Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 740
Filter
1.
J Chem Inf Model ; 64(8): 3237-3247, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38600752

ABSTRACT

Popular RNA-guided DNA endonuclease Cas9 from Streptococcus pyogenes (SpCas9) recognizes the canonical 5'-NGG-3' protospacer adjacent motif (PAM) and triggers double-stranded DNA cleavage activity. Mutations in SpCas9 were demonstrated to expand the PAM readability and hold promise for therapeutic and genome editing applications. However, the energetics of the PAM recognition and its relation to the atomic structure remain unknown. Using the X-ray structure (precatalytic SpCas9:sgRNA:dsDNA) as a template, we calculated the change in the PAM binding affinity in response to SpCas9 mutations using computer simulations. The E1219V mutation in SpCas9 fine-tunes the water accessibility in the PAM binding pocket and promotes new interactions in the SpCas9:noncanonical T-rich PAM, thus weakening the PAM stringency. The nucleotide-specific interaction of two arginine residues (i.e., R1333 and R1335 of SpCas9) ensured stringent 5'-NGG-3' PAM recognition. R1335A substitution (SpCas9R1335A) completely disrupts the direct interaction between SpCas9 and PAM sequences (canonical or noncanonical), accounting for the loss of editing activity. Interestingly, the double mutant (SpCas9R1335A,E1219V) boosts DNA binding affinity by favoring protein:PAM electrostatic contact in a desolvated pocket. The underlying thermodynamics explain the varied DNA cleavage activity of SpCas9 variants. A direct link between the energetics, structures, and activity is highlighted, which can aid in the rational design of improved SpCas9-based genome editing tools.


Subject(s)
CRISPR-Associated Protein 9 , Mutation , Streptococcus pyogenes , Streptococcus pyogenes/enzymology , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/genetics , Molecular Dynamics Simulation , Nucleotide Motifs , DNA/metabolism , DNA/chemistry , Protein Conformation , Models, Molecular , Thermodynamics , Protein Binding
2.
Nat Commun ; 15(1): 3663, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688943

ABSTRACT

CRISPR-Cas9 is a powerful tool for genome editing, but the strict requirement for an NGG protospacer-adjacent motif (PAM) sequence immediately next to the DNA target limits the number of editable genes. Recently developed Cas9 variants have been engineered with relaxed PAM requirements, including SpG-Cas9 (SpG) and the nearly PAM-less SpRY-Cas9 (SpRY). However, the molecular mechanisms of how SpRY recognizes all potential PAM sequences remains unclear. Here, we combine structural and biochemical approaches to determine how SpRY interrogates DNA and recognizes target sites. Divergent PAM sequences can be accommodated through conformational flexibility within the PAM-interacting region, which facilitates tight binding to off-target DNA sequences. Nuclease activation occurs ~1000-fold slower than for Streptococcus pyogenes Cas9, enabling us to directly visualize multiple on-pathway intermediate states. Experiments with SpG position it as an intermediate enzyme between Cas9 and SpRY. Our findings shed light on the molecular mechanisms of PAMless genome editing.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , DNA , Gene Editing , Streptococcus pyogenes , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , Gene Editing/methods , DNA/metabolism , DNA/genetics , Streptococcus pyogenes/genetics , Streptococcus pyogenes/metabolism , Streptococcus pyogenes/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , RNA, Guide, CRISPR-Cas Systems/genetics
3.
Nucleic Acids Res ; 52(7): 4079-4097, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38499498

ABSTRACT

Genome-wide screens have become powerful tools for elucidating genotype-to-phenotype relationships in bacteria. Of the varying techniques to achieve knockout and knockdown, CRISPR base editors are emerging as promising options. However, the limited number of available, efficient target sites hampers their use for high-throughput screening. Here, we make multiple advances to enable flexible base editing as part of high-throughput genetic screening in bacteria. We first co-opt the Streptococcus canis Cas9 that exhibits more flexible protospacer-adjacent motif recognition than the traditional Streptococcus pyogenes Cas9. We then expand beyond introducing premature stop codons by mutating start codons. Next, we derive guide design rules by applying machine learning to an essentiality screen conducted in Escherichia coli. Finally, we rescue poorly edited sites by combining base editing with Cas9-induced cleavage of unedited cells, thereby enriching for intended edits. The efficiency of this dual system was validated through a conditional essentiality screen based on growth in minimal media. Overall, expanding the scope of genome-wide knockout screens with base editors could further facilitate the investigation of new gene functions and interactions in bacteria.


Subject(s)
CRISPR-Cas Systems , Escherichia coli , Gene Editing , Gene Editing/methods , Escherichia coli/genetics , High-Throughput Screening Assays/methods , Genome, Bacterial/genetics , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Streptococcus/genetics , Streptococcus pyogenes/genetics , Streptococcus pyogenes/enzymology , Machine Learning , RNA, Guide, CRISPR-Cas Systems/genetics
4.
Nucleic Acids Res ; 51(8): 3903-3917, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37014013

ABSTRACT

The RNA-guided Cas9 endonuclease from Staphylococcus aureus (SauCas9) can catalyze multiple-turnover reactions whereas Cas9 from Streptococcus pyogenes (SpyCas9) is a single-turnover enzyme. Here we dissect the mechanism of multiple-turnover catalysis by SauCas9 and elucidate its molecular basis. We show that the multiple-turnover catalysis does not require more than stoichiometric RNA guides to Cas9 nuclease. Rather, the RNA-guide loaded ribonucleoprotein (RNP) is the reactive unity that is slowly released from product and recycled in the subsequent reaction. The mechanism that RNP is recycled for multiple-turnover reaction entails the unwinding of the RNA:DNA duplex in the R-loop. We argue that DNA rehybridization is required for RNP release by supplementing the energy cost in the process. Indeed, turnover is arrested when DNA rehybridization is suppressed. Further, under higher salt conditions, both SauCas9 and SpyCas9 showed increased turnover, and engineered SpyCas9 nucleases that form fewer direct or hydrogen bonding interactions with target DNA became multiple-turnover enzymes. Thus, these results indicate that for both SpyCas9 and SauCas9, turnover is determined by the energetic balance of the post-chemistry RNP-DNA interaction. Due to the conserved protein core folds, the mechanism underpinning turnover we establish here is likely operant in all Cas9 nucleases.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Associated Protein 9/metabolism , DNA/chemistry , DNA Cleavage , Gene Editing/methods , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Streptococcus pyogenes/enzymology , Staphylococcus aureus/enzymology
5.
J Biol Chem ; 298(10): 102446, 2022 10.
Article in English | MEDLINE | ID: mdl-36055407

ABSTRACT

The cell wall is a critical extracellular barrier for bacteria and many other organisms. In bacteria, this structural layer consists of peptidoglycan, which maintains cell shape and structural integrity and provides a scaffold for displaying various protein factors. To attach proteins to the cell wall, Gram-positive bacteria utilize sortase enzymes, which are cysteine transpeptidases that recognize and cleave a specific sorting signal, followed by ligation of the sorting signal-containing protein to the peptidoglycan precursor lipid II (LII). This mechanism is the subject of considerable interest as a target for therapeutic intervention and as a tool for protein engineering, where sortases have enabled sortase-mediated ligation or sortagging strategies. Despite these uses, there remains an incomplete understanding of the stereochemistry of substrate recognition and ligation product formation. Here, we solved the first structures of sortase A from Streptococcus pyogenes bound to two substrate sequences, LPATA and LPATS. In addition, we synthesized a mimetic of the product of sortase-mediated ligation involving LII (LPAT-LII) and solved the complex structure in two ligand conformations. These structures were further used as the basis for molecular dynamics simulations to probe sortase A-ligand dynamics and to construct a model of the acyl-enzyme intermediate, thus providing a structural view of multiple key states in the catalytic mechanism. Overall, this structural information provides new insights into the recognition of the sortase substrate motif and LII ligation partner and will support the continued development of sortases for protein engineering applications.


Subject(s)
Aminoacyltransferases , Aminoacyltransferases/chemistry , Aminoacyltransferases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Ligands , Peptidoglycan , Streptococcus pyogenes/enzymology
6.
Nature ; 609(7925): 191-196, 2022 09.
Article in English | MEDLINE | ID: mdl-36002571

ABSTRACT

Cas9 is a CRISPR-associated endonuclease capable of RNA-guided, site-specific DNA cleavage1-3. The programmable activity of Cas9 has been widely utilized for genome editing applications4-6, yet its precise mechanisms of target DNA binding and off-target discrimination remain incompletely understood. Here we report a series of cryo-electron microscopy structures of Streptococcus pyogenes Cas9 capturing the directional process of target DNA hybridization. In the early phase of R-loop formation, the Cas9 REC2 and REC3 domains form a positively charged cleft that accommodates the distal end of the target DNA duplex. Guide-target hybridization past the seed region induces rearrangements of the REC2 and REC3 domains and relocation of the HNH nuclease domain to assume a catalytically incompetent checkpoint conformation. Completion of the guide-target heteroduplex triggers conformational activation of the HNH nuclease domain, enabled by distortion of the guide-target heteroduplex, and complementary REC2 and REC3 domain rearrangements. Together, these results establish a structural framework for target DNA-dependent activation of Cas9 that sheds light on its conformational checkpoint mechanism and may facilitate the development of novel Cas9 variants and guide RNA designs with enhanced specificity and activity.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Cryoelectron Microscopy , Protein Domains , R-Loop Structures , Streptococcus pyogenes , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/ultrastructure , Catalysis , DNA/metabolism , DNA Cleavage , Enzyme Activation , Gene Editing , RNA, Guide, Kinetoplastida/metabolism , Streptococcus pyogenes/enzymology , Substrate Specificity
7.
J Biol Chem ; 298(6): 101940, 2022 06.
Article in English | MEDLINE | ID: mdl-35430253

ABSTRACT

Trafficking of M-protein (Mprt) from the cytosol of Group A Streptococcus pyogenes (GAS) occurs via Sec translocase membrane channels that associate with Sortase A (SrtA), an enzyme that catalyzes cleavage of Mprt at the proximal C-terminal [-LPST355∗GEAA-] motif and subsequent transpeptidation of the Mprt-containing product to the cell wall (CW). These steps facilitate stable exposure of the N-terminus of Mprt to the extracellular milieu where it interacts with ligands. Previously, we found that inactivation of SrtA in GAS cells eliminated Mprt CW transpeptidation but effected little reduction in its cell surface exposure, indicating that the C-terminus of Mprt retained in the cytoplasmic membrane (CM) extends its N-terminus to the cell surface. Herein, we assessed the effects of mutating the Thr355 residue in the WT SrtA consensus sequence (LPST355∗GEAA-) in a specific Mprt, PAM. In vitro, we found that synthetic peptides with mutations (LPSX355GEAA) in the SrtA cleavage site displayed slower cleavage activities with rSrtA than the WT peptide. Aromatic residues at X had the lowest activities. Nonetheless, PAM/[Y355G] still transpeptidated the CW in vivo. However, when using isolated CMs from srtA-inactivated GAS cells, rapid cleavage of PAM/[LPSY355GEAA] occurred at E357∗ but transpeptidation did not take place. These results show that another CM-resident enzyme nonproductively cleaved PAM/[LPSYGE357∗AA]. However, SrtA associated with the translocon channel in vivo cleaved and transpeptidated PAM/[LPSX355∗GEAA] variants. These CM features allow diverse cleavage site variants to covalently attach to the CW despite the presence of other potent nonproductive CM proteases.


Subject(s)
Aminoacyltransferases , Bacterial Proteins , Cell Wall , Streptococcus pyogenes , Aminoacyltransferases/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Evolution , Cell Wall/metabolism , Cysteine Endopeptidases , Mutation , Streptococcus pyogenes/classification , Streptococcus pyogenes/enzymology
8.
Int J Mol Sci ; 23(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35163047

ABSTRACT

The Cas9 endonuclease is an essential component of the CRISPR-Cas-based genome editing tools. The attainment of high specificity and efficiency of Cas9 during targetted DNA cleavage is the main problem that limits the clinical application of the CRISPR-Cas9 system. A deep understanding of the Cas9 mechanism and its structural-functional relationships is required to develop strategies for precise gene editing. Here, we present the first attempt to describe the solution structure of Cas9 from S. pyogenes using hydrogen-deuterium exchange mass spectrometry (HDX-MS) coupled to molecular dynamics simulations. HDX data revealed multiple protein regions with deuterium uptake levels varying from low to high. By analysing the difference in relative deuterium uptake by apoCas9 and its complex with sgRNA, we identified peptides involved in the complex formation and possible changes in the protein conformation. The REC3 domain was shown to undergo the most prominent conformational change upon enzyme-RNA interactions. Detection of the HDX in two forms of the enzyme provided detailed information about changes in the Cas9 structure induced by sgRNA binding and quantified the extent of the changes. The study demonstrates the practical utility of HDX-MS for the elucidation of mechanistic aspects of Cas9 functioning.


Subject(s)
CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/metabolism , RNA, Guide, Kinetoplastida/metabolism , Streptococcus pyogenes/enzymology , Hydrogen Deuterium Exchange-Mass Spectrometry , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Protein Domains , Streptococcus pyogenes/chemistry
9.
PLoS One ; 17(2): e0263792, 2022.
Article in English | MEDLINE | ID: mdl-35176056

ABSTRACT

Recently a technique based on the interaction between adhesion proteins extracted from Streptococcus pyogenes, known as SpyRing, has been widely used to improve the thermal resilience of enzymes, the assembly of biostructures, cancer cell recognition and other fields. It was believed that the covalent cyclization of protein skeleton caused by SpyRing reduces the conformational entropy of biological structure and improves its rigidity, thus improving the thermal resilience of the target enzyme. However, the effects of SpyTag/ SpyCatcher interaction with this enzyme are poorly understood, and their regulation of enzyme properties remains unclear. Here, for simplicity, we took the single domain enzyme lichenase from Bacillus subtilis 168 as an example, studied the interface interactions in the SpyRing by molecular dynamics simulations, and examined the effects of the changes of electrostatic interaction and van der Waals interaction on the thermal resilience of target enzyme. The simulations showed that the interface between SpyTag/SpyCatcher and the target enzyme is different from that found by geometric matching method and highlighted key mutations at the interface that might have effect on the thermal resilience of the enzyme. Our calculations highlighted interfacial interactions between enzyme and SpyTag/SpyCatcher, which might be useful in rational designs of the SpyRing.


Subject(s)
Bacillus subtilis/enzymology , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Hot Temperature , Molecular Dynamics Simulation , Streptococcus pyogenes/enzymology , Cyclization , Hydrogen-Ion Concentration
10.
J Bacteriol ; 204(1): e0036621, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34694903

ABSTRACT

The emergence and continued dominance of a Streptococcus pyogenes (group A Streptococcus, GAS) M1T1 clonal group is temporally correlated with acquisition of genomic sequences that confer high level expression of cotoxins streptolysin O (SLO) and NAD+-glycohydrolase (NADase). Experimental infection models have provided evidence that both toxins are important contributors to GAS virulence. SLO is a cholesterol-dependent pore-forming toxin capable of lysing virtually all types of mammalian cells. NADase, which is composed of an N-terminal translocation domain and C-terminal glycohydrolase domain, acts as an intracellular toxin that depletes host cell energy stores. NADase is dependent on SLO for internalization into epithelial cells, but its mechanism of interaction with the cell surface and details of its translocation mechanism remain unclear. In this study we found that NADase can bind oropharyngeal epithelial cells independently of SLO. This interaction is mediated by both domains of the toxin. We determined by NMR the structure of the translocation domain to be a ß-sandwich with a disordered N-terminal region. The folded region of the domain has structural homology to carbohydrate binding modules. We show that excess NADase inhibits SLO-mediated hemolysis and binding to epithelial cells in vitro, suggesting NADase and SLO have shared surface receptors. This effect is abrogated by disruption of a putative carbohydrate binding site on the NADase translocation domain. Our data are consistent with a model whereby interactions of the NADase glycohydrolase domain and translocation domain with SLO and the cell surface increase avidity of NADase binding and facilitate toxin-toxin and toxin-cell surface interactions. IMPORTANCE NADase and streptolysin O (SLO) are secreted toxins important for pathogenesis of group A Streptococcus, the agent of strep throat and severe invasive infections. The two toxins interact in solution and mutually enhance cytotoxic activity. We now find that NADase is capable of binding to the surface of human cells independently of SLO. Structural analysis of the previously uncharacterized translocation domain of NADase suggests that it contains a carbohydrate binding module. The NADase translocation domain and SLO appear to recognize similar glycan structures on the cell surface, which may be one mechanism through which NADase enhances SLO pore-forming activity during infection. Our findings provide new insight into the NADase toxin and its functional interactions with SLO during streptococcal infection.


Subject(s)
Keratinocytes/physiology , NAD+ Nucleosidase/metabolism , Oropharynx/cytology , Streptococcus pyogenes/enzymology , Amino Acid Substitution , Bacterial Adhesion , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Cell Line , Humans , Models, Molecular , NAD+ Nucleosidase/chemistry , NAD+ Nucleosidase/genetics , Protein Binding , Protein Conformation , Protein Domains , Protein Transport , Streptococcus pyogenes/genetics , Streptococcus pyogenes/metabolism , Streptolysins/metabolism
11.
Nucleic Acids Res ; 49(21): 12433-12444, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34850124

ABSTRACT

Streptococcus pyogenes Cas9 (SpCas9), a programmable RNA-guided DNA endonuclease, has been widely repurposed for biological and medical applications. Critical interactions between SpCas9 and DNA confer the high specificity of the enzyme in genome engineering. Here, we unveil that an essential SpCas9-DNA interaction located beyond the protospacer adjacent motif (PAM) is realized through electrostatic forces between four positively charged lysines among SpCas9 residues 1151-1156 and the negatively charged DNA backbone. Modulating this interaction by substituting lysines with amino acids that have distinct charges revealed a strong dependence of DNA target binding and cleavage activities of SpCas9 on the charge. Moreover, the SpCas9 mutants show markedly distinguishable DNA interaction sites beyond the PAM compared with wild-type SpCas9. Functionally, this interaction governs DNA sampling and participates in protospacer DNA unwinding during DNA interrogation. Overall, a mechanistic and functional understanding of this vital interaction explains how SpCas9 carries out efficient DNA interrogation.


Subject(s)
Amino Acid Motifs , CRISPR-Associated Protein 9/metabolism , DNA/metabolism , Nucleotide Motifs , Streptococcus pyogenes/enzymology , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/genetics , DNA/chemistry , DNA/genetics , DNA Cleavage , Fluorescence Resonance Energy Transfer/methods , HEK293 Cells , Humans , Mutation , Protein Binding , Static Electricity , Streptococcus pyogenes/genetics
12.
Nucleic Acids Res ; 49(21): 12411-12421, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34792162

ABSTRACT

CRISPR-Cas9 is a ribonucleoprotein complex that sequence-specifically binds and cleaves double-stranded DNA. Wildtype Cas9 and its nickase and cleavage-incompetent mutants have been used in various biological techniques due to their versatility and programmable specificity. Cas9 has been shown to bind very stably to DNA even after cleavage of the individual DNA strands, inhibiting further turnovers and considerably slowing down in-vivo repair processes. This poses an obstacle in genome editing applications. Here, we employed single-molecule magnetic tweezers to investigate the binding stability of different Streptococcus pyogenes Cas9 variants after cleavage by challenging them with supercoiling. We find that different release mechanisms occur depending on which DNA strand is cleaved. After initial target strand cleavage, supercoils are only removed after the collapse of the R-loop. We identified several states with different stabilities of the R-loop. Most importantly, we find that the post-cleavage state of Cas9 exhibits a higher stability than the pre-cleavage state. After non-target strand cleavage, supercoils are immediately but slowly released by swiveling of the non-target strand around Cas9 bound to the target strand. Consequently, Cas9 and its non-target strand nicking mutant stay stably bound to the DNA for many hours even at elevated torsional stress.


Subject(s)
CRISPR-Associated Protein 9/metabolism , DNA Cleavage , DNA/metabolism , Streptococcus pyogenes/enzymology , Algorithms , CRISPR-Associated Protein 9/genetics , DNA/genetics , Enzyme Stability/genetics , Magnetics , Mutation , Optical Tweezers , Protein Binding , R-Loop Structures/genetics , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Streptococcus pyogenes/genetics
13.
Biochemistry ; 60(49): 3783-3800, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34757726

ABSTRACT

CRISPR-Cas systems are RNA-guided nucleases that provide adaptive immune protection in bacteria and archaea against intruding genomic materials. Cas9, a type-II CRISPR effector protein, is widely used for gene editing applications since a single guide RNA can direct Cas9 to cleave specific genomic targets. The conformational changes associated with RNA/DNA binding are being modulated to develop Cas9 variants with reduced off-target cleavage. Previously, we showed that proline substitutions in the arginine-rich bridge helix (BH) of Streptococcus pyogenes Cas9 (SpyCas9-L64P-K65P, SpyCas92Pro) improve target DNA cleavage selectivity. In this study, we establish that kinetic analysis of the cleavage of supercoiled plasmid substrates provides a facile means to analyze the use of two parallel routes for DNA linearization by SpyCas9: (i) nicking by HNH followed by RuvC cleavage (the TS (target strand) pathway) and (ii) nicking by RuvC followed by HNH cleavage (the NTS (nontarget strand) pathway). BH substitutions and DNA mismatches alter the individual rate constants, resulting in changes in the relative use of the two pathways and the production of nicked and linear species within a given pathway. The results reveal coordinated actions between HNH and RuvC to linearize DNA, which is modulated by the integrity of the BH and the position of the mismatch in the substrate, with each condition producing distinct conformational energy landscapes as observed by molecular dynamics simulations. Overall, our results indicate that BH interactions with RNA/DNA enable target DNA discrimination through the differential use of the parallel sequential pathways driven by HNH/RuvC coordination.


Subject(s)
CRISPR-Associated Protein 9/chemistry , CRISPR-Cas Systems , DNA/chemistry , RNA, Guide, Kinetoplastida/chemistry , RNA/chemistry , Streptococcus pyogenes/chemistry , Binding Sites , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Crystallography, X-Ray , DNA/genetics , DNA/metabolism , DNA Cleavage , Gene Expression , Kinetics , Molecular Dynamics Simulation , Mutation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Domains , Protein Interaction Domains and Motifs , RNA/genetics , RNA/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Streptococcus pyogenes/enzymology , Streptococcus pyogenes/genetics , Substrate Specificity , Thermodynamics
14.
Nucleic Acids Res ; 49(14): 8120-8134, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34233005

ABSTRACT

Microsatellite expansions are the cause of >20 neurological or developmental human disorders. Shortening expanded repeats using specific DNA endonucleases may be envisioned as a gene editing approach. Here, we measured the efficacy of several CRISPR-Cas nucleases to induce recombination within disease-related microsatellites, in Saccharomyces cerevisiae. Broad variations in nuclease performances were detected on all repeat tracts. Wild-type Streptococcus pyogenes Cas9 (SpCas9) was more efficient than Staphylococcus aureus Cas9 on all repeats tested, except (CAG)33. Cas12a (Cpf1) was the most efficient on GAA trinucleotide repeats, whereas GC-rich repeats were more efficiently cut by SpCas9. The main genetic factor underlying Cas efficacy was the propensity of the recognition part of the sgRNA to form a stable secondary structure, independently of its structural part. This suggests that such structures form in vivo and interfere with sgRNA metabolism. The yeast genome contains 221 natural CAG/CTG and GAA/CTT trinucleotide repeats. Deep sequencing after nuclease induction identified three of them as carrying statistically significant low frequency mutations, corresponding to SpCas9 off-target double-strand breaks.


Subject(s)
CRISPR-Cas Systems/genetics , Endonucleases/genetics , Genetic Diseases, Inborn/genetics , Microsatellite Repeats/genetics , Gene Editing , Humans , Mutation/genetics , Streptococcus pyogenes/enzymology , Streptococcus pyogenes/genetics , Trinucleotide Repeats/genetics
15.
PLoS Comput Biol ; 17(7): e1009103, 2021 07.
Article in English | MEDLINE | ID: mdl-34310592

ABSTRACT

Antibodies bind foreign antigens with high affinity and specificity leading to their neutralization and/or clearance by the immune system. The conserved N-glycan on IgG has significant impact on antibody effector function, with the endoglycosidases of Streptococcus pyogenes deglycosylating the IgG to evade the immune system, a process catalyzed by the endoglycosidase EndoS2. Studies have shown that two of the four domains of EndoS2, the carbohydrate binding module (CBM) and the glycoside hydrolase (GH) domain are critical for catalytic activity. To yield structural insights into contributions of the CBM and the GH domains as well as the overall flexibility of EndoS2 to the proteins' catalytic activity, models of EndoS2-Fc complexes were generated through enhanced-sampling molecular-dynamics (MD) simulations and site-identification by ligand competitive saturation (SILCS) docking followed by reconstruction and multi-microsecond MD simulations. Modeling results predict that EndoS2 initially interacts with the IgG through its CBM followed by interactions with the GH yielding catalytically competent states. These may involve the CBM and GH of EndoS2 simultaneously interacting with either the same Fc CH2/CH3 domain or individually with the two Fc CH2/CH3 domains, with EndoS2 predicted to assume closed conformations in the former case and open conformations in the latter. Apo EndoS2 is predicted to sample both the open and closed states, suggesting that either complex can directly form following initial IgG-EndoS2 encounter. Interactions of the CBM and GH domains with the IgG are predicted to occur through both its glycan and protein regions. Simulations also predict that the Fc glycan can directly transfer from the CBM to the GH, facilitating formation of catalytically competent complexes and how the 734 to 751 loop on the CBM can facilitate extraction of the glycan away from the Fc CH2/CH3 domain. The predicted models are compared and consistent with Hydrogen/Deuterium Exchange data. In addition, the complex models are consistent with the high specificity of EndoS2 for the glycans on IgG supporting the validity of the predicted models.


Subject(s)
Bacterial Proteins , Glycoside Hydrolases , Immunoglobulin Fc Fragments , Immunoglobulin G , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Computational Biology , Deuterium Exchange Measurement , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Humans , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Molecular Dynamics Simulation , Polysaccharides/chemistry , Polysaccharides/metabolism , Protein Conformation , Streptococcus pyogenes/enzymology , Substrate Specificity
16.
J Bacteriol ; 203(17): e0015321, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34152832

ABSTRACT

Mechanisms of disulfide bond formation in the human pathogen Streptococcus pyogenes are currently unknown. To date, no disulfide bond-forming thiol-disulfide oxidoreductase (TDOR) has been described and at least one disulfide bonded protein is known in S. pyogenes. This protein is the superantigen SpeA, which contains 3 cysteine residues (Cys 87, Cys90, and Cys98) and has a disulfide bond formed between Cys87 and Cys98. In this study, candidate TDORs were identified from the genome sequence of S. pyogenes MGAS8232. Using mutational and biochemical approaches, one of the candidate proteins, SpyM18_2037 (named here SdbA), was shown to be the catalyst that introduces the disulfide bond in SpeA. SpeA in the culture supernatant remained reduced when sdbA was inactivated and restored to the oxidized state when a functional copy of sdbA was returned to the sdbA-knockout mutant. SdbA has a typical C46XXC49 active site motif commonly found in TDORs. Site-directed mutagenesis experiments showed that the cysteines in the CXXC motif were required for the disulfide bond in SpeA to form. Interactions between SdbA and SpeA were examined using cysteine variant proteins. The results showed that SdbAC49A formed a mixed disulfide with SpeAC87A, suggesting that the N-terminal Cys46 of SdbA and the C-terminal Cys98 of SpeA participated in the initial reaction. SpeA oxidized by SdbA displayed biological activities suggesting that SpeA was properly folded following oxidation by SdbA. In conclusion, formation of the disulfide bond in SpeA is catalyzed by SdbA and the findings represent the first report of disulfide bond formation in S. pyogenes. IMPORTANCE Here, we reported the first example of disulfide bond formation in Streptococcus pyogenes. The results showed that a thiol-disulfide oxidoreductase, named SdbA, is responsible for introducing the disulfide bond in the superantigen SpeA. The cysteine residues in the CXXC motif of SdbA are needed for catalyzing the disulfide bond in SpeA. The disulfide bond in SpeA and neighboring amino acids form a disulfide loop that is conserved among many superantigens, including those from Staphylococcus aureus. SpeA and staphylococcal enterotoxins lacking the disulfide bond are biologically inactive. Thus, the discovery of the enzyme that catalyzes the disulfide bond in SpeA is important for understanding the biochemistry of SpeA production and presents a target for mitigating the virulence of S. pyogenes.


Subject(s)
Bacterial Proteins/metabolism , Disulfides/metabolism , Exotoxins/metabolism , Membrane Proteins/metabolism , Protein Disulfide Reductase (Glutathione)/metabolism , Streptococcus pyogenes/enzymology , Amino Acid Motifs , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biocatalysis , Catalytic Domain , Disulfides/chemistry , Exotoxins/genetics , Membrane Proteins/genetics , Mutagenesis, Site-Directed , Protein Disulfide Reductase (Glutathione)/chemistry , Protein Disulfide Reductase (Glutathione)/genetics , Streptococcus pyogenes/chemistry , Streptococcus pyogenes/genetics
17.
Nucleic Acids Res ; 49(15): 8785-8795, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34133740

ABSTRACT

A series of Cas9 variants have been developed to improve the editing fidelity or targeting range of CRISPR-Cas9. Here, we employ a high-throughput sequencing approach primer-extension-mediated sequencing to analyze the editing efficiency, specificity and protospacer adjacent motif (PAM) compatibility of a dozen of SpCas9 variants at multiple target sites in depth, and our findings validate the high fidelity or broad editing range of these SpCas9 variants. With regard to the PAM-flexible SpCas9 variants, we detect significantly increased levels of off-target activity and propose a trade-off between targeting range and editing specificity for them, especially for the near-PAM-less SpRY. Moreover, we use a deep learning model to verify the consistency and predictability of SpRY off-target sites. Furthermore, we combine high-fidelity SpCas9 variants with SpRY to generate three new SpCas9 variants with both high fidelity and broad editing range. Finally, we also find that the existing SpCas9 variants are not effective in suppressing genome instability elicited by CRISPR-Cas9 editing, raising an urgent issue to be addressed.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing , Oryza/genetics , Streptococcus pyogenes/enzymology , CRISPR-Associated Protein 9/genetics , Genome, Plant/genetics , Mutation/genetics
18.
ACS Synth Biol ; 10(6): 1320-1327, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34006094

ABSTRACT

CRISPR/Cas9 is a powerful genome editing tool, but its off-target cleavage activity can result in unintended adverse outcomes for therapeutic applications. Here we report the design of a simple tunable CRISPR controller in which a chemically inducible anti-CRISPR protein AcrIIA4 is engineered to disable Cas9 DNA binding upon the addition of trimethoprim. Dose-dependent control over Cas9 editing and dCas9 induction was achieved, which drastically improved the specificity and biosafety of the CRISPR/Cas9 system. We utilized the anti-CRISPR protein AcrIIA4 as a means to interfere with Cas9 DNA binding activity. By fusing AcrIIA4 to a ligand-inducible destabilization domain DHFR(DD), we show significantly reduced off-target activity in mammalian cells. Furthermore, we describe a new inducible promoter system Acr-OFF based on CRISPR controllers, which is regulated by an FDA-approved ligand trimethoprim.


Subject(s)
CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Editing/methods , Streptococcus pyogenes/enzymology , Trimethoprim/metabolism , Containment of Biohazards/methods , DNA/metabolism , DNA-Binding Proteins/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Ligands , Protein Binding , RNA, Guide, Kinetoplastida/genetics , Transfection
19.
CRISPR J ; 4(2): 223-232, 2021 04.
Article in English | MEDLINE | ID: mdl-33876948

ABSTRACT

Guided by the extensive knowledge of CRISPR-Cas9 molecular mechanisms, protein engineering can be an effective method in improving CRISPR-Cas9 toward desired traits different from those of their natural forms. Here, we describe a directed protein evolution method that enables selection of catalytically enhanced CRISPR-Cas9 variants (CECas9) by targeting a shortened protospacer within a toxic gene. We demonstrate the effectiveness of this method with a previously characterized Type II-C Cas9 from Acidothermus cellulolyticus (AceCas9) and show by enzyme kinetics an up to fourfold improvement of the in vitro catalytic efficiency by AceCECas9. We further evolved the more widely used Streptococcus pyogenes Cas9 (SpyCas9) and demonstrated a noticeable improvement in the SpyCECas9-facilitated homology directed repair-based gene insertion in human colon cancer cells.


Subject(s)
CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , Protein Engineering , Actinobacteria/enzymology , Actinobacteria/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Colonic Neoplasms , Gene Editing/methods , HCT116 Cells , Humans , Streptococcus pyogenes/enzymology , Streptococcus pyogenes/genetics
20.
Int J Mol Sci ; 22(6)2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33805827

ABSTRACT

The Streptococcus pyogenes Cas9 protein (SpCas9), a component of CRISPR-based immune system in microbes, has become commonly utilized for genome editing. This nuclease forms a ribonucleoprotein (RNP) complex with guide RNA (gRNA) which induces Cas9 structural changes and triggers its cleavage activity. Here, electronic circular dichroism (ECD) spectroscopy was used to confirm the RNP formation and to determine its individual components. The ECD spectra had characteristic features differentiating Cas9 and gRNA, the former showed a negative/positive profile with maxima located at 221, 209 and 196 nm, while the latter revealed positive/negative/positive/negative pattern with bands observed at 266, 242, 222 and 209 nm, respectively. For the first time, the experimental ECD spectrum of the gRNA:Cas9 RNP complex is presented. It exhibits a bisignate positive/negative ECD couplet with maxima at 273 and 235 nm, and it differs significantly from individual spectrum of each RNP components. Additionally, the Cas9 protein and RNP complex retained biological activity after ECD measurements and they were able to bind and cleave DNA in vitro. Hence, we conclude that ECD spectroscopy can be considered as a quick and non-destructive method of monitoring conformational changes of the Cas9 protein as a result of Cas9 and gRNA interaction, and identification of the gRNA:Cas9 RNP complex.


Subject(s)
CRISPR-Associated Protein 9/chemistry , CRISPR-Cas Systems , DNA/chemistry , RNA, Guide, Kinetoplastida/chemistry , Ribonucleoproteins/chemistry , Streptococcus pyogenes/chemistry , Base Pairing , Base Sequence , Binding Sites , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Circular Dichroism , DNA/genetics , DNA/metabolism , Gene Editing/methods , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Streptococcus pyogenes/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...