Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.189
Filter
1.
Iran J Med Sci ; 49(5): 332-338, 2024 May.
Article in English | MEDLINE | ID: mdl-38751870

ABSTRACT

The present study aimed to investigate secondary bacterial infections among patients infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Coagulase-negative Staphylococci can infect immunocompromised patients. Linezolid resistance among Staphylococcus epidermidis is one of the most critical issues. In 2019, 185 SARS-CoV-2-positive patients who were admitted to North Khorasan Province Hospital (Bojnurd, Iran), were investigated. Patients having positive SARS-CoV-2 reverse transcriptase real-time polymerase chain reaction (RT-PCR) test results, who had a history of intubation, mechanical ventilation, and were hospitalized for more than 48 hours were included. After microbiological evaluation of pulmonary samples, taken from intubated patients with clinical manifestation of pneumonia, co-infections were found in 11/185 patients (5.94%) with S. epidermidis, Staphylococcus aureus, and Acinetobacter baumani, respectively. Remarkably, seven out of nine S. epidermidis isolates were linezolid resistant. Selected isolates were characterized using antimicrobial resistance patterns and molecular methods, such as Staphylococcal cassette chromosome mec (SCCmec) typing, and gene detection for ica, methicillin resistance (mecA), vancomycin resistance (vanA), and chloramphenicol-florfenicol resistance (cfr) genes. All of the isolates were resistant to methicillin, and seven isolates were resistant to linezolid. Nine out of 11 isolated belonged to the SCCmec I, while two belonged to the SCCmec IV. It should be noted that all patients had the underlying disease, and six patients had already passed away. The increasing linezolid resistance in bacterial strains becomes a real threat to patients, and monitoring such infections, in conjunction with surveillance and infection prevention programs, is very critical for reducing the number of linezolid-resistant Staphylococcal strains. A preprint of this study was published at https://europepmc.org/article/ppr/ppr417742.


Subject(s)
COVID-19 , Linezolid , Staphylococcal Infections , Staphylococcus epidermidis , Humans , Linezolid/pharmacology , Linezolid/therapeutic use , Staphylococcus epidermidis/drug effects , Iran/epidemiology , COVID-19/epidemiology , Male , Female , Staphylococcal Infections/drug therapy , Staphylococcal Infections/epidemiology , Middle Aged , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Aged , Coinfection/epidemiology , Coinfection/drug therapy , Coinfection/microbiology , Drug Resistance, Bacterial/drug effects , Adult , SARS-CoV-2 , Microbial Sensitivity Tests/methods
2.
Ugeskr Laeger ; 186(16)2024 Apr 15.
Article in Danish | MEDLINE | ID: mdl-38704724

ABSTRACT

Pyomyositis is a bacterial infection of striated muscle, usually located to muscles in the extremities or pelvis. We present a microbiologically unique case report of pyomyositis in the sternocleidomastoid muscle (the first of its kind in Denmark) caused by Staphylococcus epidermidis, S. capitis and possibly Streptococcus pneumoniae. Pyomyositis is very rare but can lead to critical complications such as endocarditis and sepsis. It is therefore important to know the condition when evaluating an infected patient with muscle pain. Treatment consists of antibiotics and - if relevant - surgical abscess drainage.


Subject(s)
Anti-Bacterial Agents , Neck Muscles , Pyomyositis , Staphylococcal Infections , Humans , Pyomyositis/microbiology , Pyomyositis/diagnosis , Pyomyositis/drug therapy , Female , Adult , Neck Muscles/pathology , Neck Muscles/diagnostic imaging , Staphylococcal Infections/diagnosis , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/therapeutic use , Staphylococcus epidermidis/isolation & purification , Streptococcus pneumoniae/isolation & purification
3.
Ann Clin Microbiol Antimicrob ; 23(1): 44, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755634

ABSTRACT

BACKGROUND: Due to their resistance and difficulty in treatment, biofilm-associated infections are problematic among hospitalized patients globally and account for 60% of all bacterial infections in humans. Antibiofilm peptides have recently emerged as an alternative treatment since they can be effectively designed and exert a different mode of biofilm inhibition and eradication. METHODS: A novel antibiofilm peptide, BiF, was designed from the conserved sequence of 18 α-helical antibiofilm peptides by template-assisted technique and its activity was improved by hybridization with a lipid binding motif (KILRR). Novel antibiofilm peptide derivatives were modified by substituting hydrophobic amino acids at positions 5 or 7, and both, with positively charged lysines (L5K, L7K). These peptide derivatives were tested for antibiofilm and antimicrobial activities against biofilm-forming Staphylococcus epidermidis and multiple other microbes using crystal violet and broth microdilution assays, respectively. To assess their impact on mammalian cells, the toxicity of peptides was determined through hemolysis and cytotoxicity assays. The stability of candidate peptide, BiF2_5K7K, was assessed in human serum and its secondary structure in bacterial membrane-like environments was analyzed using circular dichroism. The action of BiF2_5K7K on planktonic S. epidermidis and its effect on biofilm cell viability were assessed via viable counting assays. Its biofilm inhibition mechanism was investigated through confocal laser scanning microscopy and transcription analysis. Additionally, its ability to eradicate mature biofilms was examined using colony counting. Finally, a preliminary evaluation involved coating a catheter with BiF2_5K7K to assess its preventive efficacy against S. epidermidis biofilm formation on the catheter and its surrounding area. RESULTS: BiF2_5K7K, the modified antibiofilm peptide, exhibited dose-dependent antibiofilm activity against S. epidermidis. It inhibited biofilm formation at subinhibitory concentrations by altering S. epidermidis extracellular polysaccharide production and quorum-sensing gene expression. Additionally, it exhibited broad-spectrum antimicrobial activity and no significant hemolysis or toxicity against mammalian cell lines was observed. Its activity is retained when exposed to human serum. In bacterial membrane-like environments, this peptide formed an α-helix amphipathic structure. Within 4 h, a reduction in the number of S. epidermidis colonies was observed, demonstrating the fast action of this peptide. As a preliminary test, a BiF2_5K7K-coated catheter was able to prevent the development of S. epidermidis biofilm both on the catheter surface and in its surrounding area. CONCLUSIONS: Due to the safety and effectiveness of BiF2_5K7K, we suggest that this peptide be further developed to combat biofilm infections, particularly those of biofilm-forming S. epidermidis.


Subject(s)
Anti-Bacterial Agents , Biofilms , Microbial Sensitivity Tests , Staphylococcus epidermidis , Biofilms/drug effects , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/physiology , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hemolysis/drug effects , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology
4.
PLoS One ; 19(5): e0302783, 2024.
Article in English | MEDLINE | ID: mdl-38753660

ABSTRACT

BACKGROUND: Periprosthetic joint infection (PJI) is one of the most serious and debilitating complications that can occur after total joint arthroplasty. Therefore, early diagnosis and appropriate treatment are important for a good prognosis. Recently, molecular diagnostic methods have been widely used to detect the causative microorganisms of PJI sensitively and rapidly. The Multiplex Loop-Mediated Isothermal Amplification (LAMP) method eliminates the complex temperature cycling and delays caused by temperature transitions seen in polymerase chain reaction (PCR) methods, making it faster and easier to perform compared to PCR-based assays. Therefore, this study developed a multiplex LAMP assay for diagnosing bacterial PJI using LAMP technology and evaluated its analytical and clinical performance. METHODS: We developed a multiplex LAMP assay for the detection of five bacteria: Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus agalactiae, Pseudomonas aeruginosa, and Escherichia coli, frequently observed to be the causative agents of PJI. The method of analytical sensitivity and cross-reactivity were determined by spiking standard strains into the joint synovial fluid. The analytical sensitivity of the multiplex LAMP assay was compared with that of a quantitative real-time PCR (qPCR) assay. Clinical performance was evaluated using 20 joint synovial fluid samples collected from patients suspected of having bacterial PJI. RESULTS: The analytical sensitivity of the gram-positive bacterial multiplex LAMP assay and qPCR were 105/104 CFU/mL, 103/103 CFU/mL, and 105/104 CFU/mL against S. agalactiae, S. epidermidis, and S. aureus, respectively. For P. aeruginosa and E. coli, the analytical sensitivity of the multiplex LAMP and qPCR assays were 105/104 and 106/104 CFU/mL, respectively. The multiplex LAMP assay detects target bacteria without cross-reacting with other bacteria, and exhibited 100% sensitivity and specificity in clinical performance evaluation. CONCLUSIONS: This multiplex LAMP assay can rapidly detect five high-prevalence bacterial species causing bacterial PJI, with excellent sensitivity and specificity, in less than 1 h, and it may be useful for the early diagnosis of PJI.


Subject(s)
Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Prosthesis-Related Infections , Humans , Nucleic Acid Amplification Techniques/methods , Prosthesis-Related Infections/diagnosis , Prosthesis-Related Infections/microbiology , Molecular Diagnostic Techniques/methods , Sensitivity and Specificity , Staphylococcus epidermidis/isolation & purification , Staphylococcus epidermidis/genetics , Synovial Fluid/microbiology , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/genetics
5.
J Med Microbiol ; 73(5)2024 May.
Article in English | MEDLINE | ID: mdl-38743043

ABSTRACT

Introduction. Staphylococcus epidermidis biofilms are one of the major causes of bloodstream infections related to the use of medical devices. The diagnosis of these infections is challenging, delaying their treatment and resulting in increased morbidity and mortality rates. As such, it is urgent to characterize the mechanisms employed by this bacterium to endure antibiotic treatments and the response of the host immune system, to develop more effective therapeutic strategies. In several bacterial species, the gene codY was shown to encode a protein that regulates the expression of genes involved in biofilm formation and immune evasion. Additionally, in a previous study, our group generated evidence indicating that codY is involved in the emergence of viable but non-culturable (VBNC) cells in S. epidermidis.Gap statement/Hypothesis. As such, we hypothesized that the gene codY has have an important role in this bacterium virulence.Aim. This study aimed to assess, for the first time, the impact of the deletion of the gene codY in S. epidermidis virulence, namely, in antibiotic susceptibility, biofilm formation, VBNC state emergence and in vitro host immune system response.Methodology. Using an allelic replacement strategy, we constructed and then characterized an S. epidermidis strain lacking codY, in regards to biofilm and VBNC cell formation, susceptibility to antibiotics as well as their role in the interaction with human blood and plasma. Additionally, we investigate whether the codY gene can impact the activation of innate immune cells by evaluating the production of both pro- and anti-inflammatory cytokines by THP-1 macrophages.Results. We demonstrated that the deletion of the gene codY resulted in biofilms with less c.f.u. counts and fewer VBNC cells. Furthermore, we show that although WT and mutant cells were similarly internalized in vitro by human macrophages, a stronger cytokine response was elicited by the mutant in a toll-like receptor 4-dependent manner.Conclusion. Our results indicate that codY contributes to S. epidermidis virulence, which in turn may have an impact on our ability to manage the biofilm-associated infections caused by this bacterium.


Subject(s)
Bacterial Proteins , Biofilms , Cytokines , Macrophages , Staphylococcus epidermidis , Staphylococcus epidermidis/genetics , Staphylococcus epidermidis/physiology , Biofilms/growth & development , Humans , Macrophages/microbiology , Macrophages/immunology , Cytokines/metabolism , Cytokines/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/microbiology , Gene Deletion , Virulence , Microbial Viability
6.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732057

ABSTRACT

Implant therapy is a common treatment option in dentistry and orthopedics, but its application is often associated with an increased risk of microbial contamination of the implant surfaces that cause bone tissue impairment. This study aims to develop two silver-enriched platelet-rich plasma (PRP) multifunctional scaffolds active at the same time in preventing implant-associated infections and stimulating bone regeneration. Commercial silver lactate (L) and newly synthesized silver deoxycholate:ß-Cyclodextrin (B), were studied in vitro. Initially, the antimicrobial activity of the two silver soluble forms and the PRP enriched with the two silver forms has been studied on microbial planktonic cells. At the same time, the biocompatibility of silver-enriched PRPs has been assessed by an MTT test on human primary osteoblasts (hOBs). Afterwards, an investigation was conducted to evaluate the activity of selected concentrations and forms of silver-enriched PRPs in inhibiting microbial biofilm formation and stimulating hOB differentiation. PRP-L (0.3 µg/mm2) and PRP-B (0.2 µg/mm2) counteract Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans planktonic cell growth and biofilm formation, preserving hOB viability without interfering with their differentiation capability. Overall, the results obtained suggest that L- and B-enriched PRPs represent a promising preventive strategy against biofilm-related implant infections and demonstrate a new silver formulation that, together with increasing fibrin binding protecting silver in truncated cone-shaped cyclic oligosaccharides, achieved comparable inhibitory results on prokaryotic cells at a lower concentration.


Subject(s)
Biofilms , Osteoblasts , Platelet-Rich Plasma , Silver , Humans , Biofilms/drug effects , Silver/chemistry , Silver/pharmacology , Osteoblasts/drug effects , Osteoblasts/cytology , Staphylococcus aureus/drug effects , Candida albicans/drug effects , Prosthesis-Related Infections/prevention & control , Prosthesis-Related Infections/microbiology , Staphylococcus epidermidis/drug effects
7.
J Orthop Surg Res ; 19(1): 304, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769535

ABSTRACT

BACKGROUND: Periprosthetic joint infection is a serious complication following joint replacement. The development of bacterial biofilms bestows antibiotic resistance and restricts treatment via implant retention surgery. Electromagnetic induction heating is a novel technique for antibacterial treatment of metallic surfaces that has demonstrated in-vitro efficacy. Previous studies have always employed stationary, non-portable devices. This study aims to assess the in-vitro efficacy of induction-heating disinfection of metallic surfaces using a new Portable Disinfection System based on Induction Heating. METHODS: Mature biofilms of three bacterial species: S. epidermidis ATCC 35,984, S. aureus ATCC 25,923, E. coli ATCC 25,922, were grown on 18 × 2 mm cylindrical coupons of Titanium-Aluminium-Vanadium (Ti6Al4V) or Cobalt-chromium-molybdenum (CoCrMo) alloys. Study intervention was induction-heating of the coupon surface up to 70ºC for 210s, performed using the Portable Disinfection System (PDSIH). Temperature was monitored using thermographic imaging. For each bacterial strain and each metallic alloy, experiments and controls were conducted in triplicate. Bacterial load was quantified through scraping and drop plate techniques. Data were evaluated using non-parametric Mann-Whitney U test for 2 group comparison. Statistical significance was fixed at p ≤ 0.05. RESULTS: All bacterial strains showed a statistically significant reduction of CFU per surface area in both materials. Bacterial load reduction amounted to 0.507 and 0.602 Log10 CFU/mL for S. aureus on Ti6Al4V and CoCrMo respectively, 5.937 and 3.500 Log10 CFU/mL for E. coli, and 1.222 and 0.372 Log10 CFU/mL for S. epidermidis. CONCLUSIONS: Electromagnetic induction heating using PDSIH is efficacious to reduce mature biofilms of S aureus, E coli and S epidermidis growing on metallic surfaces of Ti6Al4V and CoCrMo alloys.


Subject(s)
Alloys , Biofilms , Disinfection , Escherichia coli , Prosthesis-Related Infections , Staphylococcus aureus , Titanium , Biofilms/drug effects , Disinfection/methods , Escherichia coli/growth & development , Staphylococcus aureus/drug effects , Prosthesis-Related Infections/prevention & control , Prosthesis-Related Infections/microbiology , Staphylococcus epidermidis/drug effects , Joint Prosthesis/microbiology , Arthroplasty, Replacement/instrumentation , Arthroplasty, Replacement/methods , Heating/instrumentation , Heating/methods , Humans , Electromagnetic Phenomena , Vitallium
8.
J Vet Sci ; 25(2): e30, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38568831

ABSTRACT

BACKGROUND: Biofilms, such as those from Staphylococcus epidermidis, are generally insensitive to traditional antimicrobial agents, making it difficult to inhibit their formation. Although quercetin has excellent antibiofilm effects, its clinical applications are limited by the lack of sustained and targeted release at the site of S. epidermidis infection. OBJECTIVES: Polyethylene glycol-quercetin nanoparticles (PQ-NPs)-loaded gelatin-N,O-carboxymethyl chitosan (N,O-CMCS) composite nanogels were prepared and assessed for the on-demand release potential for reducing S. epidermidis biofilm formation. METHODS: The formation mechanism, physicochemical characterization, and antibiofilm activity of PQ-nanogels against S. epidermidis were studied. RESULTS: Physicochemical characterization confirmed that PQ-nanogels had been prepared by the electrostatic interactions between gelatin and N,O-CMCS with sodium tripolyphosphate. The PQ-nanogels exhibited obvious pH and gelatinase-responsive to achieve on-demand release in the micro-environment (pH 5.5 and gelatinase) of S. epidermidis. In addition, PQ-nanogels had excellent antibiofilm activity, and the potential antibiofilm mechanism may enhance its antibiofilm activity by reducing its relative biofilm formation, surface hydrophobicity, exopolysaccharides production, and eDNA production. CONCLUSIONS: This study will guide the development of the dual responsiveness (pH and gelatinase) of nanogels to achieve on-demand release for reducing S. epidermidis biofilm formation.


Subject(s)
Chitosan , Nanoparticles , Animals , Staphylococcus epidermidis/genetics , Nanogels , Gelatin/pharmacology , Quercetin/pharmacology , Biofilms , Chitosan/pharmacology , Chitosan/chemistry , Gelatinases/pharmacology , Anti-Bacterial Agents/pharmacology
9.
Sci Rep ; 14(1): 8025, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580807

ABSTRACT

The modification of the surgical polypropylene mesh and the polytetrafluoroethylene vascular prosthesis with cecropin A (small peptide) and puromycin (aminonucleoside) yielded very stable preparations of modified biomaterials. The main emphasis was placed on analyses of their antimicrobial activity and potential immunomodulatory and non-cytotoxic properties towards the CCD841 CoTr model cell line. Cecropin A did not significantly affect the viability or proliferation of the CCD 841 CoTr cells, regardless of its soluble or immobilized form. In contrast, puromycin did not induce a significant decrease in the cell viability or proliferation in the immobilized form but significantly decreased cell viability and proliferation when administered in the soluble form. The covalent immobilization of these two molecules on the surface of biomaterials resulted in stable preparations that were able to inhibit the multiplication of Staphylococcus aureus and S. epidermidis strains. It was also found that the preparations induced the production of cytokines involved in antibacterial protection mechanisms and stimulated the immune response. The key regulator of this activity may be related to TLR4, a receptor recognizing bacterial LPS. In the present study, these factors were produced not only in the conditions of LPS stimulation but also in the absence of LPS, which indicates that cecropin A- and puromycin-modified biomaterials may upregulate pathways leading to humoral antibacterial immune response.


Subject(s)
Anti-Infective Agents , Biocompatible Materials , Biocompatible Materials/pharmacology , Lipopolysaccharides , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polymers/pharmacology , Staphylococcus epidermidis , Puromycin
10.
Sci Rep ; 14(1): 9183, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649676

ABSTRACT

Staphylococci as a nosocomial infection agent, increases the possibility of contracting diseases such as wound infection, sepsis and skin infections in humans. It was shown that Staphylococcus aureus considered as a commensal organism causing various both endemic and epidemic hospital-acquired infections. Air samples were collected from Sina Hospital, Hamadan city, which dedicated to various respiratory diseases and analysed by biochemical tests. The resistance and sensitivity of bacterial strains to the cefoxitin antibiotic were also determined. Staphylococcus aureus density (CFU/m3) were measured in the air of various wards as follows: infectious 13.35 ± 7.57, poisoning 29.84 ± 33.43, emergency 8.64 ± 2.72, eye operation room 0, recovery room 6.28 ± 4.90, skin outpatient operation room 4.71 ± 2.36, respiratory isolation 0, ICU 0.79 ± 1.36, and the administrative room 6.28 ± 5.93; while the Staphylococcus epidermidis were as follows: infectious 1.57 ± 2.35, poisoning 2.35 ± 4.08, emergency 2.35 ± 2.35, eye operation room 0, recovery room 0.78 ± 1.36, skin outpatient operation room 2.35 ± 2.35, respiratory isolation 0, ICU 2.35 ± 4.08, and the administrative room 1.57 ± 1.36. The positive and negative control samples showed a concentration of 0. Moreover, among the S. aureus isolates, 33.3% were found to be resistant to cefoxitin, while 40.6% showed to be sensitive. Based on the results, the number of active people and the type and quality of ventilation are very effective in the air quality of various wards of hospital. The poisoning section showed the most contaminated air and the highest resistance and sensitivity to the cefoxitin antibiotic.


Subject(s)
Air Microbiology , Anti-Bacterial Agents , Cefoxitin , Hospitals , Microbial Sensitivity Tests , Staphylococcus aureus , Staphylococcus epidermidis , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/isolation & purification , Cefoxitin/pharmacology , Anti-Bacterial Agents/pharmacology , Humans , Cross Infection/microbiology , Drug Resistance, Bacterial/drug effects , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy
11.
Mar Drugs ; 22(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38667771

ABSTRACT

Algae are used as safe materials to fabricate novel nanoparticles to treat some diseases. Marine brown alga Sargassum vulgare are used to fabricate silver nanoparticles (Sv/Ag-NPs). The characterization of Sv/Ag-NPs was determined by TEM, EDX, Zeta potential, XRD, and UV spectroscopy. The Sv/Ag-NPs were investigated as antioxidant, anticancer, and antibacterial activities against Gram-positive bacteria Bacillus mojavensis PP400982, Staphylococcus caprae PP401704, Staphylococcus capitis PP402689, and Staphylococcus epidermidis PP403851. The activity of the Sv/Ag-NPs was evaluated as hepatoprotective in vitro in comparison with silymarin. The UV-visible spectrum of Sv/Ag-NPs appeared at 442 nm; the size of Sv/Ag-NPs is in range between 6.90 to 16.97 nm, and spherical in shape. Different concentrations of Sv/Ag-NPs possessed antioxidant, anticancer activities against (HepG-2), colon carcinoma (HCT-116), cervical carcinoma (HeLa), and prostate carcinoma (PC-3) with IC50 50.46, 45.84, 78.42, and 100.39 µg/mL, respectively. The Sv/Ag-NPs induced the cell viability of Hep G2 cells and hepatocytes treated with carbon tetrachloride. The Sv/Ag-NPs exhibited antibacterial activities against Staphylococcus caprae PP401704, Staphylococcus capitis PP402689, and Staphylococcus epidermidis PP403851. This study strongly suggests the silver nanoparticles derived from Sargassum vulgare showed potential hepato-protective effect against carbon tetrachloride-induced liver cells, and could be used as anticancer and antibacterial activities.


Subject(s)
Anti-Bacterial Agents , Antineoplastic Agents , Antioxidants , Metal Nanoparticles , Sargassum , Silver , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Silver/pharmacology , Silver/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Metal Nanoparticles/chemistry , Sargassum/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Microbial Sensitivity Tests , Hep G2 Cells , Protective Agents/pharmacology , Protective Agents/chemistry , Staphylococcus epidermidis/drug effects , HeLa Cells
12.
PLoS One ; 19(4): e0299929, 2024.
Article in English | MEDLINE | ID: mdl-38573969

ABSTRACT

A cross-sectional study was conducted to estimate the prevalence of intramammary infection (IMI) associated bacteria and to identify risk factors for pathogen group-specific IMI in water buffalo in Bangladesh. A California Mastitis Test (CMT) and bacteriological cultures were performed on 1,374 quarter milk samples collected from 763 water buffalo from 244 buffalo farms in nine districts in Bangladesh. Quarter, buffalo, and farm-related data were obtained through questionnaires and visual observations. A total of 618 quarter samples were found to be culture positive. Non-aureus staphylococci were the predominant IMI-associated bacterial species, and Staphylococcus (S.) chromogenes, S. hyicus, and S. epidermidis were the most common bacteria found. The proportion of non-aureus staphylococci or Mammaliicoccus sciuri (NASM), S. aureus, and other bacterial species identified in the buffalo quarter samples varied between buffalo farms. Therefore, different management practices, buffalo breeding factors, and nutrition were considered and further analyzed when estimating the IMI odds ratio (OR). The odds of IMI by any pathogen (OR: 1.8) or by NASM (OR: 2.2) was high in buffalo herds with poor milking hygiene. Poor cleanliness of the hind quarters had a high odds of IMI caused by any pathogen (OR: 2.0) or NASM (OR: 1.9). Twice daily milking (OR: 3.1) and farms with buffalo purchased from another herd (OR: 2.0) were associated with IMI by any pathogen. Asymmetrical udders were associated with IMI-caused by any bacteria (OR: 1.7). A poor body condition score showed higher odds of IMI by any pathogen (OR: 1.4) or by NASM (OR: 1.7). This study shows that the prevalence of IMI in water buffalo was high and varied between farms. In accordance with the literature, our data highlight that IMI can be partly controlled through better farm management, primarily by improving hygiene, milking management, breeding, and nutrition.


Subject(s)
Mastitis, Bovine , Staphylococcal Infections , Staphylococcus , Animals , Female , Cattle , Staphylococcus aureus , Staphylococcal Infections/microbiology , Buffaloes , Cross-Sectional Studies , Mastitis, Bovine/microbiology , Milk/microbiology , Staphylococcus epidermidis , Risk Factors , Mammary Glands, Animal/microbiology
13.
Exp Dermatol ; 33(5): e15087, 2024 May.
Article in English | MEDLINE | ID: mdl-38685821

ABSTRACT

Hidradenitis Suppurativa (HS) is a chronic autoinflammatory skin disease with activated keratinocytes, tunnel formation and a complex immune infiltrate in tissue. The HS microbiome is polymicrobial with an abundance of commensal gram-positive facultative (GPs) Staphylococcus species and gram-negative anaerobic (GNA) bacteria like Prevotella, Fusobacterium and Porphyromonas with increasing predominance of GNAs with disease severity. We sought to define the keratinocyte response to bacteria commonly isolated from HS lesions to probe pathogenic relationships between HS and the microbiome. Type strains of Prevotella nigrescens, Prevotella melaninogenica, Prevotella intermedia, Prevotella asaccharolytica, Fusobacterium nucleatum, as well as Staphylococcus aureus and the normal skin commensal Staphylococcus epidermidis were heat-killed and co-incubated with normal human keratinocytes. RNA was collected and analysed using RNAseq and RT-qPCR. The supernatant was collected from cell culture for protein quantification. Transcriptomic profiles between HS clinical samples and stimulated keratinocytes were compared. Co-staining of patient HS frozen sections was used to localize bacteria in lesions. A mouse intradermal injection model was used to investigate early immune recruitment. TLR4 and JAK inhibitors were used to investigate mechanistic avenues of bacterial response inhibition. GNAs, especially F. nucleatum, stimulated vastly higher CXCL8, IL17C, CCL20, IL6, TNF and IL36γ transcription in normal skin keratinocytes than the GPs S. epidermidis and S. aureus. Using RNAseq, we found that F. nucleatum (and Prevotella) strongly induced the IL-17 pathway in keratinocytes and overlapped with transcriptome profiles of HS patient clinical samples. Bacteria were juxtaposed to activated keratinocytes in vivo, and F. nucleatum strongly recruited murine neutrophil and macrophage migration. Both the TLR4 and pan-JAK inhibitors reduced cytokine production. Detailed transcriptomic profiling of healthy skin keratinocytes exposed to GNAs prevalent in HS revealed a potent, extensive inflammatory response vastly stronger than GPs. GNAs stimulated HS-relevant genes, including many genes in the IL-17 response pathway, and were significantly associated with HS tissue transcriptomes. The close association of activated keratinocytes with bacteria in HS lesions and innate infiltration in murine skin cemented GNA pathogenic potential. These novel mechanistic insights could drive future targeted therapies.


Subject(s)
Hidradenitis Suppurativa , Keratinocytes , Keratinocytes/immunology , Keratinocytes/microbiology , Keratinocytes/metabolism , Humans , Animals , Mice , Hidradenitis Suppurativa/microbiology , Hidradenitis Suppurativa/immunology , Staphylococcus aureus/immunology , Staphylococcus epidermidis/immunology , Fusobacterium nucleatum/immunology , Transcriptome , Cytokines/metabolism , Bacteria, Anaerobic , Interleukin-17/metabolism , Microbiota , Prevotella/immunology
14.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38470311

ABSTRACT

Many bacteria produce antimicrobial compounds such as lantibiotics to gain advantage in the competitive natural environments of microbiomes. Epilancins constitute an until now underexplored family of lantibiotics with an unknown ecological role and unresolved mode of action. We discovered production of an epilancin in the nasal isolate Staphylococcus epidermidis A37. Using bioinformatic tools, we found that epilancins are frequently encoded within staphylococcal genomes, highlighting their ecological relevance. We demonstrate that production of epilancin A37 contributes to Staphylococcus epidermidis competition specifically against natural corynebacterial competitors. Combining microbiological approaches with quantitative in vivo and in vitro fluorescence microscopy and cryo-electron tomography, we show that A37 enters the corynebacterial cytoplasm through a partially transmembrane-potential-driven uptake without impairing the cell membrane function. Upon intracellular aggregation, A37 induces the formation of intracellular membrane vesicles, which are heavily loaded with the compound and are essential for the antibacterial activity of the epilancin. Our work sheds light on the ecological role of epilancins for staphylococci mediated by a mode of action previously unknown for lantibiotics.


Subject(s)
Bacteriocins , Microbiota , Bacteriocins/pharmacology , Staphylococcus epidermidis/metabolism , Staphylococcus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism
15.
mBio ; 15(4): e0199023, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38470054

ABSTRACT

The species- and clone-specific susceptibility of Staphylococcus cells for bacteriophages is governed by the structures and glycosylation patterns of wall teichoic acid (WTA) glycopolymers. The glycosylation-dependent phage-WTA interactions in the opportunistic pathogen Staphylococcus epidermidis and in other coagulase-negative staphylococci (CoNS) have remained unknown. We report a new S. epidermidis WTA glycosyltransferase TagE whose deletion confers resistance to siphoviruses such as ΦE72 but enables binding of otherwise unbound podoviruses. S. epidermidis glycerolphosphate WTA was found to be modified with glucose in a tagE-dependent manner. TagE is encoded together with the enzymes PgcA and GtaB providing uridine diphosphate-activated glucose. ΦE72 transduced several other CoNS species encoding TagE homologs, suggesting that WTA glycosylation via TagE is a frequent trait among CoNS that permits interspecies horizontal gene transfer. Our study unravels a crucial mechanism of phage-Staphylococcus interaction and horizontal gene transfer, and it will help in the design of anti-staphylococcal phage therapies.IMPORTANCEPhages are highly specific for certain bacterial hosts, and some can transduce DNA even across species boundaries. How phages recognize cognate host cells remains incompletely understood. Phages infecting members of the genus Staphylococcus bind to wall teichoic acid (WTA) glycopolymers with highly variable structures and glycosylation patterns. How WTA is glycosylated in the opportunistic pathogen Staphylococcus epidermidis and in other coagulase-negative staphylococci (CoNS) species has remained unknown. We describe that S. epidermidis glycosylates its WTA backbone with glucose, and we identify a cluster of three genes responsible for glucose activation and transfer to WTA. Their inactivation strongly alters phage susceptibility patterns, yielding resistance to siphoviruses but susceptibility to podoviruses. Many different CoNS species with related glycosylation genes can exchange DNA via siphovirus ΦE72, suggesting that glucose-modified WTA is crucial for interspecies horizontal gene transfer. Our finding will help to develop antibacterial phage therapies and unravel routes of genetic exchange.


Subject(s)
Staphylococcal Infections , Staphylococcus epidermidis , Humans , Staphylococcus epidermidis/genetics , Staphylococcus epidermidis/metabolism , Staphylococcus aureus/genetics , Coagulase/metabolism , Glucose/metabolism , Teichoic Acids/metabolism , Staphylococcus/metabolism , Staphylococcus Phages/genetics , DNA/metabolism , Cell Wall/metabolism , Staphylococcal Infections/metabolism
16.
Viruses ; 16(3)2024 02 29.
Article in English | MEDLINE | ID: mdl-38543751

ABSTRACT

Bacteria of the genus Staphylococcus are significant challenge for medicine, as many species are resistant to multiple antibiotics and some are even to all of the antibiotics we use. One of the approaches to developing new therapeutics to treat staphylococcal infections is the use of bacteriophages specific to these bacteria or the lytic enzymes of such bacteriophages, which are capable of hydrolyzing the cell walls of these bacteria. In this study, a new bacteriophage vB_SepP_134 (St 134) specific to Staphylococcus epidermidis was described. This podophage, with a genome of 18,275 bp, belongs to the Andhravirus genus. St 134 was able to infect various strains of 12 of the 21 tested coagulase-negative Staphylococcus species and one clinical strain from the Staphylococcus aureus complex. The genes encoding endolysin (LysSte134_1) and tail tip lysin (LysSte134_2) were identified in the St 134 genome. Both enzymes were cloned and produced in Escherichia coli cells. The endolysin LysSte134_1 demonstrated catalytic activity against peptidoglycans isolated from S. aureus, S. epidermidis, Staphylococcus haemolyticus, and Staphylococcus warneri. LysSte134_1 was active against S. aureus and S. epidermidis planktonic cells and destroyed the biofilms formed by clinical strains of S. aureus and S. epidermidis.


Subject(s)
Bacteriophages , Endopeptidases , Staphylococcal Infections , Humans , Staphylococcus aureus , Bacteriophages/genetics , Staphylococcus , Staphylococcus epidermidis , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms
17.
J Antimicrob Chemother ; 79(5): 1045-1050, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38507272

ABSTRACT

OBJECTIVES: Staphylococcus epidermidis bone and joint infections (BJIs) on material are often difficult to treat. The activity of delafloxacin has not yet been studied on S. epidermidis in this context. The aim of this study was to assess its in vitro activity compared with other fluoroquinolones, against a large collection of S. epidermidis clinical strains. METHODS: We selected 538 S. epidermidis strains isolated between January 2015 and February 2023 from six French teaching hospitals. One hundred and fifty-two strains were ofloxacin susceptible and 386 were ofloxacin resistant. Identifications were performed by MS and MICs were determined using gradient concentration strips for ofloxacin, levofloxacin, moxifloxacin and delafloxacin. RESULTS: Ofloxacin-susceptible strains were susceptible to all fluoroquinolones. Resistant strains had higher MICs of all fluoroquinolones. Strains resistant to ofloxacin (89.1%) still showed susceptibility to delafloxacin when using the Staphylococcus aureus 2021 CA-SFM/EUCAST threshold of 0.25 mg/L. In contrast, only 3.9% of the ofloxacin-resistant strains remained susceptible to delafloxacin with the 0.016 mg/L S. aureus breakpoint according to CA-SFM/EUCAST guidelines in 2022. The MIC50 was 0.094 mg/L and the MIC90 was 0.38 mg/L. CONCLUSIONS: We showed low delafloxacin MICs for ofloxacin-susceptible S. epidermidis strains and a double population for ofloxacin-resistant strains. Despite the absence of breakpoints for S. epidermidis, delafloxacin may be an option for the treatment of complex BJI, including strains with MICs of ≤0.094 mg/L, leading to 64% susceptibility. This study underlines the importance for determining specific S. epidermidis delafloxacin breakpoints for the management of BJI on material.


Subject(s)
Anti-Bacterial Agents , Fluoroquinolones , Microbial Sensitivity Tests , Staphylococcal Infections , Staphylococcus epidermidis , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/isolation & purification , Humans , Fluoroquinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Retrospective Studies , Ofloxacin/pharmacology , Levofloxacin/pharmacology , Drug Resistance, Bacterial , Moxifloxacin/pharmacology , France
18.
G3 (Bethesda) ; 14(5)2024 05 07.
Article in English | MEDLINE | ID: mdl-38478633

ABSTRACT

Innate immunity functions as a rapid defense against broad classes of pathogenic agents. While the mechanisms of innate immunity in response to antigen exposure are well-studied, how pathogen exposure activates the innate immune responses and the role of genetic variation in immune activity is currently being investigated. Previously, we showed significant survival differences between the N2 and the CB4856 Caenorhabditis elegans isolates in response to Staphylococcus epidermidis infection. One of those differences was expression of the mab-5 Hox family transcription factor, which was induced in N2, but not CB4856, after infection. In this study, we use survival assays and RNA-sequencing to better understand the role of mab-5 in response to S. epidermidis. We found that mab-5 loss-of-function (LOF) mutants were more susceptible to S. epidermidis infection than N2 or mab-5 gain-of-function (GOF) mutants, but not as susceptible as CB4856 animals. We then conducted transcriptome analysis of infected worms and found considerable differences in gene expression profiles when comparing animals with mab-5 LOF to either N2 or mab-5 GOF. N2 and mab-5 GOF animals showed a significant enrichment in expression of immune genes and C-type lectins, whereas mab-5 LOF mutants did not. Overall, gene expression profiling in mab-5 mutants provided insight into MAB-5 regulation of the transcriptomic response of C. elegans to pathogenic bacteria and helps us to understand mechanisms of innate immune activation and the role that transcriptional regulation plays in organismal health.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Immunity, Innate , Staphylococcus epidermidis , Transcription Factors , Animals , Caenorhabditis elegans/immunology , Caenorhabditis elegans/microbiology , Staphylococcus epidermidis/immunology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/immunology , Transcription Factors/genetics , Transcription Factors/metabolism , Staphylococcal Infections/immunology , Gene Expression Profiling , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mutation , Transcriptome
19.
Transfusion ; 64(4): 665-673, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38456520

ABSTRACT

BACKGROUND: Microbial screening of platelet concentrates (PC) with automated culture methods is widely implemented to reduce septic transfusion reactions. Herein, detection of bacterial contamination in PC was compared between units prepared in plasma and a mix of plasma and platelet additive solution (PAS) and between the BACT/ALERT 3D and next generation BACT/ALERT VIRTUO systems. STUDY DESIGN/METHODS: Double apheresis units were split into single units, diluted in either PAS (PAS-PC) or plasma (plasma-PC), and tested for in vitro quality and sterility prior to spiking with ~30 CFU/unit of Staphylococcus epidermidis, Staphylococcus aureus, Serratia marcescens, and Klebsiella pneumoniae or ~10 CFU/mL of Cutibacterium acnes. Spiked PC were sampled for BACT/ALERT testing (36 and 48 h post-spiking) and colony counts (24, 36, and 48 h post-spiking). Times to detection (TtoD) and bacterial loads were compared between PC products and BACT/ALERT systems (N = 3). RESULTS: Bacterial growth was similar in plasma-PC and PAS-PC. No significant differences in TtoD were observed between plasma-PC and PAS-PC at the 36-h sampling time except for S. epidermidis which grew faster in plasma-PC and C. acnes which was detected earlier in PAS-PC (p < .05). Detection of facultative bacteria was 1.3-2.2 h sooner in VIRTUO compared with 3D (p < .05) while TtoD for C. acnes was not significantly different between the two systems. DISCUSSION: Comparable bacterial detection was observed in plasma-PC and PAS-PC with PC sampling performed at 36-h post blood collection. PC sampling at ≤36 h could result in faster detection of facultative pathogenic organisms with the VIRTUO system and improved PC safety.


Subject(s)
Blood Component Removal , Staphylococcal Infections , Humans , Blood Platelets/microbiology , Blood Preservation/methods , Staphylococcus epidermidis , Platelet Transfusion
20.
Chemosphere ; 354: 141691, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484999

ABSTRACT

Although the antimicrobial activity of nanoparticles (NPs) penetrating inside the cell is widely recognised, the toxicity of large NPs (>10 nm) that cannot be translocated across bacterial membranes remains unclear. Therefore, this study was performed to elucidate the direct effects of Ag-NPs, Cu-NPs, ZnO-NPs and TiO2-NPs on relative membrane potential, permeability, hydrophobicity, structural changes within chemical compounds at the molecular level and the distribution of NPs on the surfaces of the bacteria Bacillus cereus and Staphylococcus epidermidis. Overall analysis of the results indicated the different impacts of individual NPs on the measured parameters in both strains depending on their type and concentration. B. cereus proved to be more resistant to the action of NPs than S. epidermidis. Generally, Cu-NPs showed the most substantial toxic effect on both strains; however, Ag-NPs exhibited negligible toxicity. All NPs had a strong affinity for cell surfaces and showed strain-dependent characteristic dispersion. ATR-FTIR analysis explained the distinctive interactions of NPs with bacterial functional groups, leading to macromolecular structural modifications. The results presented provide new and solid evidence for the current understanding of the interactions of metallic NPs with bacterial membranes.


Subject(s)
Anti-Bacterial Agents , Metal Nanoparticles , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/chemistry , Staphylococcus epidermidis , Bacillus cereus , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...