Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.619
Filter
1.
J Infect Dev Ctries ; 18(4): 645-650, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38728637

ABSTRACT

INTRODUCTION: Streptococcus suis (S. suis) disease is a zoonotic infection caused by invasive S. suis and can lead to meningitis, septic shock, arthritis, and endocarditis. Early treatment is the key to reducing mortality. However, clinical manifestations of most cases are atypical, severely limiting rapid diagnosis and treatment. CASE REPORT: Here, we report a 74-year-old female patient diagnosed with S. suis infection. The main symptoms were hearing loss, lumbago, and scattered ecchymosis of the lower extremities and trunk. Blood non-specific infection indexes were significantly increased and platelets were significantly decreased; however, no pathogens were obtained from routine blood culture. Finally, the S. suis infection was confirmed by metagenomic next-generation sequencing (mNGS) of blood and cerebrospinal fluid. After antibiotic treatment, the limb and trunk scattered ecchymosis and lumbago symptoms were significantly relieved, but the hearing did not recover. CONCLUSIONS: Human infection with S. suis is rare in central cities, and it is easy to misdiagnose, especially in cases with atypical early symptoms. mNGS technology, combined with clinical observation, is helpful to clarify the direction of diagnosis and treatment, which is conducive to patient recovery.


Subject(s)
High-Throughput Nucleotide Sequencing , Metagenomics , Streptococcal Infections , Streptococcus suis , Humans , Streptococcus suis/genetics , Streptococcus suis/isolation & purification , Female , Aged , Streptococcal Infections/diagnosis , Streptococcal Infections/microbiology , Streptococcal Infections/drug therapy , Metagenomics/methods , Anti-Bacterial Agents/therapeutic use
2.
Vet Res ; 55(1): 57, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715138

ABSTRACT

Streptococcus suis is a bacterial pathogen that causes important economic losses to the swine industry worldwide. Since there are no current commercial vaccines, the use of autogenous vaccines applied to gilts/sows to enhance transfer of passive immunity is an attractive alternative to protect weaned piglets. However, there is no universal standardization in the production of autogenous vaccines and the vaccine formulation may be highly different among licenced manufacturing laboratories. In the present study, an autogenous vaccine that included S. suis serotypes 2, 1/2, 5, 7 and 14 was prepared by a licensed laboratory and administrated to gilts using a three-dose program prior to farrowing. The antibody response in gilts as well as the passive transfer of antibodies to piglets was then evaluated. In divergence with previously published data with an autogenous vaccine produced by a different company, the increased response seen in gilts was sufficient to improve maternal antibody transfer to piglets up to 5 weeks of age. However, piglets would still remain susceptible to S. suis disease which often appears during the second part of the nursery period. Vaccination did not affect the shedding of S. suis (as well as that of the specific S. suis serotypes included in the vaccine) by either gilts or piglets. Although all antibiotic treatments were absent during the trial, the clinical protective effect of the vaccination program with the autogenous vaccine could not be evaluated, since limited S. suis cases were present during the trial, confirming the need for a complete evaluation of the clinical protection that must include laboratory confirmation of the aetiological agent involved in the presence of S. suis-associated clinical signs. Further studies to evaluate the usefulness of gilt/sow vaccination with autogenous vaccines to protect nursery piglets should be done.


Subject(s)
Autovaccines , Streptococcal Infections , Streptococcus suis , Swine Diseases , Animals , Streptococcus suis/immunology , Swine , Swine Diseases/prevention & control , Swine Diseases/microbiology , Swine Diseases/immunology , Streptococcal Infections/veterinary , Streptococcal Infections/prevention & control , Streptococcal Infections/immunology , Female , Immunity, Maternally-Acquired , Streptococcal Vaccines/immunology , Streptococcal Vaccines/administration & dosage , Serogroup , Vaccination/veterinary
3.
Front Immunol ; 15: 1392456, 2024.
Article in English | MEDLINE | ID: mdl-38779673

ABSTRACT

In response to the global threat posed by bacterial pathogens, which are the second leading cause of death worldwide, vaccine development is challenged by the diversity of bacterial serotypes and the lack of immunoprotection across serotypes. To address this, we introduce BacScan, a novel genome-wide technology for the rapid discovery of conserved highly immunogenic proteins (HIPs) across serotypes. Using bacterial-specific serum, BacScan combines phage display, immunoprecipitation, and next-generation sequencing to comprehensively identify all the HIPs in a single assay, thereby paving the way for the development of universally protective vaccines. Our validation of this technique with Streptococcus suis, a major pathogenic threat, led to the identification of 19 HIPs, eight of which conferred 20-100% protection against S. suis challenge in animal models. Remarkably, HIP 8455 induced complete immunity, making it an exemplary vaccine target. BacScan's adaptability to any bacterial pathogen positions it as a revolutionary tool that can expedite the development of vaccines with broad efficacy, thus playing a critical role in curbing bacterial transmission and slowing the march of antimicrobial resistance.


Subject(s)
Bacterial Proteins , Animals , Mice , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Streptococcal Infections/immunology , Streptococcal Infections/prevention & control , Streptococcus suis/immunology , Streptococcus suis/genetics , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Female , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Humans , Bacterial Vaccines/immunology
4.
Emerg Microbes Infect ; 13(1): 2352435, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38703011

ABSTRACT

Streptococcus suis is a major bacterial pathogen in pigs and an emerging zoonotic pathogen. Different S. suis serotypes exhibit diverse characteristics in population structure and pathogenicity. Surveillance data highlight the significance of S. suis serotype 4 (SS4) in swine streptococcusis, a pathotype causing human infections. However, except for a few epidemiologic studies, the information on SS4 remains limited. In this study, we investigated the population structure, pathogenicity, and antimicrobial characteristics of SS4 based on 126 isolates, including one from a patient with septicemia. We discovered significant diversities within this population, clustering into six minimum core genome (MCG) groups (1, 2, 3, 4, 7-2, and 7-3) and five lineages. Two main clonal complexes (CCs), CC17 and CC94, belong to MCG groups 1 and 3, respectively. Numerous important putative virulence-associated genes are present in these two MCG groups, and 35.00% (7/20) of pig isolates from CC17, CC94, and CC839 (also belonging to MCG group 3) were highly virulent (mortality rate ≥ 80%) in zebrafish and mice, similar to the human isolate ID36054. Cytotoxicity assays showed that the human and pig isolates of SS4 strains exhibit significant cytotoxicity to human cells. Antimicrobial susceptibility testing showed that 95.83% of strains isolated from our labs were classified as multidrug-resistant. Prophages were identified as the primary vehicle for antibiotic resistance genes. Our study demonstrates the public health threat posed by SS4, expanding the understanding of SS4 population structure and pathogenicity characteristics and providing valuable information for its surveillance and prevention.


Subject(s)
Serogroup , Streptococcal Infections , Streptococcus suis , Swine Diseases , Streptococcus suis/pathogenicity , Streptococcus suis/genetics , Streptococcus suis/classification , Streptococcus suis/drug effects , Streptococcus suis/isolation & purification , Animals , Swine , Humans , Streptococcal Infections/microbiology , Streptococcal Infections/veterinary , Swine Diseases/microbiology , Virulence , Mice , Genome, Bacterial , Zebrafish , Anti-Bacterial Agents/pharmacology , Phylogeny , Microbial Sensitivity Tests , Virulence Factors/genetics
5.
Can Vet J ; 65(5): 429-436, 2024 May.
Article in English | MEDLINE | ID: mdl-38694742

ABSTRACT

Objective: Streptococcus suis is a major agent of disease in modern swine operations, linked to increased mortality, treatment costs, and secondary infections. Although it is ubiquitous in swine, only a fraction of pigs develop clinical disease. The goals of this study were to profile isolates obtained from diseased pigs in western Canada and to investigate potential associations with disease severity. Procedure: Isolates of S. suis (n = 128) from 75 diagnostic submission and 63 premises were paired with epidemiological surveys completed by submitting practitioners (n = 22). Whole-genome sequencing was used to type isolates. Results: The most prevalent serotypes identified were 1/2 (7.8%, 10/128), 2 (9.3%, 12/128), 3 (9.3%, 12/128), and 7 (7.8%, 10/128); and sequence types 28 (17%, 23/128) and 839 (14%, 19/128). There was no association between serotype or sequence type and organ source or barn location. Approximately 74% (14/19) of the premises had diseased animals colonized by > 1 S. suis serotype, but only 1 pig was simultaneously infected with multiple serotypes and sequence types. Serotype distribution from diseased pigs in western Canada differed from that of those in other geographic regions. Conclusion: Infection of diseased pigs by multiple serotypes should be considered when disease control strategies are implemented. No association between S. suis type and isolation organ was identified.


Le profil moléculaire et les caractéristiques épidémiologiques de Streptococcus suis isolés de porcs malades dans l'ouest du Canada révèlent une infection à sérotypes multiples : implications pour la maitrise de la maladie. Objectif: Streptococcus suis est un agent pathogène majeur dans les exploitations porcines modernes, lié à une mortalité accrue, aux coûts de traitement et aux infections secondaires. Bien qu'elle soit omniprésente chez le porc, seule une fraction des porcs développe une maladie clinique. Les objectifs de cette étude étaient de dresser le profil des isolats obtenus à partir de porcs malades dans l'ouest du Canada et d'étudier les associations potentielles avec la gravité de la maladie. Procédure: Des isolats de S. suis (n = 128) provenant de 75 soumissions pour diagnostic et de 63 sites ont été associés à des enquêtes épidémiologiques réalisées auprès des praticiens soumettant les échantillons (n = 22). Le séquençage du génome entier a été utilisé pour typer les isolats. Résultats: Les sérotypes les plus répandus identifiés étaient 1/2 (7,8 %, 10/128), 2 (9,3 %, 12/128), 3 (9,3 %, 12/128) et 7 (7,8 %, 10/128); et les types de séquence 28 (17 %, 23/128) et 839 (14 %, 19/128). Il n'y avait aucune association entre le sérotype ou le type de séquence et la source d'organes ou l'emplacement de la ferme. Environ 74 % (14/19) des exploitations abritaient des animaux malades colonisés par > 1 sérotype de S. suis, mais 1 seul porc était infecté simultanément par plusieurs sérotypes et types de séquences. La répartition des sérotypes chez les porcs malades de l'ouest du Canada différait de celle des porcs d'autres régions géographiques. Conclusion: L'infection des porcs malades par plusieurs sérotypes doit être envisagée lors de la mise en oeuvre de stratégies de maitrise de la maladie. Aucune association entre le type de S. suis et l'organe d'isolement n'a été identifiée.(Traduit par Dr Serge Messier).


Subject(s)
Serogroup , Streptococcal Infections , Streptococcus suis , Swine Diseases , Animals , Streptococcus suis/genetics , Streptococcus suis/isolation & purification , Swine , Swine Diseases/microbiology , Swine Diseases/epidemiology , Streptococcal Infections/veterinary , Streptococcal Infections/epidemiology , Streptococcal Infections/microbiology , Canada/epidemiology
6.
PLoS One ; 19(4): e0299691, 2024.
Article in English | MEDLINE | ID: mdl-38568909

ABSTRACT

Streptococcus suis serotype 2 (SS2) is an important porcine pathogen that causes diseases in both swine and human. For rapid SS2 identification, a novel latex agglutination test (LAT) based on heavy-chain variable domain antibody (VH) was developed. Firstly, the soluble 47B3 VH antibody fragment from a phage display library, in which cysteine residues were engineered at the C-terminus, was expressed in Escherichia coli. The purified protein was then gently reduced to form monomeric soluble 47B3 VH subsequently used to coat with latex beads by means of site-specific conjugation. The resulting VH-coated beads gave a good agglutination reaction with SS2. The LAT was able to distinguish S. suis serotype 2 from serotype 1/2, which shares some common sugar residues, and showed no cross-reaction with other serotypes of S. suis or other related bacteria. The detection sensitivity was found to be as high as 1.85x106 cells. The LAT was stable at 4°C for at least six months without loss of activity. To the best of our knowledge, this is the first LAT based on a VH antibody fragment that can be considered as an alternative for conventional antibody-based LAT where VHs are the most favored recombinant antibody.


Subject(s)
Streptococcal Infections , Streptococcus suis , Swine Diseases , Animals , Humans , Swine , Serogroup , Latex Fixation Tests/methods , Immunoglobulin Fragments , Recombinant Proteins/genetics , Escherichia coli/genetics , Streptococcal Infections/microbiology , Swine Diseases/microbiology
7.
Rev Soc Bras Med Trop ; 57: e00805, 2024.
Article in English | MEDLINE | ID: mdl-38597526

ABSTRACT

Streptococcus suis has been widely reported as a pathogen in animals, especially pigs. In terms of human health implications, it has been characterized as a zoonosis associated with the consumption of pork products and occupational exposure, particularly in Southeast Asian countries. Here, we present a rare case of human S. suis infection in Brazil, diagnosed in an older adult swine farmer, a small rural producer residing in the semi-arid region of Bahia, Brazil.


Subject(s)
Meningitis, Bacterial , Streptococcal Infections , Streptococcus suis , Animals , Humans , Swine , Brazil/epidemiology , Zoonoses , Streptococcal Infections/diagnosis , Meningitis, Bacterial/diagnosis
8.
PLoS One ; 19(4): e0299905, 2024.
Article in English | MEDLINE | ID: mdl-38635508

ABSTRACT

Streptococcus suis (S. suis) infections in weaned pigs are common and responsible for a high consumption of antimicrobials, and their presence is assumed to be multi-factorial. A specific evidence-based veterinary guideline to support the control of S. suis in weaned pigs was developed for veterinary practitioners in the Netherlands in 2014. Adherence to the S. suis clinical practice guideline helps veterinary practitioners to prevent and control the disease in a systematical approach and thereby improve antimicrobial stewardship and contribute to the prevention of antimicrobial resistance in animals and humans. The impact of such a clinical practice guideline on (animal) disease management depends not only on its content, but also largely on the extent to which practitioners adhere to the clinical guideline in practice. When the S. suis guideline was published, no specific activities were undertaken to support veterinarians' uptake and implementation, thereby contributing to suboptimal adherence in clinical practice. As the S. suis guideline was comprehensively written by veterinary experts following an evidence-based approach, our aim was not to judge the (scientific) quality of the guideline but to study the possibility to improve the currently low adherence of this guideline in veterinary practice. This paper describes the systematic development, using Implementation Mapping, of a theory-based intervention program to support swine veterinarians' adherence to the S. suis guideline. The knowledge, skills, beliefs about capabilities, and beliefs about consequences domains are addressed in the program, which includes seven evidence-based methods (modelling, tailoring, feedback, discussion, persuasive communication, active learning, and self-monitoring) for use in program activities such as a peer-learning meeting and an e-learning module. The intervention program has been developed for practicing swine veterinarians, lasts eight months, and is evaluated through a stepped-wedge design. The Implementation Mapping approach ensured that all relevant adopters and implementers were involved, and that outcomes, determinants (influencing factors), and objectives were systematically discussed.


Subject(s)
Animal Diseases , Anti-Infective Agents , Streptococcal Infections , Streptococcus suis , Swine Diseases , Veterinarians , Animals , Humans , Swine , Streptococcal Infections/prevention & control , Streptococcal Infections/veterinary , Swine Diseases/prevention & control
9.
Emerg Microbes Infect ; 13(1): 2339946, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38578304

ABSTRACT

Streptococcus suis is a significant and emerging zoonotic pathogen. ST1 and ST7 strains are the primary agents responsible for S. suis human infections in China, including the Guangxi Zhuang Autonomous Region (GX). To enhance our understanding of S. suis ST1 population characteristics, we conducted an investigation into the phylogenetic structure, genomic features, and virulence levels of 73 S. suis ST1 human strains from GX between 2005 and 2020. The ST1 GX strains were categorized into three lineages in phylogenetic analysis. Sub-lineage 3-1a exhibited a closer phylogenetic relationship with the ST7 epidemic strain SC84. The strains from lineage 3 predominantly harboured 89K-like pathogenicity islands (PAIs) which were categorized into four clades based on sequence alignment. The acquirement of 89K-like PAIs increased the antibiotic resistance and pathogenicity of corresponding transconjugants. We observed significant diversity in virulence levels among the 37 representative ST1 GX strains, that were classified as follows: epidemic (E)/highly virulent (HV) (32.4%, 12/37), virulent plus (V+) (29.7%, 11/37), virulent (V) (18.9%, 7/37), and lowly virulent (LV) (18.9%, 7/37) strains based on survival curves and mortality rates at different time points in C57BL/6 mice following infection. The E/HV strains were characterized by the overproduction of tumour necrosis factor (TNF)-α in serum and promptly established infection at the early phase of infection. Our research offers novel insights into the population structure, evolution, genomic features, and pathogenicity of ST1 strains. Our data also indicates the importance of establishing a scheme for characterizing and subtyping the virulence levels of S. suis strains.


Subject(s)
Genome, Bacterial , Genomic Islands , Phylogeny , Streptococcal Infections , Streptococcus suis , Streptococcus suis/genetics , Streptococcus suis/pathogenicity , Streptococcus suis/classification , Streptococcus suis/isolation & purification , Streptococcal Infections/microbiology , Streptococcal Infections/veterinary , Streptococcal Infections/epidemiology , China/epidemiology , Humans , Virulence , Animals , Mice , Female , Genomics , Virulence Factors/genetics
10.
BMC Infect Dis ; 24(1): 447, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671388

ABSTRACT

Streptococcus suis is one of the most common zoonotic pathogens, in humans and can cause meningitis, endocarditis, arthritis and sepsis. Human cases of Streptococcus suis infection have been reported worldwide, and most of those cases occurred in Asia. Hearing loss is the most common sequela of Streptococcus suis meningitis. Streptococcus suis infection complicated with acute cerebral infarction has rarely been reported. Therefore, to provide a reference for this disease, we reported a case of acute multiple brain infarctions associated with Streptococcus suis infection. In our report, a 69yearold male patient had Streptococcus suis meningitis and sepsis, which were associated with multiple acute cerebral infarctions in the pons and bilateral frontotemporal parietal occipital lobes. After treatment, the patient exhibited cognitive impairment, dyspraxia and irritability. There are limited case reports of cerebral infarction associated with Streptococcus suis infection, and further research is needed to determine the best treatment method.


Subject(s)
Brain Infarction , Streptococcal Infections , Streptococcus suis , Humans , Streptococcus suis/isolation & purification , Male , Streptococcal Infections/microbiology , Streptococcal Infections/complications , Aged , Brain Infarction/microbiology , Brain Infarction/diagnostic imaging , Brain Infarction/complications , Meningitis, Bacterial/microbiology , Meningitis, Bacterial/complications , Meningitis, Bacterial/drug therapy , Sepsis/microbiology , Sepsis/complications , Anti-Bacterial Agents/therapeutic use
11.
Vet Microbiol ; 293: 110084, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608374

ABSTRACT

Streptococcus suis is an important pathogen causing severe disease in pigs and humans, giving rise to economic losses in the pig production industry. Out of 65 S. suis isolates collected from diseased pigs in Switzerland between 2019 and 2022, 57 isolates were thoroughly examined by phenotypic and whole genome sequence (WGS) based characterization. The isolates' genomes were sequenced allowing for a comprehensive analysis of their distribution in terms of serovar, sequence type (ST), clonal complex (CC), and classical virulence markers. Antimicrobial resistance (AMR) genes were screened, and phenotypic susceptibility to eight classes of antimicrobial agents was examined. Serovar 6, devoid of any resistance genes, was found to be most prevalent, followed by serovars 1, 3, 1/2, and 9. Thirty STs were identified, with ST1104 being the most prevalent. Serovar 2 and serovar 1/2 were associated with CC1, potentially containing the most virulent variants. Based on single nucleotide polymorphism (SNP) analyses, fifteen isolates belonged to one of seven putative transmission clusters each consisting of two or three isolates. High phenotypic AMR rates were detected for tetracyclines (80%) and macrolides (35%) and associated with the resistance genes tet(O) and erm(B), respectively. In contrast, susceptibility to ß-lactam antibiotics and phenicols was high. Determination of phenotypic AMR profiling, including the minimum inhibitory concentrations (MICs) of the tested antimicrobial agents, sets a baseline for future studies. The study provides valuable insights into the genetic diversity and antimicrobial susceptibility of Swiss S. suis isolates, facilitating the identification of emerging clones relevant to public health concerns.


Subject(s)
Anti-Bacterial Agents , Genetic Variation , Microbial Sensitivity Tests , Streptococcal Infections , Streptococcus suis , Swine Diseases , Animals , Streptococcus suis/genetics , Streptococcus suis/drug effects , Streptococcus suis/pathogenicity , Streptococcus suis/classification , Streptococcus suis/isolation & purification , Swine , Swine Diseases/microbiology , Switzerland/epidemiology , Streptococcal Infections/veterinary , Streptococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Whole Genome Sequencing , Drug Resistance, Bacterial/genetics , Virulence/genetics , Serogroup , Polymorphism, Single Nucleotide
12.
Int J Biol Macromol ; 268(Pt 2): 131839, 2024 May.
Article in English | MEDLINE | ID: mdl-38663699

ABSTRACT

Streptococcus suis (S. suis) is a significant zoonotic microorganism that causes a severe illness in both pigs and humans and is characterized by severe meningitis and septicemia. Suilysin (SLY), which is secreted by S. suis, plays a crucial role as a virulence factor in the disease. To date, the interaction between SLY and host cells is not fully understood. In this study, we identified the interacting proteins between SLY and human brain microvascular endothelial cells (HBMECs) using the TurboID-mediated proximity labeling method. 251 unique proteins were identified in TurboID-SLY treated group, of which six plasma membrane proteins including ARF6, GRK6, EPB41L5, DSC1, TJP2, and PNN were identified. We found that the proteins capable of interacting with SLY are ARF6 and PNN. Subsequent investigations revealed that ARF6 substantially increased the invasive ability of S. suis in HBMECs. Furthermore, ARF6 promoted SLY-induced the activation of p38 MAPK signaling pathway in HBMECs. Moreover, ARF6 promoted the apoptosis in HBMECs through the activation of p38 MAPK signaling pathway induced by SLY. Finally, we confirmed that ARF6 could increase the virulence of SLY in C57BL/6 mice. These findings offer valuable insights that contribute to a deeper understanding of the pathogenic mechanism of SLY.


Subject(s)
ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors , Apoptosis , Endothelial Cells , Hemolysin Proteins , Streptococcus suis , Streptococcus suis/pathogenicity , Streptococcus suis/metabolism , Humans , Animals , Apoptosis/drug effects , Mice , ADP-Ribosylation Factors/metabolism , ADP-Ribosylation Factors/genetics , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelial Cells/microbiology , Hemolysin Proteins/metabolism , Hemolysin Proteins/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Streptococcal Infections/microbiology , Streptococcal Infections/metabolism , Virulence , Brain/metabolism
13.
Medicina (B Aires) ; 84(2): 329-332, 2024.
Article in Spanish | MEDLINE | ID: mdl-38683518

ABSTRACT

Streptococcus suis (S. suis) is a globally prevalent swine pathogen, capable of generating infections in humans who were in contact with the animal or its raw meat. Clinical manifestations range from asymptomatic cases to systemic involvement, with low mortality, but with the possibility of leaving definitive sequelae such as ataxia and hearing loss. There are few case reports, due to lack of knowledge of the disease and its atypical presentation. The objective of this article is to report the case of a man with an occupational history of contact with pigs, who was admitted for meningitis and in whom the isolation of S. suis was obtained in cerebrospinal fluid and paired blood cultures; He completed antibiotic treatment adjusted to bacterial sensitivity, and was left with mild hearing loss as a consequence.


Streptococcus suis (S. suis) es un patógeno porcino prevalente a nivel mundial, capaz de generar infecciones en humanos que estuvieron en contacto con el animal o la carne cruda del mismo. Las manifestaciones clínicas comprenden desde casos asintomáticos hasta compromiso sistémico, con una baja mortalidad, pero con la posibilidad de dejar secuelas definitivas como la ataxia e hipoacusia. Son pocos los reportes de casos, debido al desconocimiento de la enfermedad y a su forma atípica de presentación. El objetivo de este artículo es relatar el caso de un varón con antecedentes ocupacionales de contacto con porcinos, que ingresó por meningitis y en el cual se obtuvo el aislamiento de S. suis en líquido cefalorraquídeo y hemocultivos pareados; completó tratamiento antibiótico ajustado a la sensibilidad bacteriana, quedó con hipoacusia leve como secuela.


Subject(s)
Meningitis, Bacterial , Streptococcal Infections , Streptococcus suis , Streptococcus suis/isolation & purification , Humans , Male , Meningitis, Bacterial/microbiology , Meningitis, Bacterial/diagnosis , Meningitis, Bacterial/drug therapy , Meningitis, Bacterial/cerebrospinal fluid , Streptococcal Infections/drug therapy , Streptococcal Infections/microbiology , Streptococcal Infections/diagnosis , Animals , Swine , Anti-Bacterial Agents/therapeutic use , Adult , Middle Aged
14.
Acta Otolaryngol ; 144(2): 136-141, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38651889

ABSTRACT

BACKGROUND: Hearing loss is a common sequala of Streptococcus suis (S. suis) meningitis, but few have addressed cochlear implantation (CI) candidates with S. suis meningitis. OBJECTIVES: To assess the clinical characteristics and CI postoperative outcomes in S. suis meningitis patients. MATERIAL AND METHODS: Eight S. suis meningitis patients underwent CI at Sun Yat-sen Memorial Hospital between 2020 and 2023. Control groups included (1) non-Suis meningitis patients (n = 12) and (2) non-meningitis patients (n = 35). Electrode impedances and neural response telemetry (NRT) thresholds were recorded at one month after surgery. The auditory performance-II (CAP) and speech intelligibility rating (SIR) were recorded at the last visit. RESULTS: CAP scores of S. suis meningitis patients were significantly lower than those of non-Suis meningitis and non-meningitis patients (p = .019; p<.001). And NRT thresholds of S. suis meningitis patients were higher than those of non-Suis meningitis and non-meningitis patients (p = .006; p = .027). CONCLUSIONS AND SIGNIFICANCE: It is recommended for S. suis meningitis CI candidates to undergo CI promptly after controlling infection, preferably within four to six weeks. CI users with S. suis meningitis tend to exhibit suboptimal hearing rehabilitation outcomes, possibly associated with the more severe damage on spiral ganglion cells after S. suis meningitis.


Subject(s)
Cochlear Implantation , Meningitis, Bacterial , Streptococcal Infections , Streptococcus suis , Humans , Male , Female , Meningitis, Bacterial/complications , Adult , Middle Aged , Streptococcal Infections/surgery , Streptococcal Infections/complications , Aged , Young Adult
15.
PLoS Pathog ; 20(4): e1012169, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38640137

ABSTRACT

Integrative and conjugative elements (ICEs) play a vital role in bacterial evolution by carrying essential genes that confer adaptive functions to the host. Despite their importance, the mechanism underlying the stable inheritance of ICEs, which is necessary for the acquisition of new traits in bacteria, remains poorly understood. Here, we identified SezAT, a type II toxin-antitoxin (TA) system, and AbiE, a type IV TA system encoded within the ICESsuHN105, coordinately promote ICE stabilization and mediate multidrug resistance in Streptococcus suis. Deletion of SezAT or AbiE did not affect the strain's antibiotic susceptibility, but their duple deletion increased susceptibility, mainly mediated by the antitoxins SezA and AbiEi. Further studies have revealed that SezA and AbiEi affect the genetic stability of ICESsuHN105 by moderating the excision and extrachromosomal copy number, consequently affecting the antibiotic resistance conferred by ICE. The DNA-binding proteins AbiEi and SezA, which bind palindromic sequences in the promoter, coordinately modulate ICE excision and extracellular copy number by binding to sequences in the origin-of-transfer (oriT) and the attL sites, respectively. Furthermore, AbiEi negatively regulates the transcription of SezAT by binding directly to its promoter, optimizing the coordinate network of SezAT and AbiE in maintaining ICESsuHN105 stability. Importantly, SezAT and AbiE are widespread and conserved in ICEs harbouring diverse drug-resistance genes, and their coordinated effects in promoting ICE stability and mediating drug resistance may be broadly applicable to other ICEs. Altogether, our study uncovers the TA system's role in maintaining the genetic stability of ICE and offers potential targets for overcoming the dissemination and evolution of drug resistance.


Subject(s)
Bacterial Proteins , Streptococcus suis , Toxin-Antitoxin Systems , Streptococcus suis/genetics , Streptococcus suis/drug effects , Toxin-Antitoxin Systems/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Streptococcal Infections/microbiology , Streptococcal Infections/genetics , Anti-Bacterial Agents/pharmacology , Conjugation, Genetic , Animals , Interspersed Repetitive Sequences
16.
Microb Genom ; 10(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38536216

ABSTRACT

Streptococcus suis is a leading cause of infection in pigs, causing extensive economic losses. In addition, it can also infect wild fauna, and can be responsible for severe infections in humans. Increasing antimicrobial resistance (AMR) has been described in S. suis worldwide and most of the AMR genes are carried by mobile genetic elements (MGEs). This contributes to their dissemination by horizontal gene transfer. A collection of 102 strains isolated from humans, pigs and wild boars in France was subjected to whole genome sequencing in order to: (i) study their genetic diversity, (ii) evaluate their content in virulence-associated genes, (iii) decipher the mechanisms responsible for their AMR and their association with MGEs, and (iv) study their ability to acquire extracellular DNA by natural transformation. Analysis by hierarchical clustering on principal components identified a few virulence-associated factors that distinguish invasive CC1 strains from the other strains. A plethora of AMR genes (n=217) was found in the genomes. Apart from the frequently reported erm(B) and tet(O) genes, more recently described AMR genes were identified [vga(F)/sprA, vat(D)]. Modifications in PBPs/MraY and GyrA/ParC were detected in the penicillin- and fluoroquinolone-resistant isolates respectively. New AMR gene-MGE associations were detected. The majority of the strains have the full set of genes required for competence, i.e for the acquisition of extracellular DNA (that could carry AMR genes) by natural transformation. Hence the risk of dissemination of these AMR genes should not be neglected.


Subject(s)
Streptococcus suis , Humans , Animals , Swine , Virulence , France , Virulence Factors , DNA
17.
Vet Res ; 55(1): 34, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504299

ABSTRACT

Streptococcus suis serotype 2 is a major swine pathogen and a zoonotic agent, causing meningitis in both swine and humans, responsible for substantial economic losses to the swine industry worldwide. The pathogenesis of infection and the role of bacterial cell wall components in virulence have not been fully elucidated. Lipoproteins, peptidoglycan, as well as lipoteichoic acids (LTA) have all been proposed to contribute to virulence. In the present study, the role of the LTA in the pathogenesis of the infection was evaluated through the characterisation of a mutant of the S. suis serotype 2 strain P1/7 lacking the LtaS enzyme, which mediates the polymerization of the LTA poly-glycerolphosphate chain. The ltaS mutant was confirmed to completely lack LTA and displayed significant morphological defects. Although the bacterial growth of this mutant was not affected, further results showed that LTA is involved in maintaining S. suis bacterial fitness. However, its role in the pathogenesis of the infection appears limited. Indeed, LTA presence reduces self-agglutination, biofilm formation and even dendritic cell activation, which are important aspects of the pathogenesis of the infection caused by S. suis. In addition, it does not seem to play a critical role in virulence using a systemic mouse model of infection.


Subject(s)
Rodent Diseases , Streptococcal Infections , Streptococcus suis , Swine Diseases , Humans , Mice , Animals , Swine , Serogroup , Cell Shape , Virulence , Streptococcal Infections/veterinary , Streptococcal Infections/microbiology
18.
Front Cell Infect Microbiol ; 14: 1356628, 2024.
Article in English | MEDLINE | ID: mdl-38456079

ABSTRACT

Streptococcus suis is an emerging zoonotic pathogen that can cause invasive disease commonly associated with meningitis in pigs and humans. To cause meningitis, S. suis must cross the blood-brain barrier (BBB) comprising blood vessels that vascularize the central nervous system (CNS). The BBB is highly selective due to interactions with other cell types in the brain and the composition of the extracellular matrix (ECM). Purified streptococcal surface enolase, an essential enzyme participating in glycolysis, can bind human plasminogen (Plg) and plasmin (Pln). Plg has been proposed to increase bacterial traversal across the BBB via conversion to Pln, a protease which cleaves host proteins in the ECM and monocyte chemoattractant protein 1 (MCP1) to disrupt tight junctions. The essentiality of enolase has made it challenging to unequivocally demonstrate its role in binding Plg/Pln on the bacterial surface and confirm its predicted role in facilitating translocation of the BBB. Here, we report on the CRISPR/Cas9 engineering of S. suis enolase mutants eno261, eno252/253/255, eno252/261, and eno434/435 possessing amino acid substitutions at in silico predicted binding sites for Plg. As expected, amino acid substitutions in the predicted Plg binding sites reduced Plg and Pln binding to S. suis but did not affect bacterial growth in vitro compared to the wild-type strain. The binding of Plg to wild-type S. suis enhanced translocation across the human cerebral microvascular endothelial cell line hCMEC/D3 but not for the eno mutant strains tested. To our knowledge, this is the first study where predicted Plg-binding sites of enolase have been mutated to show altered Plg and Pln binding to the surface of S. suis and attenuation of translocation across an endothelial cell monolayer in vitro.


Subject(s)
Meningitis , Streptococcus suis , Animals , Humans , Swine , Plasminogen/metabolism , Blood-Brain Barrier , Streptococcus suis/genetics , Streptococcus suis/metabolism , Bacterial Translocation , Fibrinolysin/metabolism , Binding Sites , Phosphopyruvate Hydratase/chemistry
19.
Future Microbiol ; 19: 107-115, 2024 01.
Article in English | MEDLINE | ID: mdl-38305226

ABSTRACT

Background: Biofilm formation is considered to be one of reasons for difficulty in the prevention and control of Streptococcus suis. Aims: To explore the potential genes involved in the biofilm formation of S. suis. Methods: Transposon mutagenesis technology was used to screen biofilm-defective strains of S. suis, and the potential genes related to biofilm were identified. Results: A total of 19 genes were identified that were involved in bacterial metabolism, peptidoglycan-binding protein, cell wall synthesis, ABC transporters, and so on. Conclusion: This study constructed 979 transposon mutation libraries of S. suis. A total of 19 gene loci related to the formation of S. suis biofilm were identified, providing a reference for exploring the mechanism of S. suis biofilm formation in the future.


Streptococcus suis is an important pathogen (this is a microorganism that causes, or can cause, disease) that can be transmitted between animals and humans. The ability to form a protective community, called a biofilm, is one of the reasons why we can have difficulty in preventing and treating S. suis infection. The main purpose of this study was to screen potential genes that may determine biofilm formation in S. suis. The results revealed 19 genes that may affect the biofilm formation of S. suis.


Subject(s)
Streptococcal Infections , Streptococcus suis , Humans , Streptococcus suis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutation , Mutagenesis , Biofilms , Streptococcal Infections/microbiology
20.
Microb Pathog ; 188: 106565, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309311

ABSTRACT

Streptococcus suis serotype 2 is a zoonotic agent that causes substantial economic losses to the swine industry and threatens human public health. Factors that contribute to its ability to cause disease are not yet fully understood. Glutamate dehydrogenase (GDH) is an enzyme found in living cells and plays vital roles in cellular metabolism. It has also been shown to affect pathogenic potential of certain bacteria. In this study, we constructed a S. suis serotype 2 GDH mutant (Δgdh) by insertional inactivation mediated by a homologous recombination event and confirmed loss of expression of GDH in the mutant by immunoblot and enzyme activity staining assays. Compared with the wild type (WT) strain, Δgdh displayed a different phenotype. It exhibited impaired growth in all conditions evaluated (solid and broth media, increased temperature, varying pH, and salinity) and formed cells of reduced size. Using a swine infection model, pigs inoculated with the WT strain exhibited fever, specific signs of disease, and lesions, and the strain could be re-isolated from the brain, lung, joint fluid, and blood samples collected from the infected pigs. Pigs inoculated with the Δgdh strain did not exhibit any clinical signs of disease nor histologic lesions, and the strain could not be re-isolated from any of the tissues nor body fluid sampled. The Δgdh also showed a decreased level of survival in pig blood. Taken together, these results suggest that the gdh is important in S. suis physiology and its ability to colonize, disseminate, and cause disease.


Subject(s)
Streptococcal Infections , Streptococcus suis , Swine Diseases , Swine , Animals , Humans , Virulence , Glutamate Dehydrogenase/genetics , Glutamate Dehydrogenase/metabolism , Streptococcus suis/genetics , Serogroup , Virulence Factors/genetics , Virulence Factors/metabolism , Swine Diseases/microbiology , Streptococcal Infections/veterinary , Streptococcal Infections/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...