Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.125
Filter
1.
Biomolecules ; 14(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38672479

ABSTRACT

Polyamines are polycations derived from amino acids that play an important role in proliferation and growth in almost all living cells. In Streptococcus pneumoniae (the pneumococcus), modulation of polyamine metabolism not only plays an important regulatory role in central metabolism, but also impacts virulence factors such as the capsule and stress responses that affect survival in the host. However, functional annotation of enzymes from the polyamine biosynthesis pathways in the pneumococcus is based predominantly on computational prediction. In this study, we cloned SP_0166, predicted to be a pyridoxal-dependent decarboxylase, from the Orn/Lys/Arg family pathway in S. pneumoniae TIGR4 and expressed and purified the recombinant protein. We performed biochemical characterization of the recombinant SP_0166 and confirmed the substrate specificity. For polyamine analysis, we developed a simultaneous quantitative method using hydrophilic interaction liquid chromatography (HILIC)-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) without derivatization. SP_0166 has apparent Km, kcat, and kcat/Km values of 11.3 mM, 715,053 min-1, and 63,218 min-1 mM-1, respectively, with arginine as a substrate at pH 7.5. We carried out inhibition studies of SP_0166 enzymatic activity with arginine as a substrate using chemical inhibitors DFMO and DFMA. DFMO is an irreversible inhibitor of ornithine decarboxylase activity, while DFMA inhibits arginine decarboxylase activity. Our findings confirm that SP_0166 is inhibited by DFMA and DFMO, impacting agmatine production. The use of arginine as a substrate revealed that the synthesis of putrescine by agmatinase and N-carbamoylputrescine by agmatine deiminase were both affected and inhibited by DFMA. This study provides experimental validation that SP_0166 is an arginine decarboxylase in pneumococci.


Subject(s)
Carboxy-Lyases , Streptococcus pneumoniae , Tandem Mass Spectrometry , Carboxy-Lyases/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/chemistry , Streptococcus pneumoniae/enzymology , Streptococcus pneumoniae/genetics , Chromatography, High Pressure Liquid , Substrate Specificity , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Polyamines/metabolism , Kinetics
2.
Int Immunopharmacol ; 128: 111476, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38185035

ABSTRACT

Streptococcus pneumoniae is a clinically relevant pathogen notorious for causing pneumonia, meningitis, and otitis media in immunocompromised patients. Currently, antibiotic therapy is the most efficient treatment for fighting pneumococcal infections. However, an arise in antimicrobial resistance in S. pneumoniae has become a serious health issue globally. To resolve the problem, alternative and cost-effective strategies, such as monoclonal antibody-based targeted therapy, are needed for combating bacterial infection. S. pneumoniae alpha-enolase (spEno1), which is thought to be a great target, is a surface protein that binds and converts human plasminogen to plasmin, leading to accelerated bacterial infections. We first purified recombinant spEno1 protein for chicken immunization to generate specific IgY antibodies. We next constructed two single-chain variable fragments (scFv) antibody libraries by phage display technology, containing 7.2 × 107 and 4.8 × 107 transformants. After bio-panning, ten scFv antibodies were obtained, and their binding activities to spEno1 were evaluated on ELISA, Western blot and IFA. The epitopes of spEno1 were identified by these scFv antibodies, which binding affinities were determined by competitive ELISA. Moreover, inhibition assay displayed that the scFv antibodies effectively inhibit the binding between spEno1 and human plasminogen. Overall, the results suggested that these scFv antibodies have the potential to serve as an immunotherapeutic drug against S. pneumoniae infections.


Subject(s)
Phosphopyruvate Hydratase , Single-Chain Antibodies , Streptococcus pneumoniae , Animals , Humans , Chickens , Peptide Library , Phosphopyruvate Hydratase/immunology , Plasminogen , Recombinant Proteins , Single-Chain Antibodies/immunology , Streptococcus pneumoniae/enzymology , Streptococcus pneumoniae/immunology
3.
J Biol Chem ; 299(7): 104892, 2023 07.
Article in English | MEDLINE | ID: mdl-37286036

ABSTRACT

Glycolysis is the primary metabolic pathway in the strictly fermentative Streptococcus pneumoniae, which is a major human pathogen associated with antibiotic resistance. Pyruvate kinase (PYK) is the last enzyme in this pathway that catalyzes the production of pyruvate from phosphoenolpyruvate (PEP) and plays a crucial role in controlling carbon flux; however, while S. pneumoniae PYK (SpPYK) is indispensable for growth, surprisingly little is known about its functional properties. Here, we report that compromising mutations in SpPYK confers resistance to the antibiotic fosfomycin, which inhibits the peptidoglycan synthesis enzyme MurA, implying a direct link between PYK and cell wall biogenesis. The crystal structures of SpPYK in the apo and ligand-bound states reveal key interactions that contribute to its conformational change as well as residues responsible for the recognition of PEP and the allosteric activator fructose 1,6-bisphosphate (FBP). Strikingly, FBP binding was observed at a location distinct from previously reported PYK effector binding sites. Furthermore, we show that SpPYK could be engineered to become more responsive to glucose 6-phosphate instead of FBP by sequence and structure-guided mutagenesis of the effector binding site. Together, our work sheds light on the regulatory mechanism of SpPYK and lays the groundwork for antibiotic development that targets this essential enzyme.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Fosfomycin , Pyruvate Kinase , Streptococcus pneumoniae , Humans , Anti-Bacterial Agents/pharmacology , Fosfomycin/pharmacology , Kinetics , Phosphoenolpyruvate/metabolism , Pyruvate Kinase/metabolism , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/enzymology , Streptococcus pneumoniae/genetics
4.
J Biol Chem ; 299(2): 102891, 2023 02.
Article in English | MEDLINE | ID: mdl-36634846

ABSTRACT

Influenza A viruses and the bacterium Streptococcus pneumoniae (pneumococci) both express neuraminidases that catalyze release of sialic acid residues from oligosaccharides and glycoproteins. Although these respiratory pathogen neuraminidases function in a similar environment, it remains unclear if these enzymes use similar mechanisms for sialic acid cleavage. Here, we compared the enzymatic properties of neuraminidases from two influenza A subtypes (N1 and N2) and the pneumococcal strain TIGR4 (NanA, NanB, and NanC). Insect cell-produced N1 and N2 tetramers exhibited calcium-dependent activities and stabilities that varied with pH. In contrast, E. coli-produced NanA, NanB, and NanC were isolated as calcium insensitive monomers with stabilities that were more resistant to pH changes. Using a synthetic substrate (MUNANA), all neuraminidases showed similar pH optimums (pH 6-7) that were primarily defined by changes in catalytic rate rather than substrate binding affinity. Upon using a multivalent substrate (fetuin sialoglycans), much higher specific activities were observed for pneumococcal neuraminidases that contain an additional lectin domain. In virions, N1 and especially N2 also showed enhanced specific activity toward fetuin that was lost upon the addition of detergent, indicating the sialic acid-binding capacity of neighboring hemagglutinin molecules likely contributes to catalysis of natural multivalent substrates. These results demonstrate that influenza and pneumococcal neuraminidases have evolved similar yet distinct strategies to optimize their catalytic activity.


Subject(s)
Influenza A virus , N-Acetylneuraminic Acid , Neuraminidase , Calcium/metabolism , Catalysis , Escherichia coli/enzymology , N-Acetylneuraminic Acid/metabolism , Neuraminidase/metabolism , Streptococcus pneumoniae/enzymology , Influenza A virus/enzymology , Animals , Cell Line
5.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article in English | MEDLINE | ID: mdl-34732571

ABSTRACT

Many pathogenic bacteria are encased in a layer of capsular polysaccharide (CPS). This layer is important for virulence by masking surface antigens, preventing opsonophagocytosis, and avoiding mucus entrapment. The bacterial tyrosine kinase (BY-kinase) regulates capsule synthesis and helps bacterial pathogens to survive different host niches. BY-kinases autophosphorylate at the C-terminal tyrosine residues upon external stimuli, but the role of phosphorylation is still unclear. Here, we report that the BY-kinase CpsCD is required for growth in Streptococcus pneumoniae Cells lacking a functional cpsC or cpsD accumulated low molecular weight CPS and lysed because of the lethal sequestration of the lipid carrier undecaprenyl phosphate, resulting in inhibition of peptidoglycan (PG) synthesis. CpsC interacts with CpsD and the polymerase CpsH. CpsD phosphorylation reduces the length of CPS polymers presumably by controlling the activity of CpsC. Finally, pulse-chase experiments reveal the spatiotemporal coordination between CPS and PG synthesis. This coordination is dependent on CpsC and CpsD. Together, our study provides evidence that BY-kinases regulate capsule polymer length by fine-tuning CpsC activity through autophosphorylation.


Subject(s)
Bacterial Capsules/metabolism , Bacterial Proteins/metabolism , Galactosyltransferases/metabolism , Polysaccharides, Bacterial/metabolism , Protein-Tyrosine Kinases/metabolism , Streptococcus pneumoniae/enzymology , Bacterial Proteins/genetics , Galactosyltransferases/genetics , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/growth & development
6.
J Bacteriol ; 203(24): e0043921, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34606370

ABSTRACT

Streptococcus pneumoniae invades a myriad of host tissues following efficient breaching of cellular barriers. However, strategies adopted by pneumococcus for evasion of host intracellular defenses governing successful transcytosis across host cellular barriers remain elusive. In this study, using brain endothelium as a model host barrier, we observed that pneumococcus containing endocytic vacuoles (PCVs), formed following S. pneumoniae internalization into brain microvascular endothelial cells (BMECs), undergo early maturation and acidification, with a major subset acquiring lysosome-like characteristics. Exploration of measures that would preserve pneumococcal viability in the lethal acidic pH of these lysosome-like vacuoles revealed a critical role of the two-component system response regulator, CiaR, which was previously implicated in induction of acid tolerance response. Pyruvate oxidase (SpxB), a key sugar-metabolizing enzyme that catalyzes oxidative decarboxylation of pyruvate to acetyl phosphate, was found to contribute to acid stress tolerance, presumably via acetyl phosphate-mediated phosphorylation and activation of CiaR, independent of its cognate kinase CiaH. Hydrogen peroxide, the by-product of an SpxB-catalyzed reaction, was also found to improve pneumococcal intracellular survival by oxidative inactivation of lysosomal cysteine cathepsins, thus compromising the degradative capacity of the host lysosomes. As expected, a ΔspxB mutant was found to be significantly attenuated in its ability to survive inside the BMEC endocytic vacuoles, reflecting its reduced transcytosis ability. Collectively, our studies establish SpxB as an important virulence determinant facilitating pneumococcal survival inside host cells, ensuring successful trafficking across host cellular barriers. IMPORTANCE Host cellular barriers have innate immune defenses to restrict microbial passage into sterile compartments. Here, by focusing on the blood-brain barrier endothelium, we investigated mechanisms that enable Streptococcus pneumoniae to traverse through host barriers. Pyruvate oxidase, a pneumococcal sugar-metabolizing enzyme, was found to play a crucial role in this via generation of acetyl phosphate and hydrogen peroxide. A two-pronged approach consisting of acetyl phosphate-mediated activation of acid tolerance response and hydrogen peroxide-mediated inactivation of lysosomal enzymes enabled pneumococci to maintain viability inside the degradative vacuoles of the brain endothelium for successful transcytosis across the barrier. Thus, pyruvate oxidase is a key virulence determinant and can potentially serve as a viable candidate for therapeutic interventions for better management of invasive pneumococcal diseases.


Subject(s)
Endothelium, Vascular/metabolism , Microbial Viability , Pyruvate Oxidase/metabolism , Streptococcus pneumoniae/enzymology , Transcytosis/physiology , Blood-Brain Barrier , Cells, Cultured , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Humans , Pyruvate Oxidase/genetics , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism
7.
mBio ; 12(5): e0238521, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34544281

ABSTRACT

RNases perform indispensable functions in regulating gene expression in many bacterial pathogens by processing and/or degrading RNAs. Despite the pivotal role of RNases in regulating bacterial virulence factors, the functions of RNases have not yet been studied in the major human respiratory pathogen Streptococcus pneumoniae (pneumococcus). Here, we sought to determine the impact of two conserved RNases, the endoribonuclease RNase Y and exoribonuclease polynucleotide phosphorylase (PNPase), on the physiology and virulence of S. pneumoniae serotype 2 strain D39. We report that RNase Y and PNPase are essential for pneumococcal pathogenesis, as both deletion mutants showed strong attenuation of virulence in murine models of invasive pneumonia. Genome-wide transcriptomic analysis revealed that the abundances of nearly 200 mRNA transcripts were significantly increased, whereas those of several pneumococcal small regulatory RNAs (sRNAs), including the Ccn (CiaR-controlled noncoding RNA) sRNAs, were altered in the Δrny mutant relative to the wild-type strain. Additionally, lack of RNase Y resulted in pleiotropic phenotypes that included defects in pneumococcal cell morphology and growth in vitro. In contrast, Δpnp mutants showed no growth defect in vitro but differentially expressed a total of 40 transcripts, including the tryptophan biosynthesis operon genes and numerous 5' cis-acting regulatory RNAs, a majority of which were previously shown to impact pneumococcal disease progression in mice using the serotype 4 strain TIGR4. Together, our data suggest that RNase Y exerts a global impact on pneumococcal physiology, while PNPase mediates virulence phenotypes, likely through sRNA regulation. IMPORTANCE Streptococcus pneumoniae is a notorious human pathogen that adapts to conditions in distinct host tissues and responds to host cell interactions by adjusting gene expression. RNases are key players that modulate gene expression by mediating the turnover of regulatory and protein-coding transcripts. Here, we characterized two highly conserved RNases, RNase Y and PNPase, and evaluated their impact on the S. pneumoniae transcriptome for the first time. We show that PNPase influences the levels of a narrow set of mRNAs but a large number of regulatory RNAs primarily implicated in virulence control, whereas RNase Y has a more sweeping effect on gene expression, altering levels of transcripts involved in diverse cellular processes, including cell division, metabolism, stress response, and virulence. This study further reveals that RNase Y regulates expression of genes governing competence by mediating the turnover of CiaR-controlled noncoding (Ccn) sRNAs.


Subject(s)
Bacterial Proteins/metabolism , Endoribonucleases/metabolism , Pneumococcal Infections/microbiology , Polyribonucleotide Nucleotidyltransferase/metabolism , Streptococcus pneumoniae/enzymology , Streptococcus pneumoniae/pathogenicity , Animals , Bacterial Proteins/genetics , Endoribonucleases/genetics , Gene Expression Regulation, Bacterial , Humans , Male , Mice , Mice, Inbred ICR , Polyribonucleotide Nucleotidyltransferase/genetics , Streptococcus pneumoniae/genetics , Virulence
8.
ACS Chem Biol ; 16(10): 2004-2015, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34309358

ABSTRACT

Mucin-type O-glycosylation (O-glycosylation) is a common post-translational modification that confers distinct biophysical properties to proteins and plays crucial roles in intercellular signaling. Yet, despite the importance of O-glycans, relatively few tools exist for their analysis and modification. In particular, there is a need for enzymes that can cleave the wide range of O-glycan structures found on protein surfaces, to facilitate glycan profiling and editing. Through functional metagenomic screening of the human gut microbiome, we discovered endo-O-glycan hydrolases from CAZy family GH101 that are capable of slowly cleaving the intact sialyl T-antigen trisaccharide (a ubiquitous O-glycan structure in humans) in addition to their primary activity against the T-antigen disaccharide. We then further explored this sequence space through phylogenetic profiling and analysis of representative enzymes, revealing large differences in the levels of this promiscuous activity between enzymes within the family. Through structural and sequence analysis, we identified active site residues that modulate specificity. Through subsequent rational protein engineering, we improved the activity of an enzyme identified by phylogenetic profiling sufficiently that substantial removal of the intact sialyl T-antigen from proteins could be readily achieved. Our best sialyl T-antigen hydrolase mutant, SpGH101 Q868G, is further shown to function on a number of proteins, tissues, and cells. Access to this enzyme opens up improved methodologies for unraveling the glycan code.


Subject(s)
Glycoside Hydrolases/metabolism , Mucins/metabolism , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , CHO Cells , Cricetulus , Erythrocytes/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Glycosylation , Humans , Mucins/chemistry , Mutagenesis, Site-Directed , Mutation , Streptococcus pneumoniae/enzymology , Substrate Specificity , Swine
9.
J Biol Chem ; 297(2): 101000, 2021 08.
Article in English | MEDLINE | ID: mdl-34303706

ABSTRACT

DNA gyrase is a type II topoisomerase that is responsible for maintaining the topological state of bacterial and some archaeal genomes. It uses an ATP-dependent two-gate strand-passage mechanism that is shared among all type II topoisomerases. During this process, DNA gyrase creates a transient break in the DNA, the G-segment, to form a cleavage complex. This allows a second DNA duplex, known as the T-segment, to pass through the broken G-segment. After the broken strand is religated, the T-segment is able to exit out of the enzyme through a gate called the C-gate. Although many steps of the type II topoisomerase mechanism have been studied extensively, many questions remain about how the T-segment ultimately exits out of the C-gate. A recent cryo-EM structure of Streptococcus pneumoniae GyrA shows a putative T-segment in close proximity to the C-gate, suggesting that residues in this region may be important for coordinating DNA exit from the enzyme. Here, we show through site-directed mutagenesis and biochemical characterization that three conserved basic residues in the C-gate of DNA gyrase are important for DNA supercoiling activity, but not for ATPase or cleavage activity. Together with the structural information previously published, our data suggest a model in which these residues cluster to form a positively charged region that facilitates T-segment passage into the cavity formed between the DNA gate and C-gate.


Subject(s)
Catalytic Domain , DNA Gyrase/metabolism , DNA, Bacterial/chemistry , DNA, Superhelical , Pneumococcal Infections/enzymology , Protein Structural Elements , Streptococcus pneumoniae/enzymology , DNA Gyrase/chemistry , DNA Topoisomerases, Type II/chemistry , DNA Topoisomerases, Type II/metabolism , Models, Molecular , Mutagenesis, Site-Directed/methods , Pneumococcal Infections/microbiology , Pneumococcal Infections/pathology , Streptococcus pneumoniae/isolation & purification , Streptococcus pneumoniae/pathogenicity
10.
Virulence ; 12(1): 766-787, 2021 12.
Article in English | MEDLINE | ID: mdl-33660565

ABSTRACT

Bacterial proteases and peptidases are integral to cell physiology and stability, and their necessity in Streptococcus pneumoniae is no exception. Protein cleavage and processing mechanisms within the bacterial cell serve to ensure that the cell lives and functions in its commensal habitat and can respond to new environments presenting stressful conditions. For S. pneumoniae, the human nasopharynx is its natural habitat. In the context of virulence, movement of S. pneumoniae to the lungs, blood, or other sites can instigate responses by the bacteria that result in their proteases serving dual roles of self-protein processors and virulence factors of host protein targets.


Subject(s)
Bacterial Proteins/genetics , Peptide Hydrolases/metabolism , Streptococcus pneumoniae/enzymology , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/pathogenicity , Animals , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Genome, Bacterial , Humans , Immune Evasion , Lung/microbiology , Mice , Nasopharynx/microbiology , Peptide Hydrolases/genetics , Virulence , Virulence Factors
11.
Daru ; 29(1): 73-84, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33537864

ABSTRACT

PURPOSE: To predict potential inhibitors of alpha-enolase to reduce plasminogen binding of Streptococcus pneumoniae (S. pneumoniae) that may lead as an orally active drug. S. pneumoniae remains dominant in causing invasive diseases. Fibrinolytic pathway is a critical factor of S. pneumoniae to invade and progression of disease in the host body. Besides the low mass on the cell surface, alpha-enolase possesses significant plasminogen binding among all exposed proteins. METHODS: In-silico based drug designing approach was implemented for evaluating potential inhibitors against alpha-enolase based on their binding affinities, energy score and pharmacokinetics. Lipinski's rule of five (LRo5) and Egan's (Brain Or IntestinaL EstimateD) BOILED-Egg methods were executed to predict the best ligand for biological systems. RESULTS: Molecular docking analysis revealed, Sodium (1,5-dihydroxy-2-oxopyrrolidin-3-yl)-hydroxy-dioxidophosphanium (SF-2312) as a promising inhibitor that fabricates finest attractive charges and conventional hydrogen bonds with S. pneumoniae alpha-enolase. Moreover, the pharmacokinetics of SF-2312 predict it as a therapeutic inhibitor for clinical trials. Like SF-2312, phosphono-acetohydroxamate (PhAH) also constructed adequate interactions at the active site of alpha-enolase, but it predicted less favourable than SF-2312 based on binding affinity. CONCLUSION: Briefly, SF-2312 and PhAH ligands could inhibit the role of alpha-enolase to restrain plasminogen binding, invasion and progression of S. pneumoniae. As per our investigation and analysis, SF-2312 is the most potent naturally existing inhibitor of S. pneumoniae alpha-enolase in current time.


Subject(s)
Phosphopyruvate Hydratase/chemistry , Streptococcus pneumoniae/enzymology , Administration, Oral , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacokinetics , Molecular Docking Simulation , Organophosphonates/chemistry , Organophosphonates/pharmacokinetics , Phosphonoacetic Acid/analogs & derivatives , Phosphonoacetic Acid/chemistry , Phosphonoacetic Acid/pharmacokinetics , Phosphopyruvate Hydratase/antagonists & inhibitors , Phosphopyruvate Hydratase/metabolism , Pneumococcal Infections/drug therapy , Pyrrolidinones/chemistry , Pyrrolidinones/pharmacokinetics
12.
J Bacteriol ; 203(7)2021 03 08.
Article in English | MEDLINE | ID: mdl-33468592

ABSTRACT

The pneumococcal serine-rich repeat protein (PsrP) is a high-molecular-weight, glycosylated adhesin that promotes the attachment of Streptococcus pneumoniae to host cells. PsrP, its associated glycosyltransferases (GTs), and dedicated secretion machinery are encoded in a 37-kb genomic island that is present in many invasive clinical isolates of S. pneumoniae PsrP has been implicated in establishment of lung infection in murine models, although specific roles of the PsrP glycans in disease progression or bacterial physiology have not been elucidated. Moreover, enzymatic specificities of associated glycosyltransferases are yet to be fully characterized. We hypothesized that the glycosyltransferases that modify PsrP are critical for the adhesion properties and infectivity of S. pneumoniae Here, we characterize the putative S. pneumoniaepsrP locus glycosyltransferases responsible for PsrP glycosylation. We also begin to elucidate their roles in S. pneumoniae virulence. We show that four glycosyltransferases within the psrP locus are indispensable for S. pneumoniae biofilm formation, lung epithelial cell adherence, and establishment of lung infection in a mouse model of pneumococcal pneumonia.IMPORTANCE PsrP has previously been identified as a necessary virulence factor for many serotypes of S. pneumoniae and studied as a surface glycoprotein. Thus, studying the effects on virulence of each glycosyltransferase (GT) that builds the PsrP glycan is of high importance. Our work elucidates the influence of GTs in vivo We have identified at least four GTs that are required for lung infection, an indication that it is worthwhile to consider glycosylated PsrP as a candidate for serotype-independent pneumococcal vaccine design.


Subject(s)
Bacterial Proteins/metabolism , Glycosyltransferases/metabolism , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/enzymology , Streptococcus pneumoniae/pathogenicity , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Animals , Bacterial Proteins/genetics , Female , Glycosyltransferases/genetics , Humans , Lung/microbiology , Mice , Mice, Inbred BALB C , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism , Virulence
13.
J Enzyme Inhib Med Chem ; 36(1): 384-393, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33406941

ABSTRACT

Joining the global fight against Tuberculosis, the world's most deadly infectious disease, herein we present the design and synthesis of novel isatin-nicotinohydrazide hybrids (5a-m and 9a-c) as promising anti-tubercular and antibacterial agents. The anti-tubercular activity of the target hybrids was evaluated against drug-susceptible M. tuberculosis strain (ATCC 27294) where hybrids 5d, 5g and 5h were found to be as potent as INH with MIC = 0.24 µg/mL, also the activity was evaluated against Isoniazid/Streptomycin resistant M. tuberculosis (ATCC 35823) where compounds 5g and 5h showed excellent activity (MIC = 3.9 µg/mL). Moreover, the target hybrids were examined against six bronchitis causing-bacteria. Most derivatives exhibited excellent antibacterial activity. K. pneumonia emerged as the most sensitive strain with MIC range: 0.49-7.81 µg/mL. Furthermore, a molecular docking study has proposed DprE1 as a probable enzymatic target for herein reported isatin-nicotinohydrazide hybrids, and explored the binding interactions within the vicinity of DprE1 active site.


Subject(s)
Alcohol Oxidoreductases/antagonists & inhibitors , Anti-Bacterial Agents/chemical synthesis , Bacterial Proteins/antagonists & inhibitors , Drug Resistance, Bacterial/drug effects , Hydrazines/chemistry , Isatin/chemistry , Mycobacterium tuberculosis/enzymology , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Bordetella pertussis/chemistry , Bordetella pertussis/enzymology , Bordetella pertussis/isolation & purification , Bronchitis/drug therapy , Bronchitis/microbiology , Drug Design , Drug Resistance, Bacterial/genetics , Haemophilus influenzae/chemistry , Haemophilus influenzae/enzymology , Haemophilus influenzae/isolation & purification , Isoniazid/pharmacology , Klebsiella pneumoniae/chemistry , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/isolation & purification , Microbial Sensitivity Tests , Molecular Docking Simulation , Moraxella catarrhalis/chemistry , Moraxella catarrhalis/enzymology , Moraxella catarrhalis/isolation & purification , Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/isolation & purification , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Streptococcus pneumoniae/chemistry , Streptococcus pneumoniae/enzymology , Streptococcus pneumoniae/isolation & purification , Streptomycin/pharmacology , Structure-Activity Relationship , Tuberculosis/drug therapy , Tuberculosis/microbiology
14.
ACS Appl Mater Interfaces ; 13(1): 257-265, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33378174

ABSTRACT

Controllable drug release is promising for fighting against antimicrobial resistance, which is a critical threat to human health worldwide. Herein, new hyaluronidase-responsive conjugated oligo(thiophene ethynylene) (OTE)-covalently modified hyaluronic acid (OTE-HA) nanoparticles for on-demand release of antimicrobial agents are reported. The synthesis of amphiphilic OTE-HA was carried out by esterification reaction. The resulting macromolecules were self-assembled in water to form nanoparticles, in which the hydrophobic OTE section, as bactericides, formed "cores" and the hydrophilic hyaluronic acid (HA) formed "shells". The OTE-HA nanoparticles avoid bactericide premature leakage and effectively block the dark cytotoxicity of the OTE section, possessing excellent biocompatibility. Using methicillin-resistant Staphylococcus aureus (MRSA) as an example, hyaluronidase, largely secreted by MRSA, can in situ trigger the release of OTE via hydrolyzing OTE-HA nanoparticles into fragments, even disaccharides linked with OTE. Importantly, the OTE section could effectively break cell membranes, leading to bacterial death. The half-maximal inhibitory concentration of the nanoparticles against MRSA is 3.3 µg/mL. The great antibacterial activity of OTE-HA nanoparticles against Gram-positive bacteria Streptococcus pneumoniae further confirms the controllable bactericide delivery mechanism. OTE-HA nanoparticles coated on a surface can also effectively inhibit the growth of bacteria, which holds a remarkable promise in biomedical applications. Therefore, this work provides a favorable strategy of on-demand and in situ drug release for sterilization and defeating antimicrobial resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Carriers/chemistry , Hyaluronic Acid/chemistry , Nanoparticles/chemistry , Quaternary Ammonium Compounds/pharmacology , Thiophenes/pharmacology , A549 Cells , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/metabolism , Bacterial Proteins/metabolism , Drug Carriers/chemical synthesis , Drug Carriers/toxicity , Drug Design , Drug Liberation , Drug Resistance, Bacterial/drug effects , Humans , Hyaluronic Acid/chemical synthesis , Hyaluronic Acid/toxicity , Hyaluronoglucosaminidase/metabolism , Hydrolysis , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/enzymology , Microbial Sensitivity Tests , Nanoparticles/toxicity , Quaternary Ammonium Compounds/chemical synthesis , Quaternary Ammonium Compounds/metabolism , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/enzymology , Thiophenes/chemical synthesis , Thiophenes/metabolism
15.
Chemistry ; 27(9): 3142-3150, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33150981

ABSTRACT

Bacterial sialidases (SA) are validated drug targets expressed by common human pathogens such as Streptococcus pneumoniae, Vibrio cholerae, or Clostridium perfringens. Noncovalent inhibitors of bacterial SA capable of reaching the submicromolar level are rarely reported. In this work, multi- and polyvalent compounds are developed, based on the transition-state analogue 2-deoxy-2,3-didehydro-N-acetylneuraminic (DANA). Poly-DANA inhibits the catalytic activity of SA from S. pneumoniae (NanA) and the symbiotic microorganism B. thetaiotaomicron (BtSA) at the picomolar and low nanomolar levels (expressed in moles of molecules and of DANA, respectively). Each DANA grafted to the polymer surpasses the inhibitory potential of the monovalent analogue by more than four orders of magnitude, which represents the highest multivalent effect reported so far for an enzyme inhibition. The synergistic interaction is shown to operate exclusively in the catalytic domain, and not in the flanked carbohydrate-binding module (CBM). These results offer interesting perspectives for the multivalent inhibition of other SA families lacking a CBM, such as viral, parasitic, or human SA.


Subject(s)
Neuraminidase/antagonists & inhibitors , Streptococcus pneumoniae/enzymology , Catalytic Domain/drug effects , Neuraminidase/metabolism , Streptococcus pneumoniae/cytology , Streptococcus pneumoniae/drug effects
16.
Bioorg Med Chem ; 29: 115871, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33221064

ABSTRACT

Pneumonia caused by bacterium S. pneumoniae is a severe acute respiratory infectious disease with high morbidity and mortality, especially for children and immunity-compromised patients. The emergence of multidrug-resistant S. pneumoniae also presents a challenge to human health. Leucyl-tRNA synthetase (LeuRS) catalyzes the attachment of l-leucine to tRNALeu, which plays an essential role in protein translation and is considered an attractive antimicrobial drug target. In the present work, benzhydrol-oxaborole hybrid compounds were designed and synthesized as inhibitors of S. pneumoniae LeuRS. Exploration of the phenyl ring near Lysine 389 eventually yielded compounds 46 and 54 with submicromolar inhibitory potency. The co-crystal of compound 54 in the editing domain pocket of SpLeuRS was obtained and confirmed the formation of an additional hydrogen bond between the carbonyl of 54 and Lysine 389. It also showed anti-pneumococcal activity in vitro. The structure-activity relationship was discussed. This work will provide an essential foundation for the further development of anti-pneumococcal agents by targeting LeuRS.


Subject(s)
Anti-Bacterial Agents/pharmacology , Benzhydryl Compounds/pharmacology , Boron Compounds/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Streptococcus pneumoniae/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Benzhydryl Compounds/chemistry , Boron Compounds/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Leucine-tRNA Ligase , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Streptococcus pneumoniae/enzymology , Structure-Activity Relationship
17.
FEBS J ; 288(10): 3217-3230, 2021 05.
Article in English | MEDLINE | ID: mdl-33108702

ABSTRACT

Neuraminidase A from Streptococcus pneumoniae (NanA) is a cell wall-bound modular enzyme containing one lectin and one catalytic domain. Unlike homologous NanB and NanC expressed by the same bacterium, the two domains within one NanA molecule do not form a stable interaction and are spatially separated by a 16-amino acid-long flexible linker. In this work, the ability of NanA to form intermolecular assemblies was characterized using the methods of molecular modeling and bioinformatic analysis based on crystallographic data and by bringing together previously published experimental data. It was concluded that two catalytic domains, as well as one catalytic and one lectin domain, originating from two cell wall-bound NanA molecules, can interact through a previously uncharacterized interdomain interface to form complexes stabilized by a network of intermolecular hydrogen bonds and salt bridges. Supercomputer modeling strongly indicated that artocarpin, an earlier experimentally discovered inhibitor of the pneumococcal biofilm formation, is able to bind to a site located in the catalytic domain of one NanA entity and prevent its interaction with the lectin or catalytic domain of another NanA entity, thus directly precluding the generation of intermolecular assemblies. The revealed structural adaptation is discussed as one plausible mechanism of noncatalytic participation of this potentially key pathogenicity enzyme in pneumococcal biofilm formation.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacterial Proteins/chemistry , Glycosides/chemistry , Mannose-Binding Lectins/chemistry , Neuraminidase/chemistry , Plant Lectins/chemistry , Streptococcus pneumoniae/enzymology , Amino Acid Sequence , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/drug effects , Biofilms/growth & development , Catalytic Domain , Computational Biology/methods , Gene Expression , Glycosides/metabolism , Hydrogen Bonding , Kinetics , Mannose-Binding Lectins/pharmacology , Models, Molecular , Neuraminidase/antagonists & inhibitors , Neuraminidase/genetics , Neuraminidase/metabolism , Plant Lectins/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Sequence Alignment , Sequence Homology, Amino Acid , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/growth & development , Substrate Specificity , Thermodynamics
18.
PLoS One ; 15(11): e0241780, 2020.
Article in English | MEDLINE | ID: mdl-33141832

ABSTRACT

The DNA topoisomerase complement of Streptococcus pneumoniae is constituted by two type II enzymes (topoisomerase IV and gyrase), and a single type I enzyme (topoisomerase I). These enzymes maintain the DNA topology, which is essential for replication and transcription. While fluoroquinolones target the type II enzymes, seconeolitsine, a new antimicrobial agent, targets topoisomerase I. We compared for the first time the in vitro effect of inhibition of topoisomerase I by seconeolitsine and of the type II topoisomerases by the fluoroquinolones levofloxacin and moxifloxacin. We used three isogenic non-encapsulated strains and five non-vaccine serotypes isolates belonging to two circulating pneumococcal clones, ST638 (2 strains) and ST1569V (3 strains). Each group contained strains with diverse susceptibility to fluoroquinolones. Minimal inhibitory concentrations, killing curves and postantibiotic effects were determined. Seconeolitsine demonstrated the fastest and highest bactericidal activity against planktonic bacteria and biofilms. When fluoroquinolone-susceptible planktonic bacteria were considered, seconeolitsine induced postantibiotic effects (1.00-1.87 h) similar than levofloxacin (1.00-2.22 h), but longer than moxifloxacin (0.39-1.71 h). The same effect was observed in sessile bacteria forming biofilms. Seconeolitsine induced postantibiotic effects (0.84-2.31 h) that were similar to those of levofloxacin (0.99-3.32 h) but longer than those of moxifloxacin (0.89-1.91 h). The greatest effect was observed in the viability and adherence of bacteria in the postantibiotic phase. Seconeolitsine greatly reduced the thickness of the biofilms formed in comparison with fluoroquinolones: 2.91 ± 0.43 µm (seconeolitsine), 7.18 ± 0.58 µm (levofloxacin), 17.08 ± 1.02 µm (moxifloxacin). When fluoroquinolone-resistant bacteria were considered, postantibiotic effects induced by levofloxacin and moxifloxacin, but not by seconeolitsine, were shorter, decreasing up to 5-fold (levofloxacin) or 2-fold (moxifloxacin) in planktonic cells, and up to 1.7 (levofloxacin) or 1.4-fold (moxifloxacin) during biofilm formation. Therefore, topoisomerase I inhibitors could be an alternative for the treatment of pneumococcal diseases, including those caused by fluoroquinolone-resistant isolates.


Subject(s)
Anti-Bacterial Agents/pharmacology , DNA Topoisomerase IV/antagonists & inhibitors , Fluoroquinolones/pharmacology , Streptococcus pneumoniae/drug effects , Topoisomerase I Inhibitors/pharmacology , Benzodioxoles/pharmacology , DNA Gyrase/metabolism , Levofloxacin/pharmacology , Moxifloxacin/pharmacology , Phenanthrenes/pharmacology , Streptococcus pneumoniae/enzymology
19.
Nat Commun ; 11(1): 6063, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33247098

ABSTRACT

Opportunistic pathogens such as Streptococcus pneumoniae secrete a giant metalloprotease virulence factor responsible for cleaving host IgA1, yet the molecular mechanism has remained unknown since their discovery nearly 30 years ago despite the potential for developing vaccines that target these enzymes to block infection. Here we show through a series of cryo-electron microscopy single particle reconstructions how the Streptococcus pneumoniae IgA1 protease facilitates IgA1 substrate recognition and how this can be inhibited. Specifically, the Streptococcus pneumoniae IgA1 protease subscribes to an active-site-gated mechanism where a domain undergoes a 10.0 Å movement to facilitate cleavage. Monoclonal antibody binding inhibits this conformational change, providing a direct means to block infection at the host interface. These structural studies explain decades of biological and biochemical studies and provides a general strategy to block Streptococcus pneumoniae IgA1 protease activity to potentially prevent infection.


Subject(s)
Protease Inhibitors/pharmacology , Serine Endopeptidases/metabolism , Streptococcus pneumoniae/enzymology , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/ultrastructure , Biocatalysis , Catalytic Domain , Cryoelectron Microscopy , Models, Molecular , Protein Binding , Serine Endopeptidases/chemistry , Serine Endopeptidases/ultrastructure
20.
Bioorg Med Chem ; 28(22): 115776, 2020 11 15.
Article in English | MEDLINE | ID: mdl-33032189

ABSTRACT

The global increase in multidrug-resistant pathogens has caused severe problems in the treatment of infections. To overcome these difficulties, the advent of a new chemical class of antibacterial drug is eagerly desired. We aimed at creating novel antibacterial agents against bacterial type II topoisomerases, which are well-validated targets. TP0480066 (compound 32) has been identified by using structure-based optimization originated from lead compound 1, which was obtained as a result of our previous lead identification studies. The MIC90 values of TP0480066 against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE), and genotype penicillin-resistant Streptococcus pneumoniae (gPRSP) were 0.25, 0.015, and 0.06 µg/mL, respectively. Hence, TP0480066 can be regarded as a promising antibacterial drug candidate of this chemical class.


Subject(s)
Anti-Bacterial Agents/pharmacology , DNA Topoisomerases, Type II/metabolism , Quinolines/pharmacology , Topoisomerase II Inhibitors/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Resistance, Bacterial/drug effects , Hep G2 Cells , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/enzymology , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Quinolines/chemical synthesis , Quinolines/chemistry , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/enzymology , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistry , Transcriptional Regulator ERG/antagonists & inhibitors , Transcriptional Regulator ERG/metabolism , Vancomycin-Resistant Enterococci/drug effects , Vancomycin-Resistant Enterococci/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...