Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.535
Filter
1.
Immunity ; 57(5): 1160-1176.e7, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38697118

ABSTRACT

Multimodal single-cell profiling methods can capture immune cell variations unfolding over time at the molecular, cellular, and population levels. Transforming these data into biological insights remains challenging. Here, we introduce a framework to integrate variations at the human population and single-cell levels in vaccination responses. Comparing responses following AS03-adjuvanted versus unadjuvanted influenza vaccines with CITE-seq revealed AS03-specific early (day 1) response phenotypes, including a B cell signature of elevated germinal center competition. A correlated network of cell-type-specific transcriptional states defined the baseline immune status associated with high antibody responders to the unadjuvanted vaccine. Certain innate subsets in the network appeared "naturally adjuvanted," with transcriptional states resembling those induced uniquely by AS03-adjuvanted vaccination. Consistently, CD14+ monocytes from high responders at baseline had elevated phospho-signaling responses to lipopolysaccharide stimulation. Our findings link baseline immune setpoints to early vaccine responses, with positive implications for adjuvant development and immune response engineering.


Subject(s)
B-Lymphocytes , Influenza Vaccines , Single-Cell Analysis , Humans , Influenza Vaccines/immunology , B-Lymphocytes/immunology , Germinal Center/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Vaccination , Antibodies, Viral/immunology , Adjuvants, Immunologic , Adjuvants, Vaccine , Monocytes/immunology , Polysorbates , Squalene/immunology , Immunity, Innate/immunology
2.
Environ Sci Technol ; 58(15): 6693-6703, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38577981

ABSTRACT

A major component of human skin oil is squalene, a highly unsaturated hydrocarbon that protects the skin from atmospheric oxidants. Skin oil, and thus squalene, is continuously replenished on the skin surface. Squalene is also quickly consumed through reactions with ozone and other oxidants. This study examined the extent of squalene depletion in the skin oils of the forearm of human volunteers after exposure to ozone in a climate chamber. Temperature, relative humidity (RH), skin coverage by clothing, and participants' age were varied in a controlled manner. Concentrations of squalene were determined in skin wipe samples collected before and after ozone exposure. Exposures to ozone resulted in statistically significant decreases in post-exposure squalene concentrations compared to pre-exposure squalene concentrations in the skin wipes when squalene concentrations were normalized by concentrations of co-occurring cholesterol but not by co-occurring pyroglutamic acid (PGA). The rate of squalene loss due to ozonolysis was lower than its replenishment on the skin surface. Within the ranges examined, temperature and RH did not significantly affect the difference between normalized squalene levels in post-samples versus pre-samples. Although not statistically significant, skin coverage and age of the volunteers (three young adults, three seniors, and three teenagers) did appear to impact squalene depletion on the skin surfaces.


Subject(s)
Air Pollution, Indoor , Ozone , Humans , Adolescent , Squalene/analysis , Ozone/analysis , Air Pollution, Indoor/analysis , Skin/chemistry , Oxidants
3.
Org Lett ; 26(15): 3119-3123, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38588021

ABSTRACT

Six oxidosqualene cyclases (NiOSC1-NiOSC6) from Neoalsomitra integrifoliola were characterized for the biosynthesis of diverse triterpene scaffolds, including tetracyclic and pentacyclic triterpenes from the 2,3-oxidosqualene (1) and oxacyclic triterpenes from the 2,3:22,23-dioxidosqualene (2). NiOSC1 showed high efficiency in the production of naturally rare (20R)-epimers of oxacyclic triterpenes. Mutagenesis results revealed that the NiOSC1-F731G mutant significantly increased the yields of (20R)-epimers compared to the wild type. Homology modeling and molecular docking elucidated the origin of the (20R)-configuration in the epoxide addition step.


Subject(s)
Intramolecular Transferases , Squalene/analogs & derivatives , Triterpenes , Molecular Docking Simulation , Pentacyclic Triterpenes , Intramolecular Transferases/genetics
4.
Influenza Other Respir Viruses ; 18(4): e13288, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38644564

ABSTRACT

BACKGROUND: Adults ≥ 65 years of age have suboptimal influenza vaccination responses compared to younger adults due to age-related immunosenescence. Two vaccines were specifically developed to enhance protection: MF59-adjuvanted trivalent influenza vaccine (aIIV3) and high-dose egg-based trivalent influenza vaccine (HD-IIV3e). METHODS: In a retrospective cohort study conducted using US electronic medical records linked to claims data during the 2019-2020 influenza season, we compared the relative vaccine effectiveness (rVE) of aIIV3 with HD-IIV3e and a standard-dose non-adjuvanted egg-based quadrivalent inactivated influenza vaccine (IIV4e) for the prevention of cardiorespiratory hospitalizations, including influenza hospitalizations. We evaluated outcomes in the "any" diagnosis position and the "admitting" position on the claim. A doubly robust methodology using inverse probability of treatment weighting and logistic regression was used to adjust for covariate imbalance. rVE was calculated as 100 * (1 - ORadjusted). RESULTS: The study included 4,299,594 adults ≥ 65 years of age who received aIIV3, HD-IIV3e, or IIV4e. Overall, aIIV3 was associated with lower proportions of cardiorespiratory hospitalizations with diagnoses in any position compared to HD-IIV3e (rVE = 3.9% [95% CI, 2.7-5.0]) or IIV4e (9.0% [95% CI, 7.7-10.4]). Specifically, aIIV3 was more effective compared with HD-IIV3e and IIV4e in preventing influenza hospitalizations (HD-IIV3e: 9.7% [95% CI, 1.9-17.0]; IIV4e: 25.3% [95% CI, 17.7-32.2]). Consistent trends were observed for admitting diagnoses. CONCLUSION: Relative to both HD-IIV3e and IIV4e, aIIV3 provided improved protection from cardiorespiratory or influenza hospitalizations.


Subject(s)
Adjuvants, Immunologic , Hospitalization , Influenza Vaccines , Influenza, Human , Polysorbates , Squalene , Humans , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Aged , Hospitalization/statistics & numerical data , Male , Retrospective Studies , Female , Squalene/administration & dosage , Polysorbates/administration & dosage , Middle Aged , United States/epidemiology , Adjuvants, Immunologic/administration & dosage , Aged, 80 and over , Vaccine Efficacy , Seasons , Adult , Vaccination/statistics & numerical data
5.
Sci Immunol ; 9(94): eadi8039, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579013

ABSTRACT

Vaccine adjuvants increase the breadth of serum antibody responses, but whether this is due to the generation of antigen-specific B cell clones with distinct specificities or the maturation of memory B cell clones that produce broadly cross-reactive antibodies is unknown. Here, we longitudinally analyzed immune responses in healthy adults after two-dose vaccination with either a virus-like particle COVID-19 vaccine (CoVLP), CoVLP adjuvanted with AS03 (CoVLP+AS03), or a messenger RNA vaccination (mRNA-1273). CoVLP+AS03 enhanced the magnitude and durability of circulating antibodies and antigen-specific CD4+ T cell and memory B cell responses. Antigen-specific CD4+ T cells in the CoVLP+AS03 group at day 42 correlated with antigen-specific memory B cells at 6 months. CoVLP+AS03 induced memory B cell responses, which accumulated somatic hypermutations over 6 months, resulting in enhanced neutralization breadth of monoclonal antibodies. Furthermore, the fraction of broadly neutralizing antibodies encoded by memory B cells increased between day 42 and 6 months. These results indicate that AS03 enhances the antigenic breadth of B cell memory at the clonal level and induces progressive maturation of the B cell response.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Polysorbates , Squalene , alpha-Tocopherol , Adult , Humans , Memory B Cells , COVID-19 Vaccines , Antibodies, Viral , COVID-19/prevention & control , Drug Combinations
6.
J Agric Food Chem ; 72(17): 9984-9993, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38635942

ABSTRACT

Squalene is a high-value antioxidant with many commercial applications. The use of microbial cell factories to produce squalene as an alternative to plant and animal extracts could meet increasing market demand. Yarrowia lipolytica is an excellent host for squalene production due to its high levels of acetyl-CoA and a hydrophobic environment. However, the need for precise and complicated gene editing has hindered the industrialization of this strain. Herein, the rapid construction of a strain with high squalene production was achieved by enhancing the homologous recombination efficiency in Y. lipolytica. First, remodeling of the homologous recombination efficiency resulted in a 10-fold increase in the homologous recombination rate. Next, the whole mevalonate pathway was integrated into the chromosome to enhance squalene production. Then, a higher level of squalene accumulation was achieved by increasing the level of acetyl coenzyme A and regulating the downstream steroid synthesis pathway. Finally, the squalene production reached 35 g/L after optimizing the fermentation conditions and performing a fed-batch culture in a 5 L jar fermenter. This is the highest squalene production ever reported to date by de novo biosynthesis without adding any inhibitors, paving a new path toward the industrial production of squalene and its downstream products.


Subject(s)
Homologous Recombination , Metabolic Engineering , Squalene , Yarrowia , Yarrowia/metabolism , Yarrowia/genetics , Squalene/metabolism , Fermentation , Mevalonic Acid/metabolism
7.
Int J Mol Sci ; 25(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474053

ABSTRACT

Cholesterol present in food of animal origin is a precursor of oxysterols (COPs), whose high intake through diet can be associated with health implications. Evaluation of the content of these contaminants in food is associated with many analytical problems. This work presents a GC-TOF/MS method for the simultaneous determination of squalene, cholesterol and seven COPs (7-ketocholesterol, 7α-hydroxycholesterol, 7ß-hydroxycholesterol, 25-hydroxycholesterol, 5,6α-epoxycholesterol, 5,6ß-epoxycholesterol, cholestanetriol). The sample preparation procedure includes such steps as saponification, extraction and silylation. The method is characterized by high sensitivity (limit of quantification, 0.02-0.25 ng mL-1 for instrument, 30-375 µg kg of sample), repeatability (RSD 2.3-6.2%) and a wide linearity range for each tested compound. The method has been tested on eight different animal-origin products. The COP to cholesterol content ratio in most products is about 1%, but the profile of cholesterol derivatives differs widely (α = 0.01). In all the samples, 7-ketocholesterol is the dominant oxysterol, accounting for 31-67% of the total COPs level. The levels of the other COPs range between 0% and 21%. In none of the examined products are cholestanetriol and 25-hydroxycholesterol present. The amount of squalene, which potentially may inhibit the formation of COPs in food, ranges from 2 to 57 mg kg-1.


Subject(s)
Food , Squalene , Animals , Gas Chromatography-Mass Spectrometry , Diet , Oxidation-Reduction
8.
PLoS Med ; 21(3): e1004360, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38502656

ABSTRACT

BACKGROUND: Adjuvants are widely used to enhance and/or direct vaccine-induced immune responses yet rarely evaluated head-to-head. Our trial directly compared immune responses elicited by MF59 versus alum adjuvants in the RV144-like HIV vaccine regimen modified for the Southern African region. The RV144 trial of a recombinant canarypox vaccine vector expressing HIV env subtype B (ALVAC-HIV) prime followed by ALVAC-HIV plus a bivalent gp120 protein vaccine boost adjuvanted with alum is the only trial to have shown modest HIV vaccine efficacy. Data generated after RV144 suggested that use of MF59 adjuvant might allow lower protein doses to be used while maintaining robust immune responses. We evaluated safety and immunogenicity of an HIV recombinant canarypox vaccine vector expressing HIV env subtype C (ALVAC-HIV) prime followed by ALVAC-HIV plus a bivalent gp120 protein vaccine boost (gp120) adjuvanted with alum (ALVAC-HIV+gp120/alum) or MF59 (ALVAC-HIV+gp120/MF59) or unadjuvanted (ALVAC-HIV+gp120/no-adjuvant) and a regimen where ALVAC-HIV+gp120 adjuvanted with MF59 was used for the prime and boost (ALVAC-HIV+gp120/MF59 coadministration). METHODS AND FINDINGS: Between June 19, 2017 and June 14, 2018, 132 healthy adults without HIV in South Africa, Zimbabwe, and Mozambique were randomized to receive intramuscularly: (1) 2 priming doses of ALVAC-HIV (months 0 and 1) followed by 3 booster doses of ALVAC-HIV+gp120/MF59 (months 3, 6, and 12), n = 36; (2) 2 priming doses of ALVAC-HIV (months 0 and 1) followed by 3 booster doses of ALVAC-HIV+gp120/alum (months 3, 6, and 12), n = 36; (3) 4 doses of ALVAC-HIV+gp120/MF59 coadministered (months 0, 1, 6, and 12), n = 36; or (4) 2 priming doses of ALVAC-HIV (months 0 and 1) followed by 3 booster doses of ALVAC-HIV+gp120/no adjuvant (months 3, 6, and 12), n = 24. Primary outcomes were safety and occurrence and mean fluorescence intensity (MFI) of vaccine-induced gp120-specific IgG and IgA binding antibodies at month 6.5. All vaccinations were safe and well-tolerated; increased alanine aminotransferase was the most frequent related adverse event, occurring in 2 (1.5%) participants (1 severe, 1 mild). At month 6.5, vaccine-specific gp120 IgG binding antibodies were detected in 100% of vaccinees for all 4 vaccine groups. No significant differences were seen in the occurrence and net MFI of vaccine-specific IgA responses between the ALVAC-HIV+gp120/MF59-prime-boost and ALVAC-HIV+gp120/alum-prime-boost groups or between the ALVAC-HIV+gp120/MF59-prime-boost and ALVAC-HIV+gp120/MF59 coadministration groups. Limitations were the relatively small sample size per group and lack of evaluation of higher gp120 doses. CONCLUSIONS: Although MF59 was expected to enhance immune responses, alum induced similar responses to MF59, suggesting that the choice between these adjuvants may not be critical for the ALVAC+gp120 regimen. TRIAL REGISTRATION: HVTN 107 was registered with the South African National Clinical Trials Registry (DOH-27-0715-4894) and ClinicalTrials.gov (NCT03284710).


Subject(s)
AIDS Vaccines , Alum Compounds , HIV Infections , HIV-1 , Polysorbates , Squalene , Adult , Humans , Adjuvants, Immunologic , AIDS Vaccines/adverse effects , HIV Antibodies , HIV Infections/prevention & control , Immunogenicity, Vaccine , Immunoglobulin A , Immunoglobulin G , Vaccines, Combined , Vaccines, Synthetic
9.
Antiviral Res ; 225: 105851, 2024 May.
Article in English | MEDLINE | ID: mdl-38458540

ABSTRACT

Currently, there are two approved vaccine regimens designed to prevent Ebola virus (EBOV) disease (EVD). Both are virus-vectored, and concerns about cold-chain storage and pre-existing immunity to the vectors warrant investigating additional vaccine strategies. Here, we have explored the utility of adjuvanted recombinant glycoproteins (GPs) from ebolaviruses Zaire (EBOV), Sudan (SUDV), and Bundibugyo (BDBV) for inducing antibody (Ab) and T cell cross-reactivity. Glycoproteins expressed in insect cells were administered to C57BL/6 mice as free protein or bound to the surface of liposomes, and formulated with toll-like receptor agonists CpG and MPLA (agonists for TLR 9 and 4, respectively), with or without the emulsions AddaVax or TiterMax. The magnitude of Ab cross-reactivity in binding and neutralization assays, and T cell cross-reactivity in antigen recall assays, correlated with phylogenetic relatedness. While most adjuvants screened induced IgG responses, a combination of CpG, MPLA and AddaVax emulsion ("IVAX-1") was the most potent and polarized in an IgG2c (Th1) direction. Breadth was also achieved by combining GPs into a trivalent (Tri-GP) cocktail with IVAX-1, which did not compromise antibody responses to individual components in binding and neutralizing assays. Th1 signature cytokines in T cell recall assays were undetectable after Tri-GP/IVAX-1 administration, despite a robust IgG2c response, although administration of Tri-GP on lipid nanoparticles in IVAX-1 elevated Th1 cytokines to detectable levels. Overall, the data indicate an adjuvanted trivalent recombinant GP approach may represent a path toward a broadly reactive, deployable vaccine against EVD.


Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Polysorbates , Squalene , Animals , Mice , Antibodies, Viral , Sudan , Phylogeny , Antibodies, Neutralizing , Mice, Inbred C57BL , Glycoproteins , Adjuvants, Immunologic , T-Lymphocytes , Cytokines
10.
Vaccine ; 42(9): 2463-2474, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38472067

ABSTRACT

Enterovirus D68 (EV-D68), a pathogen that causes respiratory symptoms, mainly in children, has been implicated in acute flaccid myelitis, which is a poliomyelitis-like paralysis. Currently, there are no licensed vaccines or treatments for EV-D68 infections. Here, we investigated the optimal viral inactivation reagents, vaccine adjuvants, and route of vaccination in mice to optimize an inactivated whole-virion (WV) vaccine against EV-D68. We used formalin, ß-propiolactone (BPL), and hydrogen peroxide as viral inactivation reagents and compared their effects on antibody responses. Use of any of these three viral inactivation reagents effectively induced neutralizing antibodies. Moreover, the antibody response induced by the BPL-inactivated WV vaccine was enhanced when adjuvanted with cytosine phosphoguanine oligodeoxynucleotide (CpG ODN) or AddaVax (MF59-like adjuvant), but not with aluminum hydroxide (alum). Consistent with the antibody response results, the protective effect of the inactivated WV vaccine against the EV-D68 challenge was enhanced when adjuvanted with CpG ODN or AddaVax, but not with alum. Further, while the intranasal inactivated WV vaccine induced EV-D68-specific IgA antibodies in the respiratory tract, it was less protective against EV-D68 challenge than the injectable vaccine. Thus, an injectable inactivated EV-D68 WV vaccine prepared with appropriate viral inactivation reagents and an optimal adjuvant is a promising EV-D68 vaccine.


Subject(s)
Alum Compounds , Enterovirus D, Human , Enterovirus Infections , Polysorbates , Squalene , Humans , Child , Animals , Mice , Antibodies, Viral , Vaccines, Inactivated , Oligodeoxyribonucleotides , Adjuvants, Immunologic
11.
Sci Rep ; 14(1): 4532, 2024 02 24.
Article in English | MEDLINE | ID: mdl-38402329

ABSTRACT

In this study, the efficacy of sublingual squalene in decreasing the mortality rate among patients with COVID-19 was investigated. Squalene was extracted from pumpkin seed oil with a novel method. Then, the microemulsion form of squalene was prepared for sublingual usage. In the clinical study, among 850 admitted patients, 602 eligible COVID-19 patients were divided in two groups of control (N = 301) and cases (N = 301) between Nov 2021 and Jan 2022. Groups were statistically the same in terms of age, sex, BMI, lymphocyte count on 1st admission day, hypertension, chronic kidney disease, chronic respiratory disease, immunosuppressive disease, and required standard treatments. The treatment group received five drops of sublingual squalene every 4 h for 5 days plus standard treatment, while the control group received only standard treatment. Patients were followed up for 30 days after discharge from the hospital. The sublingual form of squalene in the microemulsion form was associated with a significant decrease in the mortality rate (p < 0.001), in which 285 (94.7%) cases were alive after one month while 245 (81.4%) controls were alive after 1 month of discharge from the hospital. In addition, squalene appears to be effective in preventing re-hospitalization due to COVID-19 (p < 0.001), with 141 of controls (46.8%) versus 58 cases (19.3%). This study suggests sublingual squalene in the microemulsion as an effective drug for reducing mortality and re-hospitalization rates in COVID-19 patients.Trial Registration Number: IRCT20200927048848N3.


Subject(s)
COVID-19 , Humans , Squalene/therapeutic use , SARS-CoV-2 , Hospitalization , Patient Discharge , Treatment Outcome
12.
Front Immunol ; 15: 1336239, 2024.
Article in English | MEDLINE | ID: mdl-38322258

ABSTRACT

CpG oligodeoxynucleotides (CpG ODNs) boost the humoral and cellular immune responses to antigens through interaction with Toll-like receptor 9 (TLR9). These CpG ODNs have been extensively utilized in human vaccines. In our study, we evaluated five B-type CpG ODNs that have stimulatory effects on pigs by measuring the proliferation of porcine peripheral blood mononuclear cells (PBMCs) and assessing interferon gamma (IFN-γ) secretion. Furthermore, this study examined the immunoenhancing effects of the MF59 and CpG ODNs compound adjuvant in mouse and piglet models of porcine epidemic diarrhea virus (PEDV) subunit vaccine administration. The in vitro screening revealed that the CpG ODN named CpG5 significantly stimulated the proliferation of porcine PBMCs and elevated IFN-γ secretion levels. In the mouse vaccination model, CpG5 compound adjuvant significantly bolstered the humoral and cellular immune responses to the PEDV subunit vaccines, leading to Th1 immune responses characterized by increased IFN-γ and IgG2a levels. In piglets, the neutralizing antibody titer was significantly enhanced with CpG5 compound adjuvant, alongside a considerable increase in CD8+ T lymphocytes proportion. The combination of MF59 adjuvant and CpG5 exhibits a synergistic effect, resulting in an earlier, more intense, and long-lasting immune response in subunit vaccines for PEDV. This combination holds significant promise as a robust candidate for the development of vaccine adjuvant.


Subject(s)
Polysorbates , Porcine epidemic diarrhea virus , Squalene , Animals , Swine , Mice , Humans , Leukocytes, Mononuclear , Adjuvants, Immunologic , Immunity , Vaccines, Subunit , Adjuvants, Pharmaceutic , Oligodeoxyribonucleotides
13.
Chem Biodivers ; 21(4): e202301697, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38345352

ABSTRACT

Olive oil (OO) is widely recognized as a main component in the Mediterranean diet owing to its unique chemical composition and associated health-promoting properties. This review aimed at providing readers with recent results on OO physicochemical profiling, extraction technology, and quality parameters specified by regulations to ensure authentic products for consumers. Recent research progress on OO adulteration were outlined through a bibliometric analysis mapping using Vosviewer software. As revealed by bibliometric analysis, richness in terms of fatty acids, pigments, polar phenolic compounds, tocopherols, squalene, sterols, and triterpenic compounds justify OO health-promoting properties and increasing demand on its global consumption. OO storage is a critical post-processing operation that must be optimized to avoid oxidation. Owing to its great commercial value on markets, OO is a target to adulteration with other vegetable oils. In this context, different chemometric tools were developed to deal with this problem. To conclude, increasing demand and consumption of OO on the global market is justified by its unique composition. Challenges such as oxidation and adulteration stand out as the main issues affecting the OO market.


Subject(s)
Plant Oils , Squalene , Olive Oil/chemistry , Plant Oils/chemistry , Sterols , Quality Control
14.
Appl Microbiol Biotechnol ; 108(1): 201, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349390

ABSTRACT

The triterpene squalene is widely used in the food, cosmetics and pharmaceutical industries due to its antioxidant, antistatic and anti-carcinogenic properties. It is usually obtained from the liver of deep sea sharks, which are facing extinction. Alternative production organisms are marine protists from the family Thraustochytriaceae, which produce and store large quantities of various lipids. Squalene accumulation in thraustochytrids is complex, as it is an intermediate in sterol biosynthesis. Its conversion to squalene 2,3-epoxide is the first step in sterol synthesis and is heavily oxygen dependent. Hence, the oxygen supply during cultivation was investigated in our study. In shake flask cultivations, a reduced oxygen supply led to increased squalene and decreased sterol contents and yields. Oxygen-limited conditions were applied to bioreactor scale, where squalene accumulation and growth of Schizochytrium sp. S31 was determined in batch, fed-batch and continuous cultivation. The highest dry matter (32.03 g/L) was obtained during fed-batch cultivation, whereas batch cultivation yielded the highest biomass productivity (0.2 g/L*h-1). Squalene accumulation benefited from keeping the microorganisms in the growth phase. Therefore, the highest squalene content of 39.67 ± 1.34 mg/g was achieved by continuous cultivation (D = 0.025 h-1) and the highest squalene yield of 1131 mg/L during fed-batch cultivation. Volumetric and specific squalene productivity both reached maxima in the continuous cultivation at D = 0.025 h-1 (6.94 ± 0.27 mg/L*h-1 and 1.00 ± 0.03 mg/g*h-1, respectively). Thus, the choice of a suitable cultivation method under oxygen-limiting conditions depends heavily on the process requirements. KEY POINTS: • Measurements of respiratory activity and backscatter light of thraustochytrids • Oxygen limitation increased squalene accumulation in Schizochytrium sp. S31 • Comparison of different cultivation methods under oxygen-limiting conditions.


Subject(s)
Stramenopiles , Triterpenes , Squalene , Oxygen , Sterols
15.
J Agric Food Chem ; 72(6): 3017-3024, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38315649

ABSTRACT

Dehydrosqualene synthase (CrtM), as a squalene synthase-like enzyme from Staphylococcus aureus, can naturally utilize farnesyl diphosphate to produce dehydrosqualene (C30H48). However, no study has documented the natural production of squalene (C30H50) by CrtM. Here, based on an HPLC-Q-Orbitrap-MS/MS study, we report that the expression of crtM in vitro or in Bacillus subtilis 168 both results in the output of squalene, dehydrosqualene, and phytoene (C40H64). Notably, wild-type CrtM exhibits a significantly higher squalene yield compared to squalene synthase (SQS) from Bacillus megaterium with an approximately 2.4-fold increase. Moreover, the examination of presqualene diphosphate's stereostructures in both CrtM and SQS enzymes provides further understanding into the presence of multiple identified terpenoids. In summary, this study not only provides insights into the promiscuity demonstrated by squalene synthase-like enzymes but also highlights a new strategy of utilizing CrtM as a potential replacement for SQS in cell factories, thereby enhancing squalene production.


Subject(s)
Farnesyl-Diphosphate Farnesyltransferase , Squalene , Squalene/analogs & derivatives , Squalene/metabolism , Farnesyl-Diphosphate Farnesyltransferase/genetics , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Tandem Mass Spectrometry , Terpenes/metabolism , Nitric Oxide Synthase
16.
Plant Physiol Biochem ; 208: 108419, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38377888

ABSTRACT

Withania somnifera (Ashwagandha), is one of the most reputed Indian medicinal plants, having immense pharmacological activities due to the occurrence of withanolides. The withanolides are biosynthesized through triterpenoid biosynthetic pathway with the involvement of WsCAS leading to cyclization of 2, 3 oxidosqualene, which is a key metabolite to further diversify to a myriad of phytochemicals. In contrast to the available reports on the studies of WsCAS in withanolide biosynthesis, its involvement in phytosterol biosynthesis needs investigation. Present work deals with the understanding of role of WsCAS triterpenoid synthase gene in the regulation of biosynthesis of phytosterols & withanolides. Docking studies of WsCAS protein revealed Conserved amino acids, DCATE motif, and QW motif which are involved in efficient substrate binding, structure stabilization, and catalytic activity. Overexpression/silencing of WsCAS leading to increment/decline of phytosterols confers its stringent regulation in phytosterols biosynthesis. Differential regulation of WsCAS on the metabolic flux towards phytosterols and withanolide biosynthesis was observed under abiotic stress conditions. The preferential channelization of 2, 3 oxidosqualene towards withanolides and/or phytosterols occurred under heat/salt stress and cold/water stress, respectively. Stigmasterol and ß-sitosterol showed major contribution in high/low temperature and salt stress, and campesterol in water stress management. Overexpression of WsCAS in Arabidopsis thaliana led to the increment in phytosterols in general. Thus, the WsCAS plays important regulatory role in the biosynthetic pathway of phytosterols and withanolides under abiotic stress conditions.


Subject(s)
Phytosterols , Squalene/analogs & derivatives , Triterpenes , Withania , Withanolides , Withanolides/metabolism , Sterols , Withania/genetics , Withania/metabolism , Triterpenes/metabolism , Dehydration , Phytosterols/metabolism , Stress, Physiological/genetics
17.
Int J Pharm ; 653: 123901, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38368969

ABSTRACT

While research on mevalonate inhibitors as vaccine adjuvants has made great progress to enhance the effectiveness of the vaccine, co delivery of lovastatin and antigens (OVA) remains an enormous challenge. Here, we encapsulated lovastatin into PLGA nanoparticles. PLGA loading lovastatin was further emulsified with squalene to prepare Pickering emulsion. The emulsification conditions of Pickering emulsion were optimized, and the optimal preparation conditions were obtained. After loading lovastatin and OVA, the size and zeta potential of LS-PPAS/OVA was 1043.33 nm and -22.07 mv, the adsorption rate of OVA was 63.34 %. The adsorbing of LS-PLGA nanoparticles on the surface of squalene in Pickering emulsions was demonstrated by Fluorescent confocal microscopy. After immunization, LS-PPAS enhanced the activation of dendritic cells in lymph nodes, further study found LS-PPAS not only elicited elevated levels of OVA-specific IgG and its subtypes, but also promoted the secretion of TNF-α, IFN-γ, and IL-6 in serum as a marker of cellular immunity. Importantly, LS-PPAS showed sufficient security through monitoring levels of biochemical parameters in serum and pathological observation of organ following vaccinations. LS-PPAS may act as a promising vaccine carrier to produce strong humoral and cellular immunity with acceptable safety.


Subject(s)
Nanoparticles , Vaccines , Adjuvants, Vaccine , Adjuvants, Immunologic , Emulsions , Squalene/chemistry , Nanoparticles/chemistry
18.
Sci Adv ; 10(8): eadk7416, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38381828

ABSTRACT

Filamentous fungi produce numerous uncharacterized natural products (NPs) that are often challenging to characterize because of cryptic expression in laboratory conditions. Previously, we have successfully isolated novel NPs by expressing fungal artificial chromosomes (FACs) from a variety of fungal species into Aspergillus nidulans. Here, we demonstrate a twist to FAC utility wherein heterologous expression of a Pseudogymnoascus destructans FAC in A. nidulans altered endogenous terpene biosynthetic pathways. In contrast to wild type, the FAC transformant produced increased levels of squalene and aspernidine type compounds, including three new nidulenes (1- 2, and 5), and lost nearly all ability to synthesize the major A. nidulans characteristic terpene, austinol. Deletion of a squalene synthase gene in the FAC restored wild-type chemical profiles. The altered squalene to farnesyl pyrophosphate ratio leading to synthesis of nidulenes and aspernidines at the expense of farnesyl pyrophosphate-derived austinols provides unexpected insight into routes of terpene synthesis in fungi.


Subject(s)
Aspergillus nidulans , Polyisoprenyl Phosphates , Sesquiterpenes , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Farnesyl-Diphosphate Farnesyltransferase/genetics , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Squalene , Terpenes/metabolism
19.
Microb Cell Fact ; 23(1): 34, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38273342

ABSTRACT

BACKGROUND: Squalene epoxidase is one of the rate-limiting enzymes in the biosynthetic pathway of membrane sterols and triterpenoids. The enzyme catalyzes the formation of oxidized squalene, which is a common precursor of sterols and triterpenoids. RESULT: In this study, the squalene epoxidase gene (PcSE) was evaluated in Poria cocos. Molecular docking between PcSE and squalene was performed and the active amino acids were identified. The sgRNA were designed based on the active site residues. The effect on triterpene synthesis in P. cocos was consistent with the results from ultra-high-performance liquid chromatography-quadruplex time-of-flight-double mass spectrometry (UHPLC-QTOF-MS/MS) analysis. The results showed that deletion of PcSE inhibited triterpene synthesis. In vivo verification of PcSE function was performed using a PEG-mediated protoplast transformation approach. CONCLUSION: The findings from this study provide a foundation for further studies on heterologous biosynthesis of P. cocos secondary metabolites.


Subject(s)
Phytosterols , Triterpenes , Wolfiporia , Tandem Mass Spectrometry/methods , Squalene Monooxygenase/genetics , Squalene Monooxygenase/metabolism , Wolfiporia/genetics , Wolfiporia/metabolism , Molecular Docking Simulation , Squalene , CRISPR-Cas Systems , Gene Editing , RNA, Guide, CRISPR-Cas Systems , Triterpenes/metabolism
20.
Appl Microbiol Biotechnol ; 108(1): 110, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38229297

ABSTRACT

Terpenoids are widely used in the food, beverage, cosmetics, and pharmaceutical industries. Microorganisms have been extensively studied for terpenoid production. In yeast, the introduction of the mevalonate (MVA) pathway in organelles in addition to the augmentation of its own MVA pathway have been challenging. Introduction of the MVA pathway into mitochondria is considered a promising approach for terpenoid production because acetyl-CoA, the starting molecule of the MVA pathway, is abundant in mitochondria. However, mitochondria comprise only a small percentage of the entire cell. Therefore, we hypothesized that increasing the total mitochondrial volume per cell would increase terpenoid production. First, we ascertained that the amounts of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), the final molecules of the MVA pathway, were 15-fold higher of the strain expressing the MVA pathway in mitochondria than in the wild-type yeast strain. Second, we found that different deletion mutants induced different mitochondrial volumes by measuring the mitochondrial volume in various deletion mutants affecting mitochondrial morphology; for example,Δmdm32 increased mitochondrial volume, and Δfzo1 decreased it. Finally, the effects of mitochondrial volume on amounts of IPP/DMAPP and terpenoids (squalene or ß-carotene) were investigated using mutants harboring large or small mitochondria expressing the MVA pathway in mitochondria. Amounts of IPP/DMAPP and terpenoids (squalene or ß-carotene) increased when the mitochondrial volume expanded. Introducing the MVA pathway into mitochondria for terpenoid production in yeast may become more attractive by enlarging the mitochondrial volume. KEY POINTS: • IPP/DMAPP content increased in the strain expressing the MVA pathway in mitochondria • IPP/DMAPP and terpenoid contents are positively correlated with mitochondrial volume • Enlarging the mitochondria may improve mitochondria-mediated terpenoid production.


Subject(s)
Organophosphorus Compounds , Terpenes , beta Carotene , Terpenes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Squalene , Hemiterpenes/metabolism , Mitochondria/metabolism , Mevalonic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...