Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
Sci Rep ; 14(1): 10834, 2024 05 12.
Article in English | MEDLINE | ID: mdl-38734821

ABSTRACT

Bulk composition of kidney stones, often analyzed with infrared spectroscopy, plays an essential role in determining the course of treatment for kidney stone disease. Though bulk analysis of kidney stones can hint at the general causes of stone formation, it is necessary to understand kidney stone microstructure to further advance potential treatments that rely on in vivo dissolution of stones rather than surgery. The utility of Raman microscopy is demonstrated for the purpose of studying kidney stone microstructure with chemical maps at ≤ 1 µm scales collected for calcium oxalate, calcium phosphate, uric acid, and struvite stones. Observed microstructures are discussed with respect to kidney stone growth and dissolution with emphasis placed on < 5 µm features that would be difficult to identify using alternative techniques including micro computed tomography. These features include thin concentric rings of calcium oxalate monohydrate within uric acid stones and increased frequency of calcium oxalate crystals within regions of elongated crystal growth in a brushite stone. We relate these observations to potential concerns of clinical significance including dissolution of uric acid by raising urine pH and the higher rates of brushite stone recurrence compared to other non-infectious kidney stones.


Subject(s)
Calcium Oxalate , Calcium Phosphates , Kidney Calculi , Spectrum Analysis, Raman , Struvite , Uric Acid , Kidney Calculi/chemistry , Spectrum Analysis, Raman/methods , Calcium Oxalate/chemistry , Uric Acid/analysis , Calcium Phosphates/analysis , Calcium Phosphates/chemistry , Humans , Struvite/chemistry , Magnesium Compounds/chemistry , Phosphates/analysis
2.
Water Res ; 256: 121638, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38691899

ABSTRACT

In this study, we investigated the recovery of nitrogen (N) and phosphorus (P) from fresh source-separated urine with a novel electrochemical cell equipped with a magnesium (Mg) anode and carbon-based gas-diffusion cathode. Recovery of P, which exists primarily as phosphate (PO43-) in urine, was achieved through pH-driven precipitation. Maximizing N recovery requires simultaneous approaches to address urea and ammonia (NH3). NH3 recovery was possible through precipitation in struvite with soluble Mg supplied by the anode. Urea was stabilized with electrochemically synthesized hydrogen peroxide (H2O2) from the cathode. H2O2 concentrations and resulting urine pH were directly proportional to the applied current density. Concomitant NH3 and PO43- precipitation as struvite and urea stabilization via H2O2 electrosynthesis was possible at lower current densities, resulting in urine pH under 9.2. Higher current densities resulted in urine pH over 9.2, yielding higher H2O2 concentrations and more consistent stabilization of urea at the expense of NH3 recovery as struvite; PO43- precipitation still occurred but in the form of calcium phosphate and magnesium phosphate solids.


Subject(s)
Electrodes , Hydrogen Peroxide , Magnesium , Phosphorus , Urea , Urea/chemistry , Phosphorus/chemistry , Magnesium/chemistry , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Urine/chemistry , Phosphates/chemistry , Struvite/chemistry , Ammonia/chemistry , Magnesium Compounds/chemistry , Nitrogen/chemistry , Humans
3.
Metallomics ; 16(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38599629

ABSTRACT

Taking into account that in recent decades there has been an increase in the incidence of urinary stones, especially in highly developed countries, from a wide range of potentially harmful substances commonly available in such countries, we chose zinc for the research presented in this article, which is classified by some sources as a heavy metal. In this article, we present the results of research on the influence of Zn2+ ion on the nucleation and growth of struvite crystals-the main component of infection urinary stones. The tests were carried out in an artificial urine environment with and without the presence of Proteus mirabilis bacteria. In the latter case, the activity of bacterial urease was simulated chemically, by systematic addition of an aqueous ammonia solution. The obtained results indicate that Zn2+ ions compete with Mg2+ ions, which leads to the gradual replacement of Mg2+ ions in the struvite crystal lattice with Zn2+ ions to some extent. This means co-precipitation of Mg-struvite (MgNH4PO4·6H2O) and Znx-struvite (Mg1-xZnxNH4PO4·6H2O). Speciation analysis of chemical complexes showed that Znx-struvite precipitates at slightly lower pH values than Mg-struvite. This means that Zn2+ ions shift the nucleation point of crystalline solids towards a lower pH. Additionally, the conducted research shows that Zn2+ ions, in the range of tested concentrations, do not have a toxic effect on bacteria; on the contrary, it has a positive effect on cellular metabolism, enabling bacteria to develop better. It means that Zn2+ ions in artificial urine, in vitro, slightly increase the risk of developing infection urinary stones.


Subject(s)
Proteus mirabilis , Struvite , Urinary Calculi , Zinc , Struvite/chemistry , Zinc/metabolism , Zinc/chemistry , Urinary Calculi/chemistry , Urinary Calculi/metabolism , Urinary Calculi/microbiology , Proteus mirabilis/metabolism , Humans , Phosphates/metabolism , Phosphates/chemistry , Ions , Magnesium Compounds/metabolism , Magnesium Compounds/chemistry , Crystallization
4.
Sci Total Environ ; 926: 172172, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38575019

ABSTRACT

To improve the retention and slow-release abilities of nitrogen (N) and phosphorus (P), an 82 %-purity struvite fertilizer (MAP-BC) was synthesized using magnesium-modified biochar and a solution with a 2:1 concentration ratio of NH4+ to PO43- at a pH of 8. Batch microscopic characterizations and soil column leaching experiments were conducted to study the retention and slow-release mechanisms and desorption kinetics of MAP-BC. The slow-release mechanism revealed that the dissolution rate of high-purity struvite was the dominant factor of NP slow release. The re-adsorption of NH4+ and PO43- by biochar and unconsumed MgO prolonged slow release. Mg2+ ionized by MgO could react with PO43- released from struvite to form Mg3(PO4)2. The internal biochar exhibited electrostatic attraction and pore restriction towards NH4+, while magnesium modification and nutrient loading formed a physical antioxidant barrier that ensured long-term release. The water diffusion experiment showed a higher cumulative release rate for PO43- compared to NH4+, whereas in soil column leaching, the trend was reversed, suggesting that soil's competitive adsorption facilitated the desorption of NH4+ from MAP-BC. During soil leaching, cumulative release rates of NH4+ and PO43- from chemical fertilizers were 3.55-3.62 times faster than those from MAP-BC. The dynamic test data for NH4+ and PO43- in MAP-BC fitted the Ritger-Peppas model best, predicting release periods of 163 days and 166 days, respectively. The leaching performances showed that MAP-BC reduced leaching solution volume by 5.58 % and significantly increased soil large aggregates content larger than 0.25 mm by 24.25 %. The soil nutrients retention and pH regulation by MAP-BC reduced leaching concentrations of NP. Furthermore, MAP-BC significantly enhanced plant growth, and it is more suitable as a NP source for long-term crops. Therefore, MAP-BC is expected to function as a long-term and slow-release fertilizer with the potential to minimize NP nutrient loss and replace part of quick-acting fertilizer.


Subject(s)
Fertilizers , Magnesium , Struvite/chemistry , Magnesium/chemistry , Fertilizers/analysis , Magnesium Oxide , Phosphorus/chemistry , Charcoal/chemistry , Soil/chemistry , Nitrogen/analysis
5.
Environ Sci Pollut Res Int ; 31(11): 17481-17493, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342832

ABSTRACT

Excessive phosphorus will lead to eutrophication in aquatic environment; the efficient removal of phosphorus is crucial for wastewater engineering and surface water management. This study aimed to fabricate a nanorod-like sepiolite-supported MgO (S-MgO) nanocomposite with high specific surface area for efficient phosphate removal using a facile microwave-assisted method and calcining processes. The impact of solution pH, adsorbent dosage, contact time, initial phosphate concentrations, Ca2+ addition, and N/P ratio on the phosphate removal was extensively examined by the batch experiments. The findings demonstrated that the S-MgO nanocomposite exhibited effective removal performance for low-level phosphate (0 ~ 2.0 mM) within the pH range of 3.0 ~ 10.0. Additionally, the nanocomposite can synchronously remove phosphate and ammonium in high-level nutrient conditions (> 2.0 mM), with the maximum removal capacities of 188.49 mg P/g and 89.78 mg N/g. Quantitative and qualitative analyses confirmed the successful harvesting of struvite in effluent with high-phosphate concentrations, with the mechanisms involved attributed to a synergistic combination of sorption and struvite crystallization. Due to its proficient phosphate removal efficiency, cost-effectiveness, and substantial removal capacity, the developed S-MgO nanocomposite exhibits promising potential for application in phosphorus removal from aquatic environments.


Subject(s)
Magnesium Silicates , Nanocomposites , Water Pollutants, Chemical , Phosphorus/chemistry , Struvite/chemistry , Magnesium Oxide , Nitrogen , Phosphates/chemistry
6.
Sci Rep ; 14(1): 1093, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38212440

ABSTRACT

One of the main factors considered in assessing the nutritional value of feed is its chemical composition, which can be modified by fertilization. Faced with reducing P resources, alternative sources of this element are being sought. Phosphorus is an essential nutrient in soybean cultivation. The aim of the study was to use an alternative source of phosphorus fertilizer and compare its impact on the chemical composition of soybean seeds with that of a traditional fertilizer (Super FOS DAR). The study investigated a range of factors in animal nutrition as well as the basic content of macro- and microelements. A pot experiment with the Abelina soybean variety was conducted at the Experimental Station of the Wroclaw University of Environmental and Life Sciences. The experiment considered two factors against the control: phosphorus fertilizer placement (band, broadcast) and different phosphorus fertilization (Super FOS DAR, Crystal Green). Use of struvite (Crystal Green)) caused positive changes in selected amino acids content and in the nutritional value of protein in soybean seeds; this can enhance the value of soybean seeds as well as increase certain macroelements and microelements. Phosphorus fertilizer significantly increased the content of lysine, leucine, valine, phenyloalanine and tyrosine. Band fertilization with struvite caused a significant increase in amino acids (lysine, leucine, valine, phenyloalanine and tyrosine) as well as in the nutritional value of protein (as measured by the essential amino acid index, protein efficiency ratio and biological value of the protein). Favorable changes under the influence of the application of struvite were recorded in the content of calcium, as well as phosphorus, iron, and manganese. The value of the struvite in the case of its use as phosphorus fertilizer is promising; however, it needs further study.


Subject(s)
Glycine max , Phosphates , Animals , Struvite/chemistry , Phosphates/chemistry , Fertilizers , Leucine , Lysine , Phosphorus/chemistry , Tyrosine , Valine
7.
Water Res ; 246: 120460, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37857006

ABSTRACT

Phosphorus recovery from human waste will help assure global food security, reduce environmental impact, and ensure effective stewardship of this limited and valuable resource. This can be accomplished by the precipitation of struvite (MgNH4PO4·6H2O) in a two-zone reactor, continuously fed with nutrient-rich hydrolysed urine and a magnesium solution. The solid struvite crystals are periodically "harvested", removing accumulated crystal mass - and therefore recovered nutrients - from the process, and the operating campaign can, in principle, be continuously operated in a batch-continuous operating mode. A previously developed process model is augmented, incorporating two well-mixed volumes (upper zone and lower zone) that are coupled by intermixing forward and back flows. The intermixing back flow is parametrised and, therefore, adjusted for analysis. Crystal linear growth rate is modelled by a simple power-law kinetic, driven by the nutrient solution's saturation index (SI) of struvite. The instantaneous mass transfer rate of struvite constituents from liquid to solid phase is predicted, using the total interfacial area of the crystal population exposed to the well-mixed solution. This model describes a 12-L, laboratory reactor operated in the hybrid batch-continuous mode, although larger reactors could easily be accommodated, subject to their mixing behaviours. Experiments were performed at a 10-hour hydraulic residence time (HRT), which, importantly, is based on the volume of the well-mixed lower zone, since this is the volume of liquid that actively interacts with the suspended struvite crystals. The Mg/P feed molar ratio was varied (0.34, 0.64 and 1.29) to assess Mg feed rate-limiting behaviour. The concentration profiles of elemental P and Mg agree with experimentation, while P and Mg composition in the solid and X-ray diffraction support the production of struvite.


Subject(s)
Phosphates , Phosphorus , Humans , Struvite/chemistry , Phosphates/chemistry , Phosphorus/chemistry , Crystallization , Nutrients , Waste Disposal, Fluid
8.
J Environ Manage ; 347: 119172, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37793297

ABSTRACT

An insightful attempt has been made in this review and the primary objective was to meticulously provide an update on the sustainabilities, advances and challenges pertaining the removal of ammonia from water and wastewater. Specifically, ammonia is a versatile compound that prevails in various spheres of the environment, and if not properly managed, this chemical species could pose severe ecological pressure and toxicity to different receiving environments and its biota. The notorious footprints of ammonia could be traced to anoxic conditions, an infestation of aquatic ecosystems, hyperactivity, convulsion, and methaemoglobin, popularly known as the "blue baby syndrome". In this review, latest updates regarding the sustainabilities, advancements and challenges for the removal of ammonia from aqueous solutions, i.e., river and waste waters, are briefly elucidated in light of future perspectives. Viable routes and ideal hotspots, i.e., wastewater and drinking water, for ammonia removal under the cost-effective options have been unpacked. Key mechanisms for the removal of ammonia were grossly bioremediation, oxidation, adsorption, filtration, precipitation, and ion exchange. Finally, this review denoted biological nutrient removal, struvite precipitation, and breakpoint chlorination as the most effective and promising technologies for the removal of ammonia from aquatic environments, although at the expense of energy and operational cost. Lastly, the future perspective, avenues of exploitation, and technical facets that deserve in-depth exploration are duly underscored.


Subject(s)
Wastewater , Water Pollutants, Chemical , Ammonia/chemistry , Ecosystem , Struvite/chemistry , Nutrients , Water Pollutants, Chemical/chemistry
9.
Sci Rep ; 13(1): 12702, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37543617

ABSTRACT

Struvite is regarded as a promising phosphorus fertilizer alternative to mineral fertilizers; however before fertilizing, soil tests should be undertaken to determine fertilizer recommendations. In May 2022, soil was sampled from a pot experiment with the application of phosphorus set up at the Wroclaw University and Environmental and Life Sciences. Chemical analysis of the soil included total and available phosphorus, potassium, magnesium determined by the Egner-Riehm, Mehlich 3 and Yanai methods. The purpose of the article is to compare soil element extraction by three different methods under struvite fertilization and its use in soybean cultivation. The application of these methods indicated an unambiguous increase in soil Mg content after struvite application. Broadcast soybean fertilization affected the phosphorus content of the soil. The results of the study indicated that different extraction methods presented different contents of P from soil. The content of available phosphorus was circa 122-156 mg kg-1 dm, 35.4-67.5 mg kg-1 dm and 100-159 mg kg-1 dm according to the Mehlich, Yanai and Egner-Riehm methods, respectively. A positive correlation was found between the content of Mg and K in soil determined by the Mehlich 3 and Yanai methods, which may suggest that the Yanai method could be introduced into standard soil chemical analysis in Poland. Such a correlation was not found for phosphorus, which is a difficult element to determine due to the multitude of factors affecting its availability.


Subject(s)
Glycine max , Soil , Humans , Soil/chemistry , Struvite/chemistry , Fertilizers/analysis , Phosphorus/analysis , Nitrogen/analysis
10.
J Environ Manage ; 344: 118383, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37348306

ABSTRACT

Nutrient recovery from wastewater not only reduces the nutrient load on water resources but also alleviates the environmental problems in aquatic ecosystems, which is a solution to achieve a sustainable society. Besides, struvite crystallization technology is considered a potential nutrient recovery technology because the precipitate obtained can be reused as a slow-release fertilizer. This review presents the basic properties of struvite and the theory of the basic crystallization process. In addition, the possible influencing variables of the struvite crystallization process on the recovery efficiency and product purity are also examined in detail. Then, the advanced auxiliary technologies for facilitating the struvite crystallization process are systematically discussed. Moreover, the economic and environmental benefits of the struvite crystallization process for nutrient recovery are introduced. Finally, the shortcomings and inadequacies of struvite crystallization technology are presented, and future research prospects are provided. This work serves as the foundation for the future use of struvite crystallization technology to recover nutrients in response to the increasingly serious environmental problems and resource depletion.


Subject(s)
Phosphates , Wastewater , Struvite/chemistry , Phosphorus/chemistry , Crystallization , Ecosystem , Nutrients , Waste Disposal, Fluid
11.
Sci Total Environ ; 890: 164084, 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37207781

ABSTRACT

Struvite precipitation is a well-known technology to recover and upcycle phosphorus from municipal wastewater as a slow-release fertiliser. However, the economic and environmental costs of struvite precipitation are constrained by using technical-grade reagents as a magnesium source. This research evaluates the feasibility of using a low-grade magnesium oxide (LG-MgO) by-product from the calcination of magnesite as a magnesium source to precipitate struvite from anaerobic digestion supernatants in wastewater treatment plants. Three distinct LG-MgOs were used in this research to capture the inherent variability of this by-product. The MgO content of the LG-MgOs varied from 42 % to 56 %, which governed the reactivity of the by-product. Experimental results showed that dosing LG-MgO at P:Mg molar ratio close to stoichiometry (i.e. 1:1 and 1:2) favoured struvite precipitation, whereas higher molar ratios (i.e. 1:4, 1:6 and 1:8) favoured calcium phosphate precipitation due to the higher calcium concentration and pH. At a P:Mg molar ratio of 1:1 and 1:2, the percentage of phosphate precipitated was 53-72 % and 89-97 %, respectively, depending on the LG-MgO reactivity. A final experiment was performed to examine the composition and morphology of the precipitate obtained under the most favourable conditions, which showed that (i) struvite was the mineral phase with the highest peaks intensity and (ii) struvite was present in two different shapes: hopper and polyhedral. Overall, this research has demonstrated that LG-MgO is an efficient source of magnesium for struvite precipitation, which fits the circular economy principles by valorising an industrial by-product, reducing the pressure on natural resources, and developing a more sustainable technology for phosphorus recovery.


Subject(s)
Magnesium Oxide , Water Purification , Struvite/chemistry , Magnesium Oxide/chemistry , Magnesium/chemistry , Magnesium Compounds/chemistry , Anaerobiosis , Phosphates/chemistry , Phosphorus/chemistry , Chemical Precipitation , Waste Disposal, Fluid/methods
12.
Bioresour Technol ; 381: 129082, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37100300

ABSTRACT

Recovering finite and non-substitutable phosphorus from liquid waste streams through bio-mediated techniques has attracted increasing interest, but current approaches are incredibly dependent on ammonium. Herein, a process to recover phosphorus from wastewater under multiple nitrogen species conditions was developed. This study compared the effects of nitrogen species on the recovery of phosphorus resources by a bacterial consortium. It found that the consortium could not only efficiently utilize ammonium to enable phosphorus recovery but also utilize nitrate via dissimilatory nitrate reduction to ammonium (DNRA) to recover phosphorus. The characteristics of the generated phosphorus-bearing minerals, including magnesium phosphate and struvite, were evaluated. Furthermore, nitrogen loading positively influenced the stability of the bacterial community structure. The genus Acinetobacter was dominant under nitrate and ammonium conditions, with a relatively stable abundance of 89.01% and 88.54%, respectively. The finding may provide new insights into nutrient biorecovery from phosphorus-containing wastewater contaminated with multiple nitrogen species.


Subject(s)
Ammonium Compounds , Wastewater , Phosphorus , Nitrates , Nitrogen , Phosphates , Struvite/chemistry , Bacteria
13.
Water Sci Technol ; 87(6): 1393-1422, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37001156

ABSTRACT

Solution thermodynamics and kinetic modelling applied to struvite crystallisation-precipitation were reviewed from diverse references to determine proximity between predicted and cited experimental measurements. These simulations show the expected variability range of struvite saturation calculation when only limited solution compositional information is given, showing acceptable agreement between predicted and experimental struvite mass. This work also compares results from struvite crystallisation kinetic studies on liquid phase species depletion, crystallisation induction time, primary nucleation, secondary nucleation, crystal growth, and crystal aggregation. Large inconsistencies between reported kinetics were observed in many scenarios. Variations in species depletion models highlighted that they are only suitably applied to the specific system from which they were regressed. Spontaneous primary nucleation was predicted to occur in the range of SI = 0.237-0.8. Predicted primary nucleation rates vary over at least 10 orders of magnitude (depending on supersaturation) because of uncertainties in interfacial tension and maximum achievable nucleation rate. Secondary nucleation rates are more agreeable, varying over approximately two orders of magnitude. Growth rates varied over five orders of magnitude due to variations in experimental conditions. Aggregation rates are not thoroughly examined enough to make any inferences.


Subject(s)
Phosphates , Struvite/chemistry , Phosphates/chemistry , Kinetics , Thermodynamics , Crystallization , Chemical Precipitation
14.
Water Environ Res ; 95(4): e10853, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36945738

ABSTRACT

An approach to remove ammonia from mining wastewater is to precipitate ammonia into struvite, and flocculation was proved to enhance settling of struvite flocs. But the current literature fails to consider flocculent properties of struvite flocs, and previous studies focused only on small volumes. This study evaluates the effect of ammonia concentration and height on removal efficiency of struvite flocs in a batch system and compares removal efficiency of struvite flocs between a batch and a pilot-scale continuous settling process to evaluate the potential of using flocculation to recover struvite crystals as a stand-alone method. Removal efficiency of struvite using flocculation is evaluated depending on depth in a batch system for two different ammonia concentrations (45 and 90 ppm) and in a continuous system for different flowrates. It is shown that a higher concentration promotes flocculation and enhances settling velocities of struvite flocs. The difference between the batch and the continuous processes for the same removal efficiency was significantly higher from what has been reported in the literature: in the continuous process, 89% of struvite flocs have been recovered with a surface overflow rate (SOR) of 1.8 m.h-1 , whereas, for the same height, the same efficiency corresponds to SOR = 9 m.h-1 in the batch process. The fragile nature of struvite flocs is potentially responsible for such a difference. PRACTITIONER POINTS: Settling velocities of struvite flocs are highly dependant on concentration and depth. Removal efficiency are considerably higher with a batch settling process for the same surface overflow rate. Flocculation enable 89% of struvite fines to be recovered in a continuous settling process with a SOR of 1.8 m.hs-1 .


Subject(s)
Ammonia , Wastewater , Struvite/chemistry , Flocculation
15.
Environ Sci Pollut Res Int ; 30(16): 47699-47711, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36745345

ABSTRACT

This present study investigated the removal of COD and ammoniacal nitrogen (NH4+-N) from tannery deliming wastewater (TDLWW) through microbes immobilized carbon consisted a bioreactor (MICCR) and reactive struvite crystallization process. Initially, 90% of the organic content of TDLWW was removed using a MICCR reactor at 24 h retention time. Nanoporous carbon (NPC) was used as the carrier matrix for the MICCR reactor. SEM and AFM images of NPC used in the MICCR reactor identify different microorganisms on its surface. The microbial profile of NPC used in the MICCR was analyzed, and the relative abundance is phyla Firmicutes, 25.64%; Proteobacteria, 43.68%; Bacteroidetes, 6.58%; Cyanobacteria, 2.22%; Actinobacteria, 2.34% reason for organic removal. The removal of organics follows the pseudo-second-order rate kinetics with the rate constant of 1.75 × 10-3 L COD-1 h-1. For the reactive struvite crystallization, MgO and Na2HPO4.2H2O were taken as the precipitating agents. The optimum molar ratio for the maximum conversion of NH4+-N into struvite was obtained as 1:1.4:1.4 (NH4+-N:MgO:Na2HPO4.2H2O). The volume of struvite precipitate was 48.5 mL/L of TDLWW, and the dry weight was 8.89 g/L. More than 93% of NH4+-N was converted as the struvite fertilizer. The conversion of NH4+-N into struvite follows the pseudo-first-order rate kinetics with the rate constant of 1.67 × 10-2 min-1. Despite the conversion of NH4+-N into struvite, COD removal was observed, which confirms the conversion of organic nitrogen into struvite. The struvite was evaluated using SEM, XRD, TGA, DSC, and FT-IR spectroscopic analysis. Hence, the integrated MICCR and the reactive struvite crystallization process can be applied to manage tannery deliming wastewater.


Subject(s)
Phosphates , Wastewater , Struvite/chemistry , Magnesium Oxide , Carbon , Spectroscopy, Fourier Transform Infrared , Nitrogen , Waste Disposal, Fluid/methods , Phosphorus
16.
J Environ Manage ; 334: 117506, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36801679

ABSTRACT

The ever-growing contamination of surface water due to various catchment activities poses threats and stress to downstream water treatment entities. Specifically, the presence of ammonia, microbial contaminants, organic matter, and heavy metals has been an issue of paramount concern to water treatment entities since stringent regulatory frameworks require these pollutants to be removed prior to water consumption. Herein, a hybrid approach that integrates struvite crystallization (precipitation) and breakpoint chlorination (stripping) for the removal of ammonia from aqueous solution was evaluated. To fulfil the goals of this study, batch experimental studies were pursued through the adoption of the well-known one-factor-at-a-time (AFAAT) method, specifically the effects of time, concentration/dosage, and mixing speed. The fate of chemical species was underpinned using the state-of-the-art analytical instruments and accredited standard methods. Cryptocrystalline magnesium oxide nanoparticles (MgO-NPs) were used as the magnesium source while the high-test hypochlorite (HTH) was used as the source of chlorine. From the experimental results, the optimum conditions were observed to be, i.e., Stage 1 - struvite synthesis, 110 mg/L of Mg and P dosage (concentration), 150 rpm of mixing speed, 60 min of contact time, and lastly, 120 min of sedimentation while optimum condition for the breakpoint chlorination (Stage 2) were 30 min of mixing and 8:1 Cl2:NH3 weight ratio. Specifically, in Stage 1, i.e., MgO-NPs, the pH increased from 6.7 to ≥9.6, while the turbidity was reduced from 9.1 to ≤1.3 NTU. Mn removal efficacy attained ≥97.70% (reduced from 174 µg/L to 4 µg/L) and Fe attained ≥96.64% (reduced from 11 mg/L to 0.37 mg/L). Elevated pH also led to the deactivation of bacteria. In Stage 2, i.e. breakpoint chlorination, the product water was further polished by eliminating residual ammonia and TPC at 8:1 Cl2-NH3 weight ratio. Interestingly, ammonia was reduced from 6.51 to 2.1 mg/L in Stage 1 (67.74% removal) and then from 2.1 to 0.002 mg/L post breakpoint chlorination (99.96% removal), i.e., stage 2. Overall, synergistic and complementary effects of integrating struvite synthesis and breakpoint chlorination hold great promise for the removal of ammonia from aqueous solutions thus confirming that this technology could potentially be used to curtail the effects of ammonia in the receiving environments and drinking water.


Subject(s)
Ammonia , Water Pollutants, Chemical , Struvite/chemistry , Ammonia/chemistry , Halogenation , Magnesium Oxide , Magnesium/chemistry , Phosphates/chemistry , Water Pollutants, Chemical/chemistry
17.
Waste Manag ; 155: 252-259, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36399852

ABSTRACT

Phosphorus recovery from digestate is considered a challenge because the possible discharge can lead to eutrophication. This study focuses on phosphorus recovery as struvite from the liquid fraction of swine manure digestate at a high total solids concentration, by using a lab-scale crystallizer operated in continuous mode (7 L·d-1). A by-product of salt production (seawater bittern, SWB) was assessed as Mg source for the formation of struvite instead of a chemical dosage (MgCl2) within a circular economy approach. Different Mg/P (1.8:1; 2:1; 3:1) ratios and different TS contents (TS 3.5 and 4.5 %) were studied. The maximum P recovery of 85 % and N recovery of 52 % was obtained at 4.5 % of TS and Mg/P ratio of 2:1, corresponding to an overall P and N recovery on the raw digestate of 70 % and 46 %, respectively. The presence of struvite was confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM-EDS). Dried samples were then used as fertilizer in agronomic pot tests using Brassica rapa chinensis. Struvite obtained, showed comparable fertilizing properties in comparison with conventional fertilizers in terms of P (Mineral 5.6 ± 0.4; Poultry 5.7 ± 0.2; Struvite 5.9 ± 0.1 g kg-1), N and total biomass content such as chlorophylls ratio. The growth tests confirmed the possible use of struvite recovered as competitive alternative to conventional chemical phosphate fertilizers. The results showed that it can be possible to promote sustainable P recovery from high solids digestates by the combination of crystallizer reactor and Mg-salt byproducts.


Subject(s)
Magnesium , Phosphorus , Swine , Animals , Phosphorus/chemistry , Struvite/chemistry , Magnesium/chemistry , Fertilizers , Seawater/chemistry
18.
Eur J Pediatr Surg ; 33(4): 293-298, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36241190

ABSTRACT

INTRODUCTION: The aim of the study is to explore the relationship between clinical characteristics and urinary calculus in Xinjiang Uyghur children, and to provide clinical basis for the prevention as well as treatment of urinary stone. MATERIALS AND METHODS: In total, 236 urinary tract stone samples were collected from pediatric patients from February 2017 to April 2019, and those samples were analyzed by infrared spectroscopy. Stone compositions were compared with demographic data. RESULTS: Among the 236 cases, 166 cases were boys (70.34%) and 70 cases were girls (29.66%), with a male-to-female ratio of 2.37:1. A total of 21 kinds of calculi were detected, including 107 cases with six kinds of simple calculi and 129 cases with 15 kinds of mixed calculi. In this study, magnesium ammonium phosphate hexahydrate was only found in boys, and the difference was statistically significant (6.6 vs. 0.0%, p = 0.037). There were statistical differences in the age distribution of children with ammonium hydrogen urate, calcium oxalate, and other stone components (p < 0.05), while there were no statistical differences in the age distribution of children with apatite carbonate, magnesium ammonium phosphate hexahydrate, and anhydrous uric acid. The results showed that there was a significant difference in the localization of calculi between male and female children (upper urinary tract stones: 78.9 vs. 98.6%, p < 0.001). CONCLUSION: Uyghur pediatric patients with urolithiasis were young and the majority of stones was mixed, The main components of calculi were ammonium hydrogen urate, calcium oxalate and apatite carbonate, and there are differences in the localization of calculi between genders.


Subject(s)
Ammonium Compounds , Urinary Calculi , Urolithiasis , Child , Humans , Female , Male , Calcium Oxalate/analysis , Calcium Oxalate/chemistry , Struvite/chemistry , Uric Acid/analysis , Urinary Calculi/epidemiology , Urinary Calculi/chemistry , Apatites , Carbonates
19.
J Environ Manage ; 325(Pt A): 116548, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36308786

ABSTRACT

With the exacerbating water eutrophication globally, it is important to recover nitrogen (N) and phosphorus (P) from sewage for recycle. In this study, coconut shell biochar and ethylene diamine tetraacetic acid (EDTA) were added into the designed fluidized bed reactor (FBR) to create struvite-biochar. N and P released from struvite-biochar and the recovery efficiency of N and P from concentrated sludge supernatant were analyzed. Results showed that the optimal operation condition for hydraulic retention time (HRT), pH, Mg/P molar ration, and addition amount EDTA were 90 min, 9.5, 1.2, and 0.2 g/L, respectively. The recovery efficiency of NH4+-N and PO43--P, and purity struvite for FBR were 34.41%-38.05%, 64.95-68.40%, and 84.15%, respectively. The recovery efficiency of NH4+-N and PO43--P were respectively increased by 7.23% and 5.36% when FBR with addition of 0.33 g/L coconut shell biochar, but purity struvite from struvite-biochar decreased by 45.70%. Contents of As, Cd, Pb, and Cr in struvite and struvite-biochar were all lower than Chinese Standard Limits of Fertilizer. Compared to commercial chemical fertilizer, such as superphosphate and urea, struvite-biochar and struvite have slowly released N and P. The amounts of released P, NO3--N and NH4+-N from struvite-biochar were higher than struvite during the five leaching times. Compared with struvite, the total amounts of released P, NO3--N and NH4+-N from struvite-biochar increased by 4.9%, 3.5% and 8.3%, respectively. Therefore, it is valuable to add biochar into FBR to recovery N and P from concentrated sludge supernatant and make struvite-biochar as a slow-release fertilizer.


Subject(s)
Fertilizers , Sewage , Struvite/chemistry , Sewage/chemistry , Edetic Acid , Phosphorus/chemistry , Nutrients , Phosphates
20.
J Environ Manage ; 325(Pt B): 116570, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36308964

ABSTRACT

Struvite is a value-added by-product recovered from phosphorus-rich wastewater treatment by adding magnesium. Struvite is mainly used as slow-release fertilisers containing phosphate that can form insoluble salts with certain heavy metals. Hence, struvite may have potential application as a phosphate remediation agent for the immobilisation of heavy metals in contaminated soil, while the related study is limited. Similarly, an analogue compound of struvite, K-struvite, may also have this value but has not been reported elsewhere. This study investigated the effect of struvite and K-struvite on the remediation of Cr-spiked and Pb-spiked soil. To evaluate the feasibility, the agent dosage and two quality parameters (particle size and purity) of struvite and K-struvite were considered for the experimental design and statically analysed by principal component analysis (PCA) and partial least squares (PLS). The results show that the dosage significantly impacts the immobilisation process, while the effect of particle size and purity are negligible. Struvite and K-struvite have similar performance on heavy metals immobilisation, and both are significant in Pb immobilisation (up to 96% of F5, stable fraction) and are beneficial for reducing the most mobilised fractions (F1 and F2) of Cr to lesser than 3%. Struvite and K-struvite share similar performance due to their similar atomic radius, and the different performance between Cr and Pb immobilisation can be explained by the strong hydrolysis trend of chromium ion, which may inhibit the binding of the phosphate and chromium. The kinetic study finds that all three variables positively impact the free chromium ion, and the immobilisation process is fast so unlikely to be kinetically limited. These findings of this project will provide insight into how the immobilisation process changes in response to the dosage and quality of struvite compounds.


Subject(s)
Metals, Heavy , Soil Pollutants , Struvite/chemistry , Lead , Metals, Heavy/chemistry , Soil/chemistry , Soil Pollutants/analysis , Chromium , Phosphates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...