Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 204
Filter
Add more filters











Publication year range
1.
PLoS Pathog ; 20(8): e1012463, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39146353

ABSTRACT

Circular RNAs (circRNAs) are involved in various physiological and pathological processes in both vertebrates and invertebrates. However, most studies on circRNAs have focused on their roles as endogenous competitive RNAs. Here, we report a novel function of circRNA derived from the Fibrinogen-like protein 1 gene (circ-FGL1) that inhibits coelomocyte apoptosis via competing with the deubiquitinase AjOTUB1 to bind AjMyc in Apostichopus japonicus during Vibrio splendidus infection. The results showed that circ-FGL1 is significantly downregulated in coelomocytes of V. splendidus-induced A. japonicus and negatively regulates coelomocyte apoptosis through the AjBax-AjCyt c pathway. Mechanistically, the deubiquitinase AjOTUB1 and circ-FGL1 could interact with the transcription factor protein AjMyc in the same region with circ-FGL1/AjMyc having greater affinity. Under normal conditions, high levels of circ-FGL1 bind directly to AjMyc, inhibiting the deubiquitylation of AjMyc by AjOTUB1 and leading to the degradation of AjMyc. After V. splendidus infection, AjMyc disassociates from the depressed expression of circ-FGL1, promoting its deubiquitylation by binding to the induced deubiquitinase AjOTUB1 to inhibit its degradation. AjMyc is then transferred to the nucleus and promotes the transcription of AjCyt c and AjBax to induce coelomocyte apoptosis. The new finding will expand our present outstanding on the functional role of circRNAs and suggest new therapeutic targets for the treatment of echinoderms during bacterial invasion.


Subject(s)
Apoptosis , RNA, Circular , Stichopus , Vibrio Infections , Vibrio , Animals , RNA, Circular/metabolism , RNA, Circular/genetics , Stichopus/microbiology , Stichopus/metabolism , Stichopus/genetics , Vibrio Infections/metabolism , Binding, Competitive , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics
2.
Protein Expr Purif ; 224: 106577, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39153562

ABSTRACT

Developing more effective bioactive ingredients of natural origin is imperative for promoting wound healing. Sea cucumbers have long enjoyed a good reputation as both food delicacies and traditional medicines. In this study, we heterogeneously expressed a Apostichopus japonicus derived novel protein AjPSPLP-3, which exhibits a theoretical molecular weight of 13.034 kDa, through fusion with maltose binding protein (MBP). AjPSPLP-3 contains a strict CXXCXC motif, nine extremely conserved cysteine residues and two highly conserved cysteine residues. The predicted structure of AjPSPLP-3 consists of random coil and nine ß-sheets, Cys30-Cys67, Cys38-Cys58, Cys53-Cys90, Cys56-Cys66, and Cys81-Cys102 participating in the formation of five pairs of disulfide bonds. In vitro experiments conducted on HaCaT cells proved that AjPSPLP-3 and MBP-fused AjPSPLP-3 significantly contribute to HaCaT cells proliferation and migration without exhibiting hemolytic activity on murine erythrocytes. Specifically, treatment with 10 µmol/L MBP-fused AjPSPLP-3 protein increased the viability of HaCaT cells by 12.28 % (p < 0.001), while treatment with 10 µmol/L AjPSPLP-3 protein increased viability of HaCaT cells by 6.01 % (p < 0.01). Furthermore, wound closure of MBP-fused AjPSPLP-3 and AjPSPLP-3 were 22.51 % (p < 0.01) and 7.32 % (p < 0.05) higher than that of the control groups in HaCaT cells following 24 h of incubation.


Subject(s)
Cell Movement , Cell Proliferation , Stichopus , Animals , Stichopus/genetics , Stichopus/chemistry , Cell Proliferation/drug effects , Cell Movement/drug effects , Humans , Mice , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/isolation & purification , Cloning, Molecular , Amino Acid Sequence , Cell Line , Escherichia coli/genetics , Escherichia coli/metabolism , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/chemistry , Maltose-Binding Proteins/metabolism , HaCaT Cells
3.
Fish Shellfish Immunol ; 151: 109745, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960105

ABSTRACT

Iron homeostasis is vital for the host's defense against pathogenic invasion and the ferritinophagy is a crucial mechanism in maintaining intracellular iron homeostasis by facilitating the degradation and recycling of stored iron. The nuclear receptor coactivator 4 (NCOA4) serves as a ferritinophagy receptor, facilitating the binding and delivery of ferritin to the autophagosome and lysosome. However, NCOA4 of the sea cucumber Apostichopus japonicus (AjNCOA4) has not been reported until now. In this study, we identified and characterized AjNCOA4 in A. japonicus. This gene encodes a polypeptide containing 597 amino acids with an open reading frame of 1794 bp. The inferred amino acid sequence of AjNCOA4 comprises an ARA70 domain. Furthermore, a multiple sequence alignment demonstrated varying degrees of sequence homology between AjNCOA4 from A. japonicus and other NCOA4 orthologs. The phylogenetic tree of NCOA4 correlates with the established timeline of metazoan evolution. Expression analysis revealed that AjNCOA4 is expressed in all tested tissues, including the body wall, muscle, intestine, respiratory tree, and coelomocytes. Following challenge with Vibrio splendidus, the coelomocytes exhibited a significant increase in AjNCOA4 mRNA levels, peaking at 24 h. We successfully obtained recombinant AjNCOA4 protein through prokaryotic expression and prepared a specific polyclonal antibody. Immunofluorescence and co-immunoprecipitation experiments demonstrated an interaction between AjNCOA4 and AjFerritin in coelomocytes. RNA interference-mediated knockdown of AjNCOA4 expression resulted in elevated iron ion levels in coelomocytes. Bacterial stimulation enhanced ferritinophagy in coelomocytes, while knockdown of AjNCOA4 reduced the occurrence of ferritinophagy. These findings suggest that AjNCOA4 modulates ferritinophagy induced by V. splendidus in coelomocytes of A. japonicus.


Subject(s)
Amino Acid Sequence , Ferritins , Nuclear Receptor Coactivators , Phylogeny , Sequence Alignment , Stichopus , Vibrio , Animals , Vibrio/physiology , Stichopus/immunology , Stichopus/genetics , Stichopus/microbiology , Nuclear Receptor Coactivators/genetics , Nuclear Receptor Coactivators/immunology , Ferritins/genetics , Ferritins/immunology , Ferritins/metabolism , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Gene Expression Profiling , Autophagy , Base Sequence
4.
Int J Biol Macromol ; 274(Pt 2): 133302, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909735

ABSTRACT

The sea cucumber Apostichopus japonicus can expel internal organs under stress and regenerate them subsequently. However, growth is delayed during regeneration, significantly impacting the industry. Circular RNAs (circRNAs) are single-stranded circular RNA molecules produced through alternative splicing of mRNA precursors. They play crucial roles in regulating gene expression via the ceRNA mechanism. In this study, circRNA profiles of control and regenerated intestines were constructed. A total of 15,874 circRNAs were identified, with a length of 300-350 nucleotides (nt) being the most abundant. Sanger sequencing confirmed the circular structure of circRNA398. Compared with the normal intestine, 50 and 83 differentially expressed circRNAs (DE-circRNAs) were identified in the regenerated intestine at 1 and 3 days post evisceration (dpe), respectively. Gene ontology (GO) terms for signal transduction and development regulation were most significantly enriched in 1dpeVScon and 3dpeVScon treatments, respectively. The dual-luciferase assay revealed that circRNA8388 functions as a sponge for miR-2392, participating in the remodeling of the extracellular matrix (ECM). In conclusion, these findings will contribute to the enhancement of the non-coding RNA database for echinoderms and lay the groundwork for future investigations into circRNA regulation during intestinal regeneration.


Subject(s)
Intestines , MicroRNAs , RNA, Circular , Regeneration , Stichopus , Animals , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , MicroRNAs/genetics , Regeneration/genetics , RNA, Circular/genetics , Stichopus/genetics
5.
Genes (Basel) ; 15(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38790170

ABSTRACT

Caspase (CASP) is a protease family that plays a vital role in apoptosis, development, and immune response. Herein, we reported the identification and characterization of two CASPs, AjCASPX1 and AjCASPX2, from the sea cucumber Apostichopus japonicus, an important aquaculture species. AjCASPX1/2 share similar domain organizations with the vertebrate initiator caspases CASP2/9, including the CARD domain and the p20/p10 subunits with conserved functional motifs. However, compared with human CASP2/9, AjCASPX1/2 possess unique structural features in the linker region between p20 and p10. AjCASPX1, but not AjCASPX2, induced marked apoptosis of human cells by activating CASP3/7. The recombinant proteins of AjCASPX2 and the CARD domain of AjCASPX2 were able to bind to a wide range of bacteria, as well as bacterial cell wall components, and inhibit bacterial growth. AjCASPX1, when expressed in Escherichia coli, was able to kill the host bacteria. Under normal conditions, AjCASPX1 and AjCASPX2 expressions were most abundant in sea cucumber muscle and coelomocytes, respectively. After bacterial infection, both AjCASPX1 and AjCASPX2 expressions were significantly upregulated in sea cucumber tissues and cells. Together, these results indicated that AjCASPX1 and AjCASPX2 were initiator caspases with antimicrobial activity and likely functioned in apoptosis and immune defense against pathogen infection.


Subject(s)
Apoptosis , Stichopus , Animals , Stichopus/genetics , Stichopus/microbiology , Stichopus/immunology , Humans , Caspases, Initiator/genetics , Caspases, Initiator/metabolism , Sea Cucumbers/genetics , Phylogeny
6.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674158

ABSTRACT

With the continuous rise of the sea cucumber aquaculture industry in China, the tropical sea cucumber aquaculture industry is also improving. However, research on the gut microorganisms of tropical sea cucumbers in captivity is scarce. In this study, high-throughput sequencing methods were used to analyze the gut microbial composition of Stichopus monotuberculatus and Holothuria scabra in the dry season and wet season of artificial environments. The results showed that 66 phyla were obtained in all samples, of which 59 phyla were obtained in the dry season, and 45 phyla were obtained in the wet season. The Tax4Fun analysis showed that certain gut bacterial communities affect the daily metabolism of two sea cucumber species and are involved in maintaining gut microecological balance in the gut of two sea cucumber species. In addition, compared with differences between species, PCoA and UPGMA clustering analysis showed the gut prokaryotes of the same sea cucumber species varied more in different seasons, indicating that the influence of environment was higher than the feeding choices of sea cucumbers under relatively closed conditions. These results revealed the gut bacterial community composition of S. monotuberculatus and H. scabra and the differences in gut bacterial structure between two sea cucumber species in different seasons were compared, which would provide the foundation for tropical sea cucumber aquaculture in the future.


Subject(s)
Bacteria , Gastrointestinal Microbiome , Sea Cucumbers , Seasons , Animals , Gastrointestinal Microbiome/genetics , Bacteria/classification , Bacteria/genetics , Sea Cucumbers/microbiology , Sea Cucumbers/genetics , Aquaculture , High-Throughput Nucleotide Sequencing , Phylogeny , Holothuria/microbiology , Holothuria/genetics , Stichopus/microbiology , Stichopus/genetics , RNA, Ribosomal, 16S/genetics
7.
Fish Shellfish Immunol ; 149: 109592, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685443

ABSTRACT

Akirin2 is pivotal for regulating host immunological responses in vertebrates, including antibacterial immunity and inflammation. However, the functional significance of Akirin2 in invertebrates remains largely unexplored. In this study, we cloned the complete cDNA sequence of Akirin2 from A. japonicus (AjAkirin2) and elucidated its immunological mechanism upon pathogen infection. The whole AjAkirin2 cDNA sequence spanned 1014 bp, which comprised a 630 bp open reading frame encoding 209 amino acids, a 230 bp 5'-untranslated region (UTR), and a 154 bp 3'-UTR. Spatial expression analysis displayed constitutive expression of AjAkirin2 in all examined tissues. Both mRNA and protein expression abundance of the AjAkirin2 showed considerably high in coelomocytes of sea cucumbers challenged with Vibrio splendidus or stimulated with lipopolysaccharide. In addition, we found that sea cucumbers with 107 CFU/mL V. splendidus infection had a lower survival rate upon AjAkirin2 knockdown. Mechanistically, the result of GST-pull down and co-IP assays indicated that AjAkirin2 directly interacted with Aj14-3-3ζ. Moreover, we also detected that AjAkirin2 positively regulated Aj14-3-3ζ expression in sea cucumber coelomocytes. Furthermore, the knockdown of AjAkirin2 or Aj14-3-3ζ resulted in increasing intracellular bacteria load and suppressed the expression of key genes of the NF-κB signaling pathway (p65 and p105) and inflammatory cytokines including IL-17, VEGF, and MMP-1. In summary, these results confirmed the critical role of AjAkirin2 in mediating innate immune responses against V. splendidus infection via interaction with Aj14-3-3ζ and thereby exerting antibacterial function.


Subject(s)
Immunity, Innate , Phylogeny , Stichopus , Vibrio , Animals , Vibrio/physiology , Stichopus/immunology , Stichopus/genetics , Immunity, Innate/genetics , Amino Acid Sequence , 14-3-3 Proteins/genetics , 14-3-3 Proteins/immunology , 14-3-3 Proteins/metabolism , Gene Expression Regulation/immunology , Sequence Alignment/veterinary , Gene Expression Profiling/veterinary , Base Sequence
8.
J Immunol ; 212(8): 1319-1333, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38426898

ABSTRACT

N 6-methyladenosine (m6A), the most prevalent internal modification in eukaryotic RNA, was able to mediate circular RNA (circRNA) function in many immune processes. Nevertheless, the functional role of m6A-modified circRNAs in innate immunity of invertebrates remained unclear. In this study, we identified m6A-modified circRNA388 from cultured sea cucumber (Apostichopus japonicus) coelomocytes, which was mainly detected in cytoplasm after Vibrio splendidus infection. A knockdown assay indicated that cytoplasm circRNA388 promoted coelomocyte autophagy and decreased the number of intracellular V. splendidus. Mechanistically, the circRNA388 in the cytoplasm directly sponged miR-2008 to block its interaction with Unc-51-like kinase 1 from A. japonicus (AjULK) and further promoted autophagy to resist V. splendidus infection. More importantly, we found that m6A modification was vital to circRNA388 nuclear export with YTH domain-containing protein 1 from A. japonicus (AjYTHDC1) as the reader. AjYTHDC1 facilitated the nuclear export of m6A-modified circRNA388 via interaction with exportin-1 (chromosomal maintenance 1) from A. japonicus (AjCRM1). Knockdown of AjCRM1 could significantly decrease the content of cytoplasm circRNA388. Overall, our results provide the first evidence that nuclear export of m6A-modified circRNA388 is dependent on the novel AjCRM1 to our knowledge, which was further promoted coelomocyte autophagy by miR-2008/AjULK axis to clear intracellular V. splendidus.


Subject(s)
Adenine/analogs & derivatives , MicroRNAs , Stichopus , Vibrio Infections , Vibrio , Animals , Stichopus/genetics , Active Transport, Cell Nucleus , Immunity, Innate/genetics , Autophagy , MicroRNAs/genetics , MicroRNAs/metabolism
9.
J Agric Food Chem ; 72(15): 8798-8804, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38548625

ABSTRACT

Fibrillin is an important structural protein in connective tissues. The presence of fibrillin in sea cucumber Apostichopus japonicus is still poorly understood, which limits our understanding of the role of fibrillin in the A. japonicus microstructure. The aim of this study was to clarify the presence of fibrillin in the sea cucumber A. japonicus body wall. Herein, the presence of fibrillin in sea cucumber A. japonicus was investigated by utilizing targeted proteomics and visualization strategies. The contents of three different isoforms of fibrillin with high abundance in A. japonicus were determined to be 0.96, 2.54, and 0.15 µg/g (wet base), respectively. The amino acid sequence of fibrillin (GeneBank number: PIK56741.1) that started at position 631 and ended at position 921 was selected for cloning and expressing antigen. An anti-A. japonicus fibrillin antibody with a titer greater than 1:64 000 was successfully obtained. It was observed that the distribution of fibrillin in the A. japonicus body wall was scattered and dispersed in the form of fibril bundles at the microscale. It further observed that fibrillin was present near collagen fibrils and some entangled outside the collagen fibrils at the nanoscale. Moreover, the stoichiometry of the most dominant collagen and fibrillin molecules in A. japonicus was determined to be approximately 250:1. These results contribute to an understanding of the role of fibrillin in the sea cucumber microstructure.


Subject(s)
Sea Cucumbers , Stichopus , Animals , Stichopus/genetics , Stichopus/chemistry , Sea Cucumbers/metabolism , Proteomics , Fibrillins , Collagen/chemistry
10.
Fish Shellfish Immunol ; 148: 109491, 2024 May.
Article in English | MEDLINE | ID: mdl-38490346

ABSTRACT

As is well known, apoptosis is an important form of immune response and immune regulation, particularly playing a crucial role in combating microbial infections. Apoptosis-inducing factor 1 (AIF-1) is essential for apoptosis to induce chromatin condensation and DNA fragmentation via a caspase-independent pathway. The nuclear translocation of AIF-1 is a key step in apoptosis but the molecular mechanism is still unclear. In this study, the homologous gene of AIF-1, named AjAIF-1, was cloned and identified in Apostichopus japonicus. The mRNA expression of AjAIF-1 was significantly increased by 46.63-fold after Vibrio splendidus challenge. Silencing of AjAIF-1 was found to significantly inhibit coelomocyte apoptosis because the apoptosis rate of coelomocyte decreased by 0.62-fold lower compared with the control group. AjAIF-1 was able to promote coelomocyte apoptosis through nuclear translocation under the V. splendidus challenge. Moreover, AjAIF-1 and Ajimportin ß were mainly co-localized around the nucleus in vivo and silencing Ajimportin ß significantly inhibited the nuclear translocation of AjAIF-1 and suppressed coelomocyte apoptosis by 0.64-fold compared with control. In summary, nuclear translocation of AjAIF-1 will likely mediate coelomocyte apoptosis through an importin ß-dependent pathway in sea cucumber.


Subject(s)
Stichopus , Vibrio , Animals , Stichopus/genetics , beta Karyopherins , Immunity, Innate/genetics , Apoptosis Inducing Factor/genetics , Vibrio/physiology , Apoptosis
11.
Sci Rep ; 14(1): 4886, 2024 02 28.
Article in English | MEDLINE | ID: mdl-38418859

ABSTRACT

Morphologically cryptic and pseudo-cryptic species pose a challenge to taxonomic identification and assessments of species diversity and distributions. Such is the case for the sea cucumber Stichopus horrens, commonly confused with Stichopus monotuberculatus. Here, we used mitochondrial cytochrome oxidase subunit I (COI) and microsatellite markers to examine genetic diversity in Stichopus cf. horrens throughout the Philippine archipelago, to aid species identification and clarify species boundaries. Phylogenetic analysis reveals two recently diverged COI lineages (Clade A and Clade B; c. 1.35-2.54 Mya) corresponding to sequence records for specimens identified as S. monotuberculatus and S. horrens, respectively. Microsatellite markers reveal two significantly differentiated genotype clusters broadly concordant with COI lineages (Cluster 1, Cluster 2). A small proportion of individuals were identified as later-generation hybrids indicating limited contemporary gene flow between genotype clusters, thus confirming species boundaries. Morphological differences in papillae distribution and form are observed for the two species, however tack-like spicules from the dorsal papillae are not a reliable diagnostic character. An additional putative cryptic species was detected within Clade B-Cluster 2 specimens warranting further examination. We propose that these lineages revealed by COI and genotype data be referred to as Stichopus cf. horrens species complex.


Subject(s)
Sea Cucumbers , Stichopus , Humans , Animals , Sea Cucumbers/genetics , Stichopus/genetics , Echinodermata/genetics , Phylogeny , Microsatellite Repeats/genetics
12.
Article in English | MEDLINE | ID: mdl-38237259

ABSTRACT

Steroids play a vital role in animal survival, promoting growth and development when administered appropriate concentration exogenously. However, it remains unclear whether steroids can induce gonadal development and the underlying mechanism. This study assessed sea cucumber weights post-culturing, employing paraffin sections and RNA sequencing (RNA-seq) to explore gonadal changes and gene expression in response to exogenous steroid addition. Testosterone and cholesterol, dissolved in absolute ethanol, were incorporated into sea cucumber diets. After 30 days, testosterone and cholesterol significantly increased sea cucumber weights, with the total weight of experimental groups surpassing the control. The testosterone-fed group exhibited significantly higher eviscerated weight than the control group. In addition, dietary steroids influenced gonad morphology and upregulated genes related to cell proliferation,such as RPL35, PC, eLF-1, MPC2, ADCY10 and CYP2C18. Thees upregulated differentially expressed genes were significantly enriched in the organic system, metabolism, genetic information and environmental information categories. These findings imply that steroids may contribute to the growth and the process of genetic information translation and protein synthesis essential for gonadal development and gametogenesis.


Subject(s)
Sea Cucumbers , Stichopus , Animals , Stichopus/genetics , Sea Cucumbers/genetics , Weight Gain , Cell Proliferation , Gametogenesis , Testosterone , Cholesterol
13.
Int J Biol Macromol ; 254(Pt 2): 127801, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37918586

ABSTRACT

The microRNA novel-3 (miRn-3) is a 23-nt small endogenous noncoding RNA of unknown function. To enrich our knowledge of the regulatory function of miRn-3 in the process of wound healing, the sea cucumber Apostichopus japonicus was used as a target model in this study. Gelsolin (AjGSN), a potential target gene of miRn-3, was cloned and characterized, and the interaction between miRn-3 and AjGSN was verified. The function of the miRn-3/AjGSN axis in regulating cutaneous wound healing was explored in the sea cucumber A. japonicus. The results showed that 1) the full-length cDNA of AjGSN was 2935 bp, with a high level of sequence conservation across the echinoderms; 2) miRn-3 could bind to the 3'UTR of AjGSN and negatively regulate the expression of AjGSN; 3) overexpression of miRn-3 and inhibition of the expression of AjGSN suppressed cutaneous wound healing in A. japonicus. In general, all observations of this study suggest that miRn-3 plays an important role in the early process of cutaneous wound healing by negatively targeting AjGSN, and that it may be a potential biomarker in wound healing.


Subject(s)
MicroRNAs , Sea Cucumbers , Stichopus , Animals , Stichopus/genetics , Stichopus/metabolism , Sea Cucumbers/genetics , Sea Cucumbers/metabolism , Gelsolin/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Wound Healing/genetics , Immunity, Innate
14.
Article in English | MEDLINE | ID: mdl-38065305

ABSTRACT

Activator protein-1 subfamily member c-Fos wields significant influence over cellular activities, such as regulation of cell growth and division, cell death, and immune responses under various extracellular situations. In this study, the full-length c-Fos of sea cucumber, Apostichopus japonicus (Ajfos) was successfully cloned and analyzed. The anticipated 306 amino acid sequences of Ajfos displayed a basic-leucine zipper (bZIP) domain, similar to invertebrate counterparts. In addition, the qPCR results suggested Ajfos expressed in all tissues, with the highest level in coelomocytes from polian vesicle (vesicle lumen cells), followed by coelomocytes from coelom (coelomocytes). Moreover, the expression levels of Ajfos in the coelomocytes and vesicle lumen cells of sea cucumber showed significant changes after the Vibrio splendidus challenge, especially reaching a peak at 6 h. Compared with the silencing negative control RNA interference (siNC) group, silencing Ajfos (siAjfos) in vivo decreased the downstream proliferation-related gene expression of vesicle lumen cells after infection with V. splendidus while no significant influence was observed on coelomocytes. Furthermore, the proliferation proportion of vesicle lumen cells in the siAjfos group was significantly reduced under pathogen stimulation conditions. Finally, based on the fluctuation trend of total coelomocyte density (TCD) from coelom and polian vesicle previously discovered, it is evident that Ajfos played a critical role in facilitating the swift proliferation of vesicle lumen cells in response to V. splendidus stimulation. Altogether, this research provided an initial reference of the function of Ajfos in echinoderms, unveiling its participation in host coelomocyte proliferation of sea cucumbers during bacterial challenges.


Subject(s)
Sea Cucumbers , Stichopus , Animals , Stichopus/genetics , Transcription Factors , Sea Cucumbers/genetics , Gene Expression Regulation , Cloning, Molecular , Immunity, Innate/genetics
15.
Article in English | MEDLINE | ID: mdl-38065309

ABSTRACT

Sea cucumber Apostichopus japonicus displays the typical circadian rhythms. This present study investigated the molecular regulation of clock genes, as well as monoamines and melatonin, in multiple tissues of A. japonicus, responding to the photoperiod. In order to determine their pivotal role in circadian rhythms, the crucial clock genes, namely AjClock, AjArnt1, AjCry1, and AjTimeless, were identified and a comprehensive analysis of their expressions across various tissues in adult A. japonicus was conducted, revealing the potential existence of central and peripheral oscillators. Results demonstrated that the tissues of polian vesicle and nerve ring exhibited significant clock gene expression associated with the orchestration of circadian regulation, and that environmental light fluctuations exerted influence on the expression of these clock genes. However, a number of genes, such as AjArnt1 and AjCry1, maintained their circadian rhythmicity even under continuous light conditions. Moreover, we further investigated the circadian patterns of melatonin (MT), serotonin (5-HT), and dopamine (DA) secretion in A. japonicus, data that underscored the tissue-specific regulatory differences and the inherent adaptability to dynamic light environments. Collectively, these findings will provide the molecular mechanisms controlling the circadian rhythm in echinoderms and the candidate tissues playing the role of central oscillators in sea cucumbers.


Subject(s)
Circadian Clocks , Melatonin , Sea Cucumbers , Stichopus , Animals , Photoperiod , Stichopus/genetics , Sea Cucumbers/genetics , Circadian Rhythm/genetics , Gene Expression , Gene Expression Regulation , Circadian Clocks/genetics
16.
Microb Pathog ; 187: 106519, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38158142

ABSTRACT

Vibrio splendidus is one of the main pathogens caused diseases with a diversity of marine cultured animals, especially the skin ulcer syndrome in Apostichopus japonicus. However, limited virulence factors have been identified in V. splendidus. In this study, one aerAVs gene coding an aerolysin of V. splendidus was cloned and conditionally expressed in Escherichia coli. The haemolytic activity of the recombinant AerAVs was analyzed. Western blotting was used to study of the secretion pathway of proaerolysin, and it showed that the proaerolysin was secreted via both outer membrane vehicles and classical secretion pathways. Since no active protein of aerolysin was obtained, one aerolysin surface displayed bacterium DH5α/pAT-aerA was constructed, and its haemolytic activity and virulence were determined. The results showed that the AerAVs displayed on the surface showed obvious haemolytic activity and cytotoxic to the coelomocyte of A. japonicus. Artificial immerse infection separately using the DH5α/pAT or DH5α/pAT-aerA was conducted. The result showed that the mortality percent of sea cucumber A. japonicus challenged with DH5α/pAT-aerA was 38.89 % higher than that challenged with the control strain DH5α/pAT, and earlier death occurred. Combined all the results indicates that aerolysin with the haemolytic activity and cytotoxic activity is a virulence factor of V. splendidus.


Subject(s)
Bacterial Toxins , Pore Forming Cytotoxic Proteins , Stichopus , Vibrio Infections , Vibrio , Animals , Vibrio Infections/microbiology , Virulence Factors/genetics , Virulence Factors/metabolism , Cloning, Molecular , Stichopus/genetics , Stichopus/microbiology , Immunity, Innate
17.
Cell Stress Chaperones ; 28(6): 1027-1039, 2023 11.
Article in English | MEDLINE | ID: mdl-38108989

ABSTRACT

Salinity is important abiotic factor influencing sea cucumber aquaculture. This study aimed to identify and functional study of a novel transient receptor potential cation channel subfamily A member 1 (TRPA1) involved in salinity stress through interaction with miR-2013 in the sea cucumber. The full-length cDNA sequence was 1369 bp in length and encoded 138 amino acids. The TRPA1 homolog protein was a hydrophilic protein without a signal peptide and was predicted to a spatial structure of seven helices and eight random coils and two major ANK functional domains. Bioinformatic analysis and luciferase reporter assays confirmed TRPA1 as a target gene of miR-2013. Quantitative PCR revealed that miR-2013 was induced upregulation after salinity stress, while TRPA1 showed upregulated expression with maximum expression at 24 h. The expression of miR-2013 and TRPA1 was negatively regulated. Transfection experiments were conducted to validate the role of miR-2013 and TRPA1 in salinity response. The results showed that miR-2013 was upregulated and TRPA1 was downregulated after transfection with miR-2013 mimics, while miR-2013 was downregulated and TRPA1 was upregulated after transfection with miR-2013 inhibitor. Transfection with si-TRPA1 homolog resulted in upregulation of miR-2013 and downregulation of TRPA1 homolog. These findings suggest that miR-2013 can regulate the expression of TRPA1 under salt stress, and highlight the importance of miR-2013 and TRPA1 in salt stress response. miR-2013 mimics improved the survival rate, while miR-2013 inhibitor and si-TRPA1 reduced it. These findings suggest that miR-2013 and TRPA1 play important roles in sea cucumbers adaptation to salinity changes.


Subject(s)
MicroRNAs , Sea Cucumbers , Stichopus , Animals , Stichopus/genetics , Sea Cucumbers/genetics , Salt Stress/genetics , Up-Regulation , MicroRNAs/genetics , MicroRNAs/metabolism
18.
Article in English | MEDLINE | ID: mdl-37769382

ABSTRACT

The sea cucumber Apostichopus japonicus is an economically important marine species in China, and understanding the mechanisms underlying its gonad development is crucial for successful reproduction and breeding. In this study, we performed transcriptome comparisons and analyses of A. japonicus gonadal and non-gonadal tissues to identify genes and molecular pathways associated with gonadal development. We also supplemented the annotation of the A. japonicus genome. Collectively, results revealed a total of 941 ovary-specific genes and 2499 testis-specific genes through different expression analysis and WGCNA analysis. The most enriched pathways in ovary and testis were "DNA replication" and "purine metabolism", respectively. Additionally, we identified key candidate gene modules that control gonad development and germ cell maturation, with CDT1 and DYNC2LI1 serving as hub genes. Our findings provide important insights into the gonadal development system of A. japonicus and offer valuable references for further research on reproductive biology in this marine invertebrate species.


Subject(s)
Sea Cucumbers , Stichopus , Female , Male , Animals , Transcriptome , Stichopus/genetics , Sea Cucumbers/genetics , Sea Cucumbers/metabolism , Gene Expression Profiling , Ovary
19.
Int J Mol Sci ; 24(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37569587

ABSTRACT

The sea cucumber Apostichopus japonicus has important nutritional and medicinal value. Unfortunately, we know little of the source of active chemicals in this animal, but the plentiful pigments of these animals are thought to function in intriguing ways for translation into clinical and food chemistry usage. Here, we found key cell groups with the gene activity predicted for the color morphology of sea cucumber body using single-cell RNA-seq. We refer to these cell populations as melanocytes and quinocytes, which are responsible for the synthesis of melanin and quinone pigments, respectively. We integrated analysis of pigment biochemistry with the transcript profiles to illuminate the molecular mechanisms regulating distinct pigment formation in echinoderms. In concert with the correlated pigment analysis from each color morph, this study expands our understanding of medically important pigment production, as well as the genetic mechanisms for color morphs, and provides deep datasets for exploring advancements in the fields of bioactives and nutraceuticals.


Subject(s)
Sea Cucumbers , Stichopus , Animals , Transcriptome , Sea Cucumbers/genetics , Stichopus/genetics
20.
Fish Shellfish Immunol ; 140: 108997, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37586599

ABSTRACT

Pacifastin proteins are previously found to regulate the phenoloxidase system in invertebrates and arthropods. In this study, the immune response that was regulated by Ajpacifastin-like in the sea cucumber Apostichopus japonicus was determined. RNA interference was used to knock down the expression of the Ajpacifastin-like gene in A. japonicus, followed by challenge with Vibrio splendidus, and the colony count showed that the survival of V. splendidus in the si-Ajpacifastin group increased 4.64-fold compared to that of the control group. The purified recombinant Ajpacifastin-like showed an inhibitory effect on the extracellular protease activity of the supernatant collected from the V. splendidus culture. Consequently, a comparative transcriptome analysis of the coelomocytes from the control group and the si-Ajpacifastin group was performed to explore the global regulatory effect of the Ajpacifastin-like. A total of 1486 differentially expressed genes (DEGs) were identified, including 745 upregulated genes and 741 downregulated genes. GO enrichment showed that the DEGs were mainly enriched in translation, cytosolic ribosomal subunit and structural constituent of ribosome. KEGG analysis showed that the DEGs were significantly enriched in the retinoic acid-inducible gene I (RIG-I)-like receptor signaling pathway, antigen processing and presentation, toll-like receptor signaling pathway, mitogen-activated protein kinase signaling pathway, nuclear factor-kappa B signaling pathway and other immune-related pathways. Furthermore, real-time reverse transcriptase PCR was used to determine the RNA levels of six DEGs, i.e., cathepsinB, CYLD, caspase8, TRAF6, hsp90 and FADD, to verify the RNA-seq results. Overall, our results specified the immune response and pathways of A. japonicus in which Ajpacifastin-like was involved in.


Subject(s)
Sea Cucumbers , Stichopus , Vibrio , Animals , Stichopus/genetics , Vibrio/physiology , Immunity , Immunity, Innate/genetics
SELECTION OF CITATIONS
SEARCH DETAIL