did Spirulina sp. LEB 18. The values for the CO2 biofixation rates and the kinetic parameters of Spirulina and Chlorella cells grown using combustion gas did not differ significantly from those of cells grown using CO2 and a carbon source in the culture media. These microalgae could be grown using ash derived from coal combustion, using the minerals present in this residue as the source of the essential metals required for their growth and the CO2 derived from the combustion gas as their carbon source.


Subject(s)
Carbon Dioxide/metabolism , Chlorella/metabolism , Fossil Fuels , Spirulina/metabolism , Chlorella/growth & development , Culture Media , Gases , Kinetics , Spirulina/growth & development
14.
Bioresour Technol ; 200: 528-34, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26524251

ABSTRACT

The objective of this study was to select a concentration of CO2 absorbents to supplement Spirulina sp. LEB 18 cultivation and to evaluate the effect of these compounds on the growth and production of macromolecules. Three initial biomass concentrations (X0), eight concentrations of monoethanolamine (MEA), and three NaOH concentrations were tested. The selected MEA concentrations did not inhibit the growth of Spirulina and doubled the dissolved inorganic carbon concentration in the assay medium in relation to the concentration of NaOH. The protein concentration in the biomass grown with MEA was, on average, 17% higher than that obtained with NaOH. Thus, it was found that MEA did not reduce the productivity of Spirulina sp. LEB 18, and its use can be further explored as a means for converting the carbon dissolved in the medium to biomolecules.


Subject(s)
Biomass , Carbon Dioxide/chemistry , Macromolecular Substances/metabolism , Spirulina/growth & development , Carbon/chemistry , Carbon/pharmacology , Ethanolamine/pharmacology , Hydrogen/chemistry , Hydrogen-Ion Concentration , Nitrogen/chemistry , Organic Chemicals/chemistry , Photobioreactors , Sodium Hydroxide/chemistry , Temperature
15.
Braz J Microbiol ; 46(4): 991-1000, 2015.
Article in English | MEDLINE | ID: mdl-26691456

ABSTRACT

Fewer studies have assessed the outdoor cultivation of Spirulina maxima compared with S. platensis, although the protein content of S. maxima is higher than S. platensis. Spirulina growth medium requires an increased amount of NaHCO3, Na2CO3, and NaNO3, which increases the production cost. Therefore, the current study used a low-cost but high-efficiency biomass production medium (Medium M-19) after testing 33 different media. The medium depth of 25 cm (group A) was sub-divided into A1 (50% cover with a black curtain (PolyMax, 12 oz ultra-blackout), A2 (25% cover), and A3 (no cover). Similarly the medium depths of 30 and 35 cm were categorized as groups B (B1, B2, and B3) and C (C1, C2, and C3), respectively, and the effects of depth and surface light availability on growth and biomass production were assessed. The highest biomass production was 2.05 g L-1 in group A2, which was significantly higher (p < 0.05) than that in all other groups and sub-groups. Spirulina maxima died in B1 and C1 on the fifth day of culture. The biochemical composition of the biomass obtained from A2 cultures, including protein, carbohydrate, lipid, moisture, and ash, was 56.59%, 14.42%, 0.94%, 5.03%, and 23.02%, respectively. Therefore, S. maxima could be grown outdoors with the highest efficiency in urea-enriched medium at a 25-cm medium depth with 25% surface cover or uncovered.


Subject(s)
Culture Media/metabolism , Culture Techniques/methods , Spirulina/growth & development , Spirulina/metabolism , Urea/metabolism , Biomass , Culture Media/chemistry , Culture Techniques/instrumentation , Urea/analysis
16.
Braz. j. microbiol ; Braz. j. microbiol;46(4): 991-1000, Oct.-Dec. 2015. tab, graf
Article in English | LILACS | ID: lil-769671

ABSTRACT

Fewer studies have assessed the outdoor cultivation of Spirulina maxima compared with S. platensis, although the protein content of S. maxima is higher than S. platensis. Spirulina growth medium requires an increased amount of NaHCO3, Na2CO3, and NaNO3, which increases the production cost. Therefore, the current study used a low-cost but high-efficiency biomass production medium (Medium M-19) after testing 33 different media. The medium depth of 25 cm (group A) was sub-divided into A1 (50% cover with a black curtain (PolyMax, 12 oz ultra-blackout), A2 (25% cover), and A3 (no cover). Similarly the medium depths of 30 and 35 cm were categorized as groups B (B1, B2, and B3) and C (C1, C2, and C3), respectively, and the effects of depth and surface light availability on growth and biomass production were assessed. The highest biomass production was 2.05 g L-1 in group A2, which was significantly higher (p < 0.05) than that in all other groups and sub-groups. Spirulina maxima died in B1 and C1 on the fifth day of culture. The biochemical composition of the biomass obtained from A2 cultures, including protein, carbohydrate, lipid, moisture, and ash, was 56.59%, 14.42%, 0.94%, 5.03%, and 23.02%, respectively. Therefore, S. maxima could be grown outdoors with the highest efficiency in urea-enriched medium at a 25-cm medium depth with 25% surface cover or uncovered.


Subject(s)
Biomass/analysis , Biomass/chemistry , Biomass/growth & development , Biomass/instrumentation , Biomass/metabolism , Biomass/methods , Culture Media/analysis , Culture Media/chemistry , Culture Media/growth & development , Culture Media/instrumentation , Culture Media/metabolism , Culture Media/methods , Culture Techniques/analysis , Culture Techniques/chemistry , Culture Techniques/growth & development , Culture Techniques/instrumentation , Culture Techniques/metabolism , Culture Techniques/methods , Spirulina/analysis , Spirulina/chemistry , Spirulina/growth & development , Spirulina/instrumentation , Spirulina/metabolism , Spirulina/methods , Urea/analysis , Urea/chemistry , Urea/growth & development , Urea/instrumentation , Urea/metabolism , Urea/methods
17.
Bioresour Technol ; 192: 321-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26051496

ABSTRACT

The chemical absorption of carbon dioxide (CO2) is a technique used for the mitigation of the greenhouse effect. However, this process consumes high amounts of energy to regenerate the absorbent and to separate the CO2. CO2 removal by microalgae can be obtained via the photosynthesis process. The objective of this study was to investigate the cultivation and the macromolecules production by Spirulina sp. LEB 18 with the addition of monoethanolamine (MEA) and CO2. In the cultivation with MEA, were obtained higher results of specific growth rate, biomass productivity, CO2 biofixation, CO2 use efficiency, and lower generation time. Besides this, the carbohydrate concentration obtained at the end of this assay was approximately 96.0% higher than the control assay. Therefore, Spirulina can be produced using medium recycle and the addition of MEA, thereby promoting the reduction of CO2 emissions and showing potential for areas that require higher concentrations of carbohydrates, such as in bioethanol production.


Subject(s)
Biotechnology/methods , Carbon Dioxide/metabolism , Spirulina/growth & development , Spirulina/metabolism , Biomass , Carbohydrate Metabolism , Carbohydrates/analysis , Carbon Dioxide/chemistry , Ethanolamine/pharmacology , Spirulina/drug effects
18.
Braz J Microbiol ; 45(3): 933-6, 2014.
Article in English | MEDLINE | ID: mdl-25477928

ABSTRACT

This paper presents a method to estimate the biomass of Spirulina cultivated on solid medium with sugarcane bagasse as a support, in view of the difficulty in determining biomass concentrations in bioprocesses, particularly those conducted in semi-solid or solid media. The genus Spirulina of the family Oscillatoriaceae comprises the group of multicellular filamentous cyanobacteria (blue-green microalgae). Spirulina is used as fish feed in aquaculture, as a food supplement, a source of vitamins, pigments, antioxidants and fatty acids. Therefore, its growth parameters are extremely important in studies of the development and optimization of bioprocesses. For studies of biomass growth, Spirulina platensis was cultured on solid medium using sugarcane bagasse as a support. The biomass thus produced was estimated by determining the protein content of the material grown during the process, based on the ratio of dry weight to protein content obtained in the surface growth experiments. The protein content of the biomass grown in Erlenmeyer flasks on surface medium was examined daily to check the influence of culture time on the protein content of the biomass. The biomass showed an average protein content of 42.2%. This methodology enabled the concentration of biomass adhering to the sugarcane bagasse to be estimated from the indirect measurement of the protein content associated with cell growth.


Subject(s)
Bacterial Proteins/analysis , Biomass , Culture Media/chemistry , Microbiological Techniques/methods , Spirulina/chemistry , Spirulina/growth & development , Cellulose , Saccharum
19.
Braz. j. microbiol ; Braz. j. microbiol;45(3): 933-936, July-Sept. 2014. ilus, tab
Article in English | LILACS | ID: lil-727023

ABSTRACT

This paper presents a method to estimate the biomass of Spirulina cultivated on solid medium with sugarcane bagasse as a support, in view of the difficulty in determining biomass concentrations in bioprocesses, particularly those conducted in semi-solid or solid media. The genus Spirulina of the family Oscillatoriaceae comprises the group of multicellular filamentous cyanobacteria (blue-green microalgae). Spirulina is used as fish feed in aquaculture, as a food supplement, a source of vitamins, pigments, antioxidants and fatty acids. Therefore, its growth parameters are extremely important in studies of the development and optimization of bioprocesses. For studies of biomass growth, Spirulina platensis was cultured on solid medium using sugarcane bagasse as a support. The biomass thus produced was estimated by determining the protein content of the material grown during the process, based on the ratio of dry weight to protein content obtained in the surface growth experiments. The protein content of the biomass grown in Erlenmeyer flasks on surface medium was examined daily to check the influence of culture time on the protein content of the biomass. The biomass showed an average protein content of 42.2%. This methodology enabled the concentration of biomass adhering to the sugarcane bagasse to be estimated from the indirect measurement of the protein content associated with cell growth.


Subject(s)
Biomass , Bacterial Proteins/analysis , Culture Media/chemistry , Microbiological Techniques/methods , Spirulina/chemistry , Spirulina/growth & development , Cellulose , Saccharum
20.
Braz. J. Microbiol. ; 45(3): 933-936, July-Sept. 2014. ilus, tab
Article in English | VETINDEX | ID: vti-27864

ABSTRACT

This paper presents a method to estimate the biomass of Spirulina cultivated on solid medium with sugarcane bagasse as a support, in view of the difficulty in determining biomass concentrations in bioprocesses, particularly those conducted in semi-solid or solid media. The genus Spirulina of the family Oscillatoriaceae comprises the group of multicellular filamentous cyanobacteria (blue-green microalgae). Spirulina is used as fish feed in aquaculture, as a food supplement, a source of vitamins, pigments, antioxidants and fatty acids. Therefore, its growth parameters are extremely important in studies of the development and optimization of bioprocesses. For studies of biomass growth, Spirulina platensis was cultured on solid medium using sugarcane bagasse as a support. The biomass thus produced was estimated by determining the protein content of the material grown during the process, based on the ratio of dry weight to protein content obtained in the surface growth experiments. The protein content of the biomass grown in Erlenmeyer flasks on surface medium was examined daily to check the influence of culture time on the protein content of the biomass. The biomass showed an average protein content of 42.2%. This methodology enabled the concentration of biomass adhering to the sugarcane bagasse to be estimated from the indirect measurement of the protein content associated with cell growth.


Subject(s)
Biomass , Bacterial Proteins/analysis , Culture Media/chemistry , Microbiological Techniques/methods , Spirulina/chemistry , Spirulina/growth & development , Cellulose , Saccharum
SELECTION OF CITATIONS
SEARCH DETAIL