Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.016
Filter
1.
Se Pu ; 42(5): 410-419, 2024 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-38736384

ABSTRACT

Protein A affinity chromatographic materials are widely used in clinical medicine and biomedicine because of their specific interactions with immunoglobulin G (IgG). Both the characteristics of the matrix, such as its structure and morphology, and the surface modification method contribute to the affinity properties of the packing materials. The specific, orderly, and oriented immobilization of protein A can reduce its steric hindrance with the matrix and preserve its bioactive sites. In this study, four types of affinity chromatographic materials were obtained using agarose and polyglycidyl methacrylate (PGMA) spheres as substrates, and multifunctional epoxy and maleimide groups were used to fix protein A. The effects of the ethylenediamine concentration, reaction pH, buffer concentration, and other conditions on the coupling efficiency of protein A and adsorption performance of IgG were evaluated. Multifunctional epoxy materials were prepared by converting part of the epoxy groups of the agarose and PGMA matrices into amino groups using 0.2 and 1.6 mol/L ethylenediamine, respectively. Protein A was coupled to the multifunctional epoxy materials using 5 mmol/L borate buffer (pH 8) as the reaction solution. When protein A was immobilized on the substrates by maleimide groups, the agarose and PGMA substrates were activated with 25% (v/v) ethylenediamine for 16 h to convert all epoxy groups into amino groups. The maleimide materials were then converted into amino-modified materials by adding 3 mg/mL 3-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) dissolved in dimethyl sulfoxide (DMSO) and then suspended in 5 mmol/L borate buffer (pH 8). The maleimide groups reacted specifically with the C-terminal of the sulfhydryl group of recombinant protein A to achieve highly selective fixation on both the agarose and PGMA substrates. The adsorption performance of the affinity materials for IgG was improved by optimizing the bonding conditions of protein A, such as the matrix type, matrix particle size, and protein A content, and the adsorption properties of each affinity material for IgG were determined. The column pressure of the protein A affinity materials prepared using agarose or PGMA as the matrix via the maleimide method was subsequently evaluated at different flow rates. The affinity materials prepared with PGMA as the matrix exhibited superior mechanical strength compared with the materials prepared with agarose. Moreover, an excellent linear relationship between the flow rate and column pressure of 80 mL/min was observed for this affinity material. Subsequently, the effect of the particle size of the PGMA matrix on the binding capacity of IgG was investigated. Under the same protein A content, the dynamic binding capacity of the affinity materials on the PGMA matrix was higher when the particle size was 44-88 µm than when other particle sizes were used. The properties of the affinity materials prepared using the multifunctional epoxy and maleimide-modified materials were compared by synthesizing affinity materials with different protein A coupling amounts of 1, 2, 4, 6, 8, and 10 mg/mL. The dynamic and static binding capacities of each material for bovine IgG were then determined. The prepared affinity material was packed into a chromatographic column to purify IgG from bovine colostrum. Although all materials showed specific adsorption selectivity for IgG, the affinity material prepared by immobilizing protein A on the PGMA matrix with maleimide showed significantly better performance and achieved a higher dynamic binding capacity at a lower protein grafting amount. When the protein grafting amount was 15.71 mg/mL, the dynamic binding capacity of bovine IgG was 32.23 mg/mL, and the dynamic binding capacity of human IgG reached 54.41 mg/mL. After 160 cycles of alkali treatment, the dynamic binding capacity of the material reached 94.6% of the initial value, indicating its good stability. The developed method is appropriate for the production of protein A affinity chromatographic materials and shows great potential in the fields of protein immobilization and immunoadsorption material synthesis.


Subject(s)
Chromatography, Affinity , Staphylococcal Protein A , Chromatography, Affinity/methods , Staphylococcal Protein A/chemistry , Adsorption , Immunoglobulin G/chemistry , Polymethacrylic Acids/chemistry , Sepharose/chemistry
2.
Protein Expr Purif ; 220: 106503, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38759705

ABSTRACT

Protein A affinity chromatography has been widely used for initial product capture in recombinant antibody/Fc-fusion purification. However, in general Protein A lacks the capability of separating aggregates (unless the aggregates are too large to enter the pores of resin beads or have their Protein A binding sites buried, in which case the aggregates do not bind). In the current work, we demonstrated that CaptureSelect FcXP affinity medium exhibited strong aggregate separation capability and effectively removed aggregates under pH or conductivity gradient elution in two bispecific antibody (bsAb) cases. For these two cases, aggregate contents were reduced from >16% and >22% (in the feed) to <1% and <5% (in the eluate) for the first and second bsAbs, respectively. While more case studies are required to further demonstrate FcXP's superiority in aggregate removal, findings from the current study suggest that FcXP can potentially be a better alternative than Protein A for product capture in cases where aggregate content is high.


Subject(s)
Antibodies, Bispecific , Chromatography, Affinity , Staphylococcal Protein A , Chromatography, Affinity/methods , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/isolation & purification , Staphylococcal Protein A/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/genetics , Protein Aggregates , Humans , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/isolation & purification
3.
J Chromatogr A ; 1722: 464873, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38626540

ABSTRACT

3D printing offers the unprecedented ability to fabricate chromatography stationary phases with bespoke 3D morphology as opposed to traditional packed beds of spherical beads. The restricted range of printable materials compatible with chromatography is considered a setback for its industrial implementation. Recently, we proposed a novel ink that exhibits favourable printing performance (printing time ∼100 mL/h, resolution ∼200 µm) and broadens the possibilities for a range of chromatography applications thanks to its customisable surface chemistry. In this work, this ink was used to fabricate 3D printed ordered columns with 300 µm channels for the capture and polishing of therapeutic monoclonal antibodies. The columns were initially assessed for leachables and extractables, revealing no material propensity for leaching. Columns were then functionalised with protein A and SO3 ligands to obtain affinity and strong cation exchangers, respectively. 3D printed protein A columns showed >85 % IgG recovery from harvested cell culture fluid with purities above 98 %. Column reusability was evaluated over 20 cycles showing unaffected performance. Eluate samples were analysed for co-eluted protein A fragments, host cell protein and aggregates. Results demonstrate excellent HCP clearance (logarithmic reduction value of > 2.5) and protein A leakage in the range of commercial affinity resins (<100 ng/mg). SO3 functionalised columns employed for polishing achieved removal of leaked Protein A (down to 10 ng/mg) to meet regulatory expectations of product purity. This work is the first implementation of 3D printed columns for mAb purification and provides strong evidence for their potential in industrial bioseparations.


Subject(s)
Antibodies, Monoclonal , Cricetulus , Immunoglobulin G , Printing, Three-Dimensional , Staphylococcal Protein A , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/chemistry , Staphylococcal Protein A/chemistry , Immunoglobulin G/isolation & purification , Immunoglobulin G/chemistry , CHO Cells , Chromatography, Affinity/methods , Animals , Chromatography, Ion Exchange/methods , Ink
4.
Sci Rep ; 14(1): 8714, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622266

ABSTRACT

Green, photosynthesizing plants can be proficiently used as cost-effective, single-use, fully biodegradable bioreactors for environmentally-friendly production of a variety of valuable recombinant proteins. Being near-infinitely scalable and most energy-efficient in generating biomass, plants represent profoundly valid alternatives to conventionally used stationary fermenters. To validate this, we produced a plastome-engineered tobacco bioreactor line expressing a recombinant variant of the protein A from Staphylococcus aureus, an affinity ligand widely useful in antibody purification processes, reaching accumulation levels up to ~ 250 mg per 1 kg of fresh leaf biomass. Chromatography resin manufactured from photosynthetically-sourced recombinant protein A ligand conjugated to agarose beads demonstrated the innate pH-driven ability to bind and elute IgG-type antibodies and allowed one-step efficient purification of functional monoclonal antibodies from the supernatants of the producing hybridomas. The results of this study emphasize the versatility of plant-based recombinant protein production and illustrate its vast potential in reducing the cost of diverse biotechnological applications, particularly the downstream processing and purification of monoclonal antibodies.


Subject(s)
Chromatography , Staphylococcal Protein A , Staphylococcal Protein A/chemistry , Ligands , Plants, Genetically Modified/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Antibodies, Monoclonal/metabolism , Immunoglobulin G/metabolism , Plant Proteins/metabolism , Chromatography, Affinity/methods
5.
J Chromatogr A ; 1722: 464890, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38598892

ABSTRACT

The rapidly growing market of monoclonal antibodies (mAbs) within the biopharmaceutical industry has incentivised numerous works on the design of more efficient production processes. Protein A affinity chromatography is regarded as one of the best processes for the capture of mAbs. Although the screening of Protein A resins has been previously examined, process flexibility has not been considered to date. Examining performance alongside flexibility is crucial for the design of processes that can handle disturbances arising from the feed stream. In this work, we present a model-based approach for the identification of design spaces, enhanced by machine learning. We demonstrate its capabilities on the design of a Protein A chromatography unit, screening five industrially relevant resins. The computational results favourably compare to experimental data and a resin performance comparison is presented. An improvement on the computational time by a factor of 300,000 is achieved using the machine learning aided methodology. This allowed for the identification of 5,120 different design spaces in only 19 h.


Subject(s)
Antibodies, Monoclonal , Chromatography, Affinity , Computer-Aided Design , Machine Learning , Staphylococcal Protein A , Chromatography, Affinity/methods , Antibodies, Monoclonal/chemistry , Staphylococcal Protein A/chemistry
6.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38673914

ABSTRACT

Plant viral nanoparticles (VNPs) are attractive to nanomedicine researchers because of their safety, ease of production, resistance, and straightforward functionalization. In this paper, we developed and successfully purified a VNP derived from turnip mosaic virus (TuMV), a well-known plant pathogen, that exhibits a high affinity for immunoglobulins G (IgG) thanks to its functionalization with the Z domain of staphylococcal Protein A via gene fusion. We selected cetuximab as a model IgG to demonstrate the versatility of this novel TuMV VNP by developing a fluorescent nanoplatform to mark tumoral cells from the Cal33 line of a tongue squamous cell carcinoma. Using confocal microscopy, we observed that fluorescent VNP-cetuximab bound selectively to Cal33 and was internalized, revealing the potential of this nanotool in cancer research.


Subject(s)
Nanoparticles , Humans , Nanoparticles/chemistry , Cell Line, Tumor , Potyvirus , Immunoglobulin G/metabolism , Cetuximab/pharmacology , Cetuximab/chemistry , Staphylococcal Protein A/chemistry , Staphylococcal Protein A/metabolism
7.
J Chem Inf Model ; 64(8): 3350-3359, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38566451

ABSTRACT

The B domain of protein A (BdpA), a small three-helix bundle, folds on a time scale of a few microseconds with heterogeneous native and unfolded states. It is widely used as a model for understanding protein folding mechanisms. In this work, we use structure-based models (SBMs) and atomistic simulations to comprehensively investigate how BdpA folding is associated with the formation of its secondary structure. The energy landscape visualization method (ELViM) was used to characterize the pathways that connect the folded and unfolded states of BdpA as well as the sets of structures displaying specific ellipticity patterns. We show that the native state conformational diversity is due mainly to the conformational variability of helix I. Helices I, II, and III occur in a weakly correlated manner, with Spearman's rank correlation coefficients of 0.1539 (I and II), 0.1259 (I and III), and 0.2561 (II and III). These results, therefore, suggest the highest cooperativity between helices II and III. Our results allow the clustering of partially folded structures of folding of the B domain of protein A on the basis of its secondary structure, paving the way to an understanding of environmental factors in the relative stability of the basins of the folding ensemble, which are illustrated by the structural dependency of the protein hydration structures, as computed with minimum-distance distribution functions.


Subject(s)
Molecular Dynamics Simulation , Protein Domains , Protein Folding , Staphylococcal Protein A , Water , Water/chemistry , Staphylococcal Protein A/chemistry , Staphylococcal Protein A/metabolism , Protein Conformation, alpha-Helical , Models, Molecular , Thermodynamics
8.
BMC Microbiol ; 24(1): 108, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566014

ABSTRACT

BACKGROUND: Staphylococcus aureus secretes a variety of proteins including virulence factors that cause diseases. PrsA, encoded by many Gram-positive bacteria, is a membrane-anchored lipoprotein that functions as a foldase to assist in post-translocational folding and helps maintain the stability of secreted proteins. Our earlier proteomic studies found that PrsA is required for the secretion of protein A, an immunoglobulin-binding protein that contributes to host immune evasion. This study aims to investigate how PrsA influences protein A secretion. RESULTS: We found that in comparison with the parental strain HG001, the prsA-deletion mutant HG001ΔprsA secreted less protein A. Deleting prsA also decreased the stability of exported protein A. Pulldown assays indicated that PrsA interacts with protein A in vivo. The domains in PrsA that interact with protein A are mapped to both the N- and C-terminal regions (NC domains). Additionally, the NC domains are essential for promoting PrsA dimerization. Furthermore, an immunoglobulin-binding assay revealed that, compared to the parental strain HG001, fewer immunoglobulins bound to the surface of the mutant strain HG001ΔprsA. CONCLUSIONS: This study demonstrates that PrsA is critical for the folding and secretion of protein A. The information derived from this study provides a better understanding of virulent protein export pathways that are crucial to the pathogenicity of S. aureus.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Bacterial Proteins/metabolism , Staphylococcal Protein A , Protein Folding , Membrane Proteins/metabolism , Proteomics , Staphylococcal Infections/microbiology , Immunoglobulins/metabolism
9.
Front Immunol ; 15: 1355764, 2024.
Article in English | MEDLINE | ID: mdl-38529283

ABSTRACT

Skin and soft tissue infections (SSTIs) are the most common diseases caused by Staphylococcus aureus (S. aureus), which can progress to threatening conditions due to recurrences and systemic complications. Staphylococcal protein A (SpA) is an immunomodulator antigen of S. aureus, which allows bacterial evasion from the immune system by interfering with different types of immune responses to pathogen antigens. Immunization with SpA could potentially unmask the pathogen to the immune system, leading to the production of antibodies that can protect from a second encounter with S. aureus, as it occurs in skin infection recurrences. Here, we describe a study in which mice are immunized with a mutated form of SpA mixed with the Adjuvant System 01 (SpAmut/AS01) before a primary S. aureus skin infection. Although mice are not protected from the infection under these conditions, they are able to mount a broader pathogen-specific functional immune response that results in protection against systemic dissemination of bacteria following an S. aureus second infection (recurrence). We show that this "hidden effect" of SpA can be partially explained by higher functionality of induced anti-SpA antibodies, which promotes better phagocytic activity. Moreover, a broader and stronger humoral response is elicited against several S. aureus antigens that during an infection are masked by SpA activity, which could prevent S. aureus spreading from the skin through the blood.


Subject(s)
Skin Diseases, Infectious , Staphylococcal Infections , Animals , Mice , Staphylococcal Protein A , Staphylococcus aureus , Vaccination
10.
Biotechnol Bioeng ; 121(5): 1716-1728, 2024 May.
Article in English | MEDLINE | ID: mdl-38454640

ABSTRACT

Host cell proteins (HCPs) are process-related impurities of therapeutic proteins produced in for example, Chinese hamster ovary (CHO) cells. Protein A affinity chromatography is the initial capture step to purify monoclonal antibodies or Fc-based proteins and is most effective for HCP removal. Previously proposed mechanisms that contribute to co-purification of HCPs with the therapeutic protein are either HCP-drug association or leaching from chromatin heteroaggregates. In this study, we analyzed protein A eluates of 23 Fc-based proteins by LC-MS/MS to determine their HCP content. The analysis revealed a high degree of heterogeneity in the number of HCPs identified in the different protein A eluates. Among all identified HCPs, the majority co-eluted with less than three Fc-based proteins indicating a drug-specific co-purification for most HCPs. Only ten HCPs co-purified with over 50% of the 23 Fc-based proteins. A correlation analysis of HCPs identified across multiple protein A eluates revealed their co-elution as HCP groups. Functional annotation and protein interaction analysis confirmed that some HCP groups are associated with protein-protein interaction networks. Here, we propose an additional mechanism for HCP co-elution involving protein-protein interactions within functional networks. Our findings may help to guide cell line development and to refine downstream purification strategies.


Subject(s)
Staphylococcal Protein A , Tandem Mass Spectrometry , Cricetinae , Animals , Cricetulus , Chromatography, Liquid , CHO Cells , Staphylococcal Protein A/chemistry , Antibodies, Monoclonal/chemistry
11.
J Nucl Med ; 65(5): 700-707, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38548353

ABSTRACT

Patients with HER2-low metastatic breast cancer (mBC), defined as an immunohistochemistry (IHC) score of 1+ or 2+ without HER2 gene amplification, may benefit from HER2 antibody-drug conjugates. Identifying suitable candidates is a clinical challenge because of spatial and temporal heterogeneity in HER2 expression and discrepancies in pathologic reporting. We aimed to investigate the feasibility and safety of HER2-specific PET imaging with [68Ga]Ga-ABY-025 for visualization of HER2-low mBC. Methods: A prospective pilot study was done with 10 patients who had HER2-low mBC, as part of a phase 2 basket imaging study with [68Ga]Ga-ABY-025 in HER2-expressing solid tumors. Patients were recruited at the Breast Clinic at the Karolinska University Hospital, Stockholm, Sweden. PET/CT images were acquired 3 h after injection of 200 MBq of [68Ga]Ga-ABY-025. The SUVmax was used to quantify tracer uptake. Ultrasound-guided tumor biopsies were guided by results from the HER2 PET. The main outcome-the safety and feasibility of HER2 PET in patients with HER2-low mBC, measured the occurrence of possible procedure-related adverse events. Results: Ten patients with HER2-low mBC underwent [68Ga]Ga-ABY-025 PET/CT with paired tumor biopsies. No adverse events occurred. In all patients, [68Ga]Ga-ABY-025-avid lesions with substantial intra- and interindividual heterogeneity in tracer uptake were noted. In 8 of 10 patients with ABY-025-avid lesions, the HER2-low status of the corresponding lesions was confirmed by IHC or in situ hybridization. Two patients had an IHC score of 0 in the tumor biopsies:1 in a cutaneous lesion with a low SUVmax and 1 in a liver metastasis with a high SUVmax but a "cold" core. Conclusion: The visualization of HER2-low mBC with [68Ga]Ga-ABY-025 PET/CT was feasible and safe. Areas of tracer uptake showed varying levels of HER2 expression on IHC. The observed intra- and interindividual heterogeneity in [68Ga]Ga-ABY-025 uptake suggested that HER2 PET might be used as a tool for the noninvasive assessment of disease heterogeneity and has the potential to identify patients in whom HER2-targeted drugs can have a clinical benefit.


Subject(s)
Breast Neoplasms , Peptide Fragments , Positron Emission Tomography Computed Tomography , Receptor, ErbB-2 , Staphylococcal Protein A , Humans , Pilot Projects , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/metabolism , Receptor, ErbB-2/metabolism , Female , Middle Aged , Aged , Gallium Radioisotopes , Adult , Prospective Studies , Radiopharmaceuticals , Positron-Emission Tomography
12.
Biotechnol Bioeng ; 121(6): 1859-1875, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38470343

ABSTRACT

Downstream processing is the bottleneck in the continuous manufacturing of monoclonal antibodies (mAbs). To overcome throughput limitations, two different continuous processes with a novel convective diffusive protein A membrane adsorber (MA) were investigated: the rapid cycling parallel multi-column chromatography (RC-PMCC) process and the rapid cycling simulated moving bed (RC-BioSMB) process. First, breakthrough curve experiments were performed to investigate the influence of the flow rate on the mAb dynamic binding capacity and to calculate the duration of the loading steps. In addition, customized control software was developed for an automated MA exchange in case of pressure increase due to membrane fouling to enable robust, uninterrupted, and continuous processing. Both processes were performed for 4 days with 0.61 g L-1 mAb-containing filtrate and process performance, product purity, productivity, and buffer consumption were compared. The mAb was recovered with a yield of approximately 90% and productivities of 1010 g L-1 d-1 (RC-PMCC) and 574 g L-1 d-1 (RC-BioSMB). At the same time, high removal of process-related impurities was achieved with both processes, whereas the buffer consumption was lower for the RC-BioSMB process. Finally, the attainable productivity for perfusion bioreactors of different sizes with suitable MA sizes was calculated to demonstrate the potential to operate both processes on a manufacturing scale with bioreactor volumes of up to 2000 L.


Subject(s)
Antibodies, Monoclonal , Cricetulus , Membranes, Artificial , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/chemistry , Adsorption , CHO Cells , Bioreactors , Staphylococcal Protein A/chemistry , Animals , Chromatography, Affinity/methods , Chromatography, Affinity/instrumentation
13.
Gut Microbes ; 16(1): 2316932, 2024.
Article in English | MEDLINE | ID: mdl-38356294

ABSTRACT

Mitochondrial dynamics are critical in cellular energy production, metabolism, apoptosis, and immune responses. Pathogenic bacteria have evolved sophisticated mechanisms to manipulate host cells' mitochondrial functions, facilitating their proliferation and dissemination. Salmonella enterica serovar Typhimurium (S. Tm), an intracellular foodborne pathogen, causes diarrhea and exploits host macrophages for survival and replication. However, S. Tm-associated mitochondrial dynamics during macrophage infection remain poorly understood. In this study, we showed that within macrophages, S. Tm remodeled mitochondrial fragmentation to facilitate intracellular proliferation mediated by Salmonella invasion protein A (SipA), a type III secretion system effector encoded by Salmonella pathogenicity island 1. SipA directly targeted mitochondria via its N-terminal mitochondrial targeting sequence, preventing excessive fragmentation and the associated increase in mitochondrial reactive oxygen species, loss of mitochondrial membrane potential, and release of mitochondrial DNA and cytochrome c into the cytosol. Macrophage replication assays and animal experiments showed that mitochondria and SipA interact to facilitate intracellular replication and pathogenicity of S. Tm. Furthermore, we showed that SipA delayed mitochondrial fragmentation by indirectly inhibiting the recruitment of cytosolic dynamin-related protein 1, which mediates mitochondrial fragmentation. This study revealed a novel mechanism through which S. Tm manipulates host mitochondrial dynamics, providing insights into the molecular interplay that facilitates S. Tm adaptation within host macrophages.


Subject(s)
Gastrointestinal Microbiome , Salmonella typhimurium , Animals , Salmonella typhimurium/metabolism , Staphylococcal Protein A/genetics , Staphylococcal Protein A/metabolism , Serogroup , Mitochondrial Dynamics , Bacterial Proteins/metabolism , Macrophages/metabolism , Cell Proliferation
14.
J Chromatogr A ; 1718: 464722, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38359690

ABSTRACT

Immunoglobulin G (IgG) is the most common monoclonal antibody (mAb) grown for therapeutic applications. While IgG is often selectively isolated from cell lines using protein A (ProA) chromatography, this is only a stepping stone for complete characterization. Further classification can be obtained from weak cation exchange chromatography (WCX) to determine IgG charge variant distributions. The charge variants of monoclonal antibodies can influence the stability and efficacy in vivo, and deviations in charge heterogeneity are often cell-specific and sensitive to upstream process variability. Current methods to characterize IgG charge variants are often performed off-line, meaning that the IgG eluate from the ProA separation is collected, diluted to adjust the pH, and then transferred to the WCX separation, adding time, complexity, and potential contamination to the sample analysis process. More recently, reports have appeared to streamline this separation using in-line two-dimensional liquid chromatography (2D-LC). Presented here is a novel, 2D-LC coupling of ProA in the first dimension (1D) and WCX in the second dimension (2D) chromatography. As anticipated, the initial direct column coupling proved to be challenging due to the pH incompatibility between the mobile phases for the two stages. To solve the solvent compatibility issue, a size exclusion column was placed in the switching valve loop of the 2D-LC instrument to act as a means for the on-line solvent exchange. The efficacy of the methodology presented was confirmed through a charge variant determination using the NIST monoclonal antibody standard (NIST mAb), yielding correct acidic, main, and basic variant compositions. The methodology was employed to determine the charge variant profile of IgG from an in-house cultured Chinese hamster ovary (CHO) cell supernatant. It is believed that this methodology can be easily implemented to provide higher-throughput assessment of IgG charge variants for process monitoring and cell line development.


Subject(s)
Immunoglobulin G , Staphylococcal Protein A , Cricetinae , Animals , Cricetulus , Immunoglobulin G/chemistry , Chromatography, Ion Exchange/methods , CHO Cells , Antibodies, Monoclonal , Cations , Cell Culture Techniques , Solvents
15.
Biotechnol J ; 19(2): e2300554, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38385524

ABSTRACT

The application of model-based real-time monitoring in biopharmaceutical production is a major step toward quality-by-design and the fundament for model predictive control. Data-driven models have proven to be a viable option to model bioprocesses. In the high stakes setting of biopharmaceutical manufacturing it is essential to ensure high model accuracy, robustness, and reliability. That is only possible when (i) the data used for modeling is of high quality and sufficient size, (ii) state-of-the-art modeling algorithms are employed, and (iii) the input-output mapping of the model has been characterized. In this study, we evaluate the accuracy of multiple data-driven models in predicting the monoclonal antibody (mAb) concentration, double stranded DNA concentration, host cell protein concentration, and high molecular weight impurity content during elution from a protein A chromatography capture step. The models achieved high-quality predictions with a normalized root mean squared error of <4% for the mAb concentration and of ≈10% for the other process variables. Furthermore, we demonstrate how permutation/occlusion-based methods can be used to gain an understanding of dependencies learned by one of the most complex data-driven models, convolutional neural network ensembles. We observed that the models generally exhibited dependencies on correlations that agreed with first principles knowledge, thereby bolstering confidence in model reliability. Finally, we present a workflow to assess the model behavior in case of systematic measurement errors that may result from sensor fouling or failure. This study represents a major step toward improved viability of data-driven models in biopharmaceutical manufacturing.


Subject(s)
Biological Products , Deep Learning , Staphylococcal Protein A/chemistry , Reproducibility of Results , Chromatography , Antibodies, Monoclonal/chemistry
16.
Mol Microbiol ; 121(3): 578-592, 2024 03.
Article in English | MEDLINE | ID: mdl-38308564

ABSTRACT

Pathogenic Rhodococcus equi release the virulence-associated protein A (VapA) within macrophage phagosomes. VapA permeabilizes phagosome and lysosome membranes and reduces acidification of both compartments. Using biophysical techniques, we found that VapA interacts with model membranes in four steps: (i) binding, change of mechanical properties, (ii) formation of specific membrane domains, (iii) permeabilization within the domains, and (iv) pH-specific transformation of domains. Biosensor data revealed that VapA binds to membranes in one step at pH 6.5 and in two steps at pH 4.5 and decreases membrane fluidity. The integration of VapA into lipid monolayers was only significant at lateral pressures <20 mN m-1 indicating preferential incorporation into membrane regions with reduced integrity. Atomic force microscopy of lipid mono- and bilayers showed that VapA increased the surface heterogeneity of liquid disordered domains. Furthermore, VapA led to the formation of a new microstructured domain type and, at pH 4.5, to the formation of 5 nm high domains. VapA binding, its integration and lipid domain formation depended on lipid composition, pH, protein concentration and lateral membrane pressure. VapA-mediated permeabilization is clearly distinct from that caused by classical microbial pore formers and is a key contribution to the multiplication of Rhodococcus equi in phagosomes.


Subject(s)
Rhodococcus equi , Staphylococcal Protein A , Virulence , Staphylococcal Protein A/metabolism , Virulence Factors/metabolism , Rhodococcus equi/metabolism , Bacterial Proteins/metabolism , Lipids
17.
Biotechnol Bioeng ; 121(5): 1729-1738, 2024 May.
Article in English | MEDLINE | ID: mdl-38419489

ABSTRACT

Several key technologies for advancing biopharmaceutical manufacturing depend on the successful implementation of process analytical technologies that can monitor multiple product quality attributes in a continuous in-line setting. Raman spectroscopy is an emerging technology in the biopharma industry that promises to fit this strategic need, yet its application is not widespread due to limited success for predicting a meaningful number of quality attributes. In this study, we addressed this very problem by demonstrating new capabilities for preprocessing Raman spectra using a series of Butterworth filters. The resulting increase in the number of spectral features is paired with a machine learning algorithm and laboratory automation hardware to drive the automated collection and training of a calibration model that allows for the prediction of 16 different product quality attributes in an in-line mode. The demonstrated ability to generate these Raman-based models for in-process product quality monitoring is the breakthrough to increase process understanding by delivering product quality data in a continuous manner. The implementation of this multiattribute in-line technology will create new workflows within process development, characterization, validation, and control.


Subject(s)
Spectrum Analysis, Raman , Staphylococcal Protein A , Spectrum Analysis, Raman/methods , Automation , Chromatography , Machine Learning
18.
J Chromatogr A ; 1717: 464672, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38350166

ABSTRACT

The monoclonal antibody (mAb) industry is becoming increasingly digitalized. Digital twins are becoming increasingly important to test or validate processes before manufacturing. High-Throughput Process Development (HTPD) has been progressively used as a tool for process development and innovation. The combination of High-Throughput Screening with fast computational methods allows to study processes in-silico in a fast and efficient manner. This paper presents a hybrid approach for HTPD where equal importance is given to experimental, computational and decision-making stages. Equilibrium adsorption isotherms of 13 protein A and 16 Cation-Exchange resins were determined with pure mAb. The influence of other components in the clarified cell culture supernatant (harvest) has been under-investigated. This work contributes with a methodology for the study of equilibrium adsorption of mAb in harvest to different protein A resins and compares the adsorption behavior with the pure sample experiments. Column chromatography was modelled using a Lumped Kinetic Model, with an overall mass transfer coefficient parameter (kov). The screening results showed that the harvest solution had virtually no influence on the adsorption behavior of mAb to the different protein A resins tested. kov was found to have a linear correlation with the sample feed concentration, which is in line with mass transfer theory. The hybrid approach for HTPD presented highlights the roles of the computational, experimental, and decision-making stages in process development, and how it can be implemented to develop a chromatographic process. The proposed white-box digital twin helps to accelerate chromatographic process development.


Subject(s)
Antibodies, Monoclonal , Chromatography , Antibodies, Monoclonal/chemistry , Cation Exchange Resins , Adsorption , Staphylococcal Protein A/chemistry , Chromatography, Ion Exchange/methods
19.
Med Mol Morphol ; 57(2): 101-109, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38386083

ABSTRACT

To identify a new morphological phenotype of erythromycin (EM)-resistant Staphylococcus aureus (S. aureus) were isolated in vitro from EM-sensitive parent strain, and the distribution of staphylococcus specific protein A (SpA) on the surface of these strains was examined morphologically by using applied immunoelectron microscopy. The isolated EM-resistant strains had thickened cell walls, and the distribution of SpA on the surfaces of these strains was demonstrated to be lower than that of the parent strain. The SpA suppression was confirmed by enzyme-linked immunosorbent assay (ELISA) using fixed EM-resistant cells. Moreover, the spa gene of EM-resistant cells was detected by polymerase chain reaction (PCR) and confirmed by quantitative real-time PCR assay, showing that the expression of SpA was repressed at the transcriptional level in these strains. Furthermore, ELISA assay showed that whole EM-resistant cell SpA content was significantly decreased. Therefore, it was considered that the suppression of surface SpA on the EM-resistant strain was due to regulated SpA production, and not dependent on the conformational change in SpA molecule expression through cell wall thickening. These results strongly suggest that suppressed SpA distribution on the EM-resistant S. aureus is a phenotypical characteristic in these strains.


Subject(s)
Drug Resistance, Bacterial , Erythromycin , Staphylococcal Protein A , Staphylococcus aureus , Erythromycin/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Staphylococcal Protein A/genetics , Staphylococcal Protein A/metabolism , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Cell Wall/metabolism , Cell Wall/drug effects , Cell Wall/ultrastructure , Enzyme-Linked Immunosorbent Assay , Gene Expression Regulation, Bacterial/drug effects
20.
Article in English | MEDLINE | ID: mdl-38266612

ABSTRACT

Resin aging is a common occurrence in chromatographic processes and generally influenced by factors such as cleaning procedure and composition of the feed stream. Two major events occur along with protein fouling, one is the loss of protein A ligand and the other is non-specific, irreversible interactions of foulants with resin particles. Both these are responsible for resin aging. As a result, the performance of the resin suffers a fall, and this can be quantified through indicators like reduction in dynamic binding capacity, increased column pressure, or peak broadening. The number of reuse cycles of a resin has a major influence on the cost per batch. This is even more significant in the case of protein A resin, which is the primary cost driver for downstream processing. In this work, we first identify chromatogram characteristics that correlate to resin aging. Next, we propose a data monitoring-based tool for prediction of resin aging. Principal component analysis of the UV data of Mab 1 showed a deviation at 120th cycle and an out of specification at around 149th cycle, corroborating with yield decline. Batch level modelling could deliver a predictable trend for resin aging and was demonstrated for two different Mabs (Mab1 and Mab2). The results demonstrate that significant resin aging can be detected 20-25 cycles prior to observable yield decline. A control strategy has been suggested such that once the deviation has been detected, additional resin cleaning is triggered. Overall, a 50-100 Protein A cycle enhancement in resin lifespan could be achieved.


Subject(s)
Chromatography , Staphylococcal Protein A , Staphylococcal Protein A/chemistry , Chromatography/methods , Ligands , Antibodies, Monoclonal/chemistry , Resins, Plant
SELECTION OF CITATIONS
SEARCH DETAIL
...