Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 299(5): 104649, 2023 05.
Article in English | MEDLINE | ID: mdl-36965618

ABSTRACT

The assembly of membrane-less organelles such as stress granules (SGs) is emerging as central in helping cells rapidly respond and adapt to stress. Following stress sensing, the resulting global translational shutoff leads to the condensation of stalled mRNAs and proteins into SGs. By reorganizing cytoplasmic contents, SGs can modulate RNA translation, biochemical reactions, and signaling cascades to promote survival until the stress is resolved. While mechanisms for SG disassembly are not widely understood, the resolution of SGs is important for maintaining cell viability and protein homeostasis. Mutations that lead to persistent or aberrant SGs are increasingly associated with neuropathology and a hallmark of several neurodegenerative diseases. Mutations in CLN3 are causative of juvenile neuronal ceroid lipofuscinosis, a rare neurodegenerative disease affecting children also known as Batten disease. CLN3 encodes a transmembrane lysosomal protein implicated in autophagy, endosomal trafficking, metabolism, and response to oxidative stress. Using a HeLa cell model lacking CLN3, we now show that CLN3KO is associated with an altered metabolic profile, reduced global translation, and altered stress signaling. Furthermore, loss of CLN3 function results in perturbations in SG dynamics, resulting in assembly and disassembly defects, and altered expression of the key SG nucleating factor G3BP1. With a growing interest in SG-modulating drugs for the treatment of neurodegenerative diseases, novel insights into the molecular basis of CLN3 Batten disease may reveal avenues for disease-modifying treatments for this debilitating childhood disease.


Subject(s)
Gene Expression , Molecular Chaperones , Neuronal Ceroid-Lipofuscinoses , Stress Granules , Humans , HeLa Cells , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/physiopathology , Stress Granules/genetics , Stress Granules/pathology , Stress, Physiological/genetics , Signal Transduction/genetics , Gene Expression/genetics , Cell Line
2.
J Comp Neurol ; 530(2): 537-552, 2022 02.
Article in English | MEDLINE | ID: mdl-34350994

ABSTRACT

Polyglutamine repeat expansions in the Ataxin-2 (ATXN2) gene were first implicated in Spinocerebellar Ataxia Type 2, a disease associated with degeneration of motor neurons and Purkinje cells. Recent studies linked single nucleotide polymorphisms in the gene to elevated intraocular pressure in primary open angle glaucoma (POAG); yet, the localization of ATXN2 across glaucoma-relevant tissues of the vertebrate eye has not been thoroughly examined. This study characterizes ATXN2 expression in the mouse and human retina, and anterior eye, using an antibody validated in ATXN2-/- retinas. ATXN2-ir was localized to cytosolic sub compartments in retinal ganglion cell (RGC) somata and proximal dendrites in addition to GABAergic, glycinergic, and cholinergic amacrine cells in the inner plexiform layer (IPL) and displaced amacrine cells. Human, but not mouse retinas showed modest immunolabeling of bipolar cells. ATXN2 immunofluorescence was prominent in the trabecular meshwork and pigmented and nonpigmented cells of the ciliary body, with analyses of primary human trabecular meshwork cells confirming the finding. The expression of ATXN2 in key POAG-relevant ocular tissues supports the potential role in autophagy and stress granule formation in response to ocular hypertension.


Subject(s)
Amacrine Cells/metabolism , Ataxin-2/metabolism , Glaucoma, Open-Angle/physiopathology , Retinal Ganglion Cells/metabolism , Stress Granules/pathology , Animals , Dendrites/metabolism , Disease Models, Animal , Humans , Mice , Polymorphism, Single Nucleotide , Retina/physiology
3.
Mol Cancer ; 20(1): 118, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34521423

ABSTRACT

BACKGROUND: Cancer cells develop resistance to chemotherapeutic intervention by excessive formation of stress granules (SGs), which are modulated by an oncogenic protein G3BP2. Selective control of G3BP2/SG signaling is a potential means to treat non-small cell lung cancer (NSCLC). METHODS: Co-immunoprecipitation was conducted to identify the interaction of MG53 and G3BP2. Immunohistochemistry and live cell imaging were performed to visualize the subcellular expression or co-localization. We used shRNA to knock-down the expression MG53 or G3BP2 to test the cell migration and colony formation. The expression level of MG53 and G3BP2 in human NSCLC tissues was tested by western blot analysis. The ATO-induced oxidative stress model was used to examine the effect of rhMG53 on SG formation. Moue NSCLC allograft experiments were performed on wild type and transgenic mice with either knockout of MG53, or overexpression of MG53. Human NSCLC xenograft model in mice was used to evaluate the effect of MG53 overexpression on tumorigenesis. RESULTS: We show that MG53, a member of the TRIM protein family (TRIM72), modulates G3BP2 activity to control lung cancer progression. Loss of MG53 results in the progressive development of lung cancer in mg53-/- mice. Transgenic mice with sustained elevation of MG53 in the bloodstream demonstrate reduced tumor growth following allograft transplantation of mouse NSCLC cells. Biochemical assay reveals physical interaction between G3BP2 and MG53 through the TRIM domain of MG53. Knockdown of MG53 enhances proliferation and migration of NSCLC cells, whereas reduced tumorigenicity is seen in NSCLC cells with knockdown of G3BP2 expression. The recombinant human MG53 (rhMG53) protein can enter the NSCLC cells to induce nuclear translation of G3BP2 and block arsenic trioxide-induced SG formation. The anti-proliferative effect of rhMG53 on NSCLC cells was abolished with knockout of G3BP2. rhMG53 can enhance sensitivity of NSCLC cells to undergo cell death upon treatment with cisplatin. Tailored induction of MG53 expression in NSCLC cells suppresses lung cancer growth via reduced SG formation in a xenograft model. CONCLUSION: Overall, these findings support the notion that MG53 functions as a tumor suppressor by targeting G3BP2/SG activity in NSCLCs.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carcinoma, Non-Small-Cell Lung/etiology , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/etiology , Lung Neoplasms/metabolism , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism , Stress Granules/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Disease Progression , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Lung Neoplasms/pathology , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice , Mice, Knockout , Mutation , Protein Binding , Protein Interaction Domains and Motifs , Stress Granules/pathology
4.
Reprod Sci ; 28(10): 2869-2877, 2021 10.
Article in English | MEDLINE | ID: mdl-34101146

ABSTRACT

Inflammation is a well-recognized factor associated with preeclampsia (PE). Stress granules (SGs) have been shown to play an important role in regulating inflammation and immune responses. However, whether SGs are involved in the pathogenesis of PE has not been studied. Here, we evaluated the expression of SG components in placenta of pregnancies with PE. Placental samples or serum were collected from PE patients (n = 31) or healthy age-matched pregnancy (n = 17). mRNA expressions of SG-associated genes in placenta from PE or normal pregnancies were detected by real-time quantitative PCR, and protein expressions of HuR and G3BP were detected using western blot. Immunofluorescence staining was performed to evaluate SG components expression in placentas or 10% serum treated HTR-8/Svneo cells using antibodies against HuR and G3BP. Our study showed higher levels of elavl1, lsm2, lsm4, and ago1 mRNA expression and SG marker proteins expression in placental homogenates of PE patients. HuR/G3BP-positive SG structure was further observed in placental villi of PE by immunofluorescence assay. Besides, serum from PE patients could induce SG aggregation in human trophoblast cell line HTR-8/Svneo cells, suggesting the involvement of SGs in the development of PE.


Subject(s)
Cytoplasm/metabolism , Placenta/metabolism , Pre-Eclampsia/metabolism , Stress Granules/metabolism , Adult , Cell Line , Cytoplasm/genetics , Cytoplasm/pathology , Female , Humans , Placenta/chemistry , Placenta/pathology , Pre-Eclampsia/genetics , Pre-Eclampsia/pathology , Pregnancy , Stress Granules/chemistry , Stress Granules/pathology , Young Adult
5.
Mol Cancer Res ; 19(8): 1389-1397, 2021 08.
Article in English | MEDLINE | ID: mdl-33888601

ABSTRACT

Tuberous sclerosis complex (TSC) is caused by mutations of either the TSC1 or TSC2 tumor suppressor gene. TSC causes tumors of the brain, heart, kidney, skin and lymphangioleiomyomatosis (LAM). Here we report that the TSC2 protein physically binds to high-density lipoprotein binding protein (HDLBP), also called vigilin, a core stress granule (SG) protein, and that TSC2 localizes to SGs. SGs contain mRNAs and translation initiation complexes, and regulate gene expression by sequestering specific transcripts, thereby serving a cytoprotective role. TSC2 has never before been shown to localize to SGs and knocking down vigilin impacts SG translocation of TSC2. TSC2-deficient cells showed a striking increase in the number of SGs after thermal shock and arsenite treatment relative to Tsc2-expressing cells. Our findings also show that murine kidney lysates from a model of TSC have increased levels of SG components including G3BP1 and Caprin1. G3BP1 and Caprin are elevated in renal angiomyolipomas (a renal tumor common in patients with TSC) compared with control normal kidney. G3BP1 is also elevated in TSC-associated subependymal giant cell astrocytomas. We found that genetic inhibition of G3BP1 inhibits the proliferation of TSC2-deficient cells in vitro. Finally, in a mouse model of TSC, genetic inhibition of SGs suppresses cell growth, suggesting that targeting SGs may have efficacy in the therapy of TSC. IMPLICATIONS: This study demonstrates that TSC2 physically interacts with HDLBP/vigilin, a component of SGs, that TSC2 localizes to SG and that TSC2-deficient cells have more SGs, suggesting that SGs represent a novel therapeutic target in TSC.


Subject(s)
RNA-Binding Proteins/metabolism , Stress Granules/metabolism , Tuberous Sclerosis Complex 2 Protein/metabolism , Angiomyolipoma/metabolism , Angiomyolipoma/pathology , Animals , Cell Line , Cell Line, Tumor , HEK293 Cells , HeLa Cells , Humans , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Lymphangioleiomyomatosis/metabolism , Lymphangioleiomyomatosis/pathology , Male , Mice , Mice, Inbred C57BL , RNA Recognition Motif Proteins/metabolism , RNA, Messenger/metabolism , Stress Granules/pathology , Tumor Suppressor Proteins/metabolism
6.
Neurobiol Dis ; 154: 105338, 2021 07.
Article in English | MEDLINE | ID: mdl-33775821

ABSTRACT

Fragile X syndrome (FXS) is a common form of intellectual disability and autism caused by the lack of Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein involved in RNA transport and protein synthesis. Upon cellular stress, global protein synthesis is blocked and mRNAs are recruited into stress granules (SGs), together with RNA-binding proteins including FMRP. Activation of group-I metabotropic glutamate (mGlu) receptors stimulates FMRP-mediated mRNA transport and protein synthesis, but their role in SGs formation is unexplored. To this aim, we pre-treated wild type (WT) and Fmr1 knockout (KO) cultured astrocytes with the group-I-mGlu receptor agonist (S)-3,5-Dihydroxyphenylglycine (DHPG) and exposed them to sodium arsenite (NaAsO2), a widely used inducer of SGs formation. In WT cultures the activation of group-I mGlu receptors reduced SGs formation and recruitment of FMRP into SGs, and also attenuated phosphorylation of eIF2α, a key event crucially involved in SGs formation and inhibition of protein synthesis. In contrast, Fmr1 KO astrocytes, which exhibited a lower number of SGs than WT astrocytes, did not respond to agonist stimulation. Interestingly, the mGlu5 receptor negative allosteric modulator (NAM) 2-methyl-6-(phenylethynyl)pyridine (MPEP) antagonized DHPG-mediated SGs reduction in WT and reversed SGs formation in Fmr1 KO cultures. Our findings reveal a novel function of mGlu5 receptor as modulator of SGs formation and open new perspectives for understanding cellular response to stress in FXS pathophysiology.


Subject(s)
Astrocytes/metabolism , Fragile X Mental Retardation Protein/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Stress Granules/metabolism , Animals , Animals, Newborn , Astrocytes/pathology , Cells, Cultured , Fragile X Mental Retardation Protein/antagonists & inhibitors , Fragile X Mental Retardation Protein/genetics , Mice , Mice, Knockout , Oxidative Stress/physiology , Receptor, Metabotropic Glutamate 5/genetics , Stress Granules/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...