Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Publication year range
1.
Braz J Microbiol ; 55(3): 2149-2167, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38775906

ABSTRACT

This study explored the isolation and screening of an osmotolerant yeast, Wickerhamomyces anomalus BKK11-4, which is proficient in utilizing renewable feedstocks for sugar alcohol production. In batch fermentation with high initial glucose concentrations, W. anomalus BKK11-4 exhibited notable production of glycerol and arabitol. The results of the medium optimization experiments revealed that trace elements, such as H3BO3, CuSO4, FeCl3, MnSO4, KI, H4MoNa2O4, and ZnSO4, did not increase glucose consumption or sugar alcohol production but substantially increased cell biomass. Osmotic stress, which was manipulated by varying initial glucose concentrations, influenced metabolic outcomes. Elevated glucose levels promoted glycerol and arabitol production while decreasing citric acid production. Agitation rates significantly impacted the kinetics, enhancing glucose utilization and metabolite production rates, particularly for glycerol, arabitol, and citric acid. The operational pH dictated the distribution of the end metabolites, with glycerol production slightly reduced at pH 6, while arabitol production remained unaffected. Citric acid production was observed at pH 6 and 7, and acetic acid production was observed at pH 7. Metabolomic analysis using GC/MS identified 29 metabolites, emphasizing the abundance of sugar/sugar alcohols. Heatmaps were generated to depict the variations in metabolite levels under different osmotic stress conditions, highlighting the intricate metabolic dynamics occurring post-glucose uptake, affecting pathways such as the pentose phosphate pathway and glycerolipid metabolism. These insights contribute to the optimization of W. anomalus BKK11-4 as a whole-cell factory for desirable products, demonstrating its potential applicability in sustainable sugar alcohol production from renewable feedstocks.


Subject(s)
Fermentation , Glycerol , Saccharomycetales , Sugar Alcohols , Glycerol/metabolism , Sugar Alcohols/metabolism , Saccharomycetales/metabolism , Saccharomycetales/isolation & purification , Glucose/metabolism , Osmotic Pressure , Hydrogen-Ion Concentration
2.
Plant Physiol ; 157(4): 1696-710, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22021422

ABSTRACT

Fruit from rosaceous species collectively display a great variety of flavors and textures as well as a generally high content of nutritionally beneficial metabolites. However, relatively little analysis of metabolic networks in rosaceous fruit has been reported. Among rosaceous species, peach (Prunus persica) has stone fruits composed of a juicy mesocarp and lignified endocarp. Here, peach mesocarp metabolic networks were studied across development using metabolomics and analysis of key regulatory enzymes. Principal component analysis of peach metabolic composition revealed clear metabolic shifts from early through late development stages and subsequently during postharvest ripening. Early developmental stages were characterized by a substantial decrease in protein abundance and high levels of bioactive polyphenols and amino acids, which are substrates for the phenylpropanoid and lignin pathways during stone hardening. Sucrose levels showed a large increase during development, reflecting translocation from the leaf, while the importance of galactinol and raffinose is also inferred. Our study further suggests that posttranscriptional mechanisms are key for metabolic regulation at early stages. In contrast to early developmental stages, a decrease in amino acid levels is coupled to an induction of transcripts encoding amino acid and organic acid catabolic enzymes during ripening. These data are consistent with the mobilization of amino acids to support respiration. In addition, sucrose cycling, suggested by the parallel increase of transcripts encoding sucrose degradative and synthetic enzymes, appears to operate during postharvest ripening. When taken together, these data highlight singular metabolic programs for peach development and may allow the identification of key factors related to agronomic traits of this important crop species.


Subject(s)
Fruit/growth & development , Gene Expression Regulation, Plant/physiology , Metabolome , Plant Proteins/metabolism , Prunus/growth & development , Prunus/metabolism , Amino Acids/analysis , Amino Acids/metabolism , Biological Transport , Carboxylic Acids/analysis , Carboxylic Acids/metabolism , Disaccharides/analysis , Disaccharides/metabolism , Enzymes/genetics , Enzymes/metabolism , Fruit/enzymology , Fruit/genetics , Fruit/metabolism , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation, Enzymologic/physiology , Metabolic Networks and Pathways , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/genetics , Polyphenols/analysis , Polyphenols/metabolism , Principal Component Analysis , Prunus/enzymology , Prunus/genetics , Raffinose/analysis , Raffinose/metabolism , Sucrose/analysis , Sucrose/metabolism , Sugar Alcohols/analysis , Sugar Alcohols/metabolism
3.
J Ind Microbiol Biotechnol ; 31(6): 245-54, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15221664

ABSTRACT

Fifty-five bacterial strains isolated from soil were screened for efficient poly-3-hydroxybutyrate (P3HB) biosynthesis from xylose. Three strains were also evaluated for the utilization of bagasse hydrolysate after different detoxification steps. The results showed that activated charcoal treatment is pivotal to the production of a hydrolysate easy to assimilate. Burkholderia cepacia IPT 048 and B. sacchari IPT 101 were selected for bioreactor studies, in which higher polymer contents and yields from the carbon source were observed with bagasse hydrolysate, compared with the use of analytical grade carbon sources. Polymer contents and yields, respectively, reached 62% and 0.39 g g(-1) with strain IPT 101 and 53% and 0.29 g g(-1) with strain IPT 048. A higher polymer content and yield from the carbon source was observed under P limitation, compared with N limitation, for strain IPT 101. IPT 048 showed similar performances in the presence of either growth-limiting nutrient. In high-cell-density cultures using xylose plus glucose under P limitation, both strains reached about 60 g l(-1) dry biomass, containing 60% P3HB. Polymer productivity and yield from this carbon source reached 0.47 g l(-1) h(-1) and 0.22 g g(-1), respectively.


Subject(s)
Burkholderia/metabolism , Glucose/metabolism , Hydroxybutyrates/metabolism , Polyesters/metabolism , Sugar Alcohols/metabolism , Xylose/metabolism , Biomass , Bioreactors , Burkholderia/enzymology , Burkholderia/genetics , Cellulose , Hydrolysis , Protein Hydrolysates
4.
J Appl Microbiol ; 96(5): 965-72, 2004.
Article in English | MEDLINE | ID: mdl-15078512

ABSTRACT

AIMS: The effect of osmotic and matric potential stress on growth and sugar alcohols (polyols: glycerol, erythritol, arabitol and mannitol) and sugars (trehalose and glucose) accumulation in toxigenic and nontoxigenic colonies of Aspergillus flavus and A. parasiticus was evaluated. METHODS AND RESULTS: Growth of Aspergillus section Flavi with significant reductions at 20 and 30 degrees C was more sensitive to changes in matric potential, between 60 and 100% in the range of -7 to -14 MPa. No significant differences were found between toxigenic and nontoxigenic strains for both species. Total polyol accumulation in unamended maize meal agar medium (-0.75 MPa water potential) was higher at 30 than 20 degrees C. The major change in concentrations of endogenous sugars and total polyols was in matrically amended medium (with PEG 8000) at -7 and -10 MPa. Accumulation of glucose, arabitol, mannitol and erythritol content of A. flavus and A. parasiticus mycelial colonies was greater in normal unstressed maize meal agar medium (-0.75 Mpa) at 20 degrees C. This was modified by solute and matric stress. CONCLUSIONS: The data showed relative sensitivity to osmotic and matric potential, and temperature, and the impact on growth rates, polyol and sugar accumulation in mycelia of A. flavus and A. parasiticus. SIGNIFICANCE AND IMPACT OF THE STUDY: The matric potential effects on growth may be of particular importance for growth and survival in environments with low-matric potential stress. The tolerance of spoilage fungi such as Aspergillus section Flavi to such modifications could increase the potential for spoilage and mycotoxin production in such substrates. This knowledge is important for understanding the relative ecological fitness of these aflatoxigenic species and in the development of prevention strategies for their control.


Subject(s)
Aspergillus/physiology , Carbohydrate Metabolism , Sugar Alcohols/metabolism , Argentina , Aspergillus/growth & development , Aspergillus/metabolism , Culture Media , Dehydration , Ecosystem , Erythritol/metabolism , Glucose/metabolism , Glycerol/metabolism , Mannitol/metabolism , Mycelium/metabolism , Osmosis/physiology , Soil Microbiology , Temperature , Trehalose/metabolism
5.
Glycobiology ; 14(7): 659-70, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15070857

ABSTRACT

Chagas' disease, caused by Trypanosoma cruzi, affects about 18 million people in Latin America, and no effective treatment is available to date. To acquire sialic acid from the host glycoconjugates, T. cruzi expresses an unusual surface sialidase with trans-sialidase activity (TcTS) that transfers the sugar to parasite mucins. Surface sialic acid was shown to have relevant functions in protection of the parasite against the lysis by complement and in mammalian host cell invasion. The recently determined 3D structure of TcTS allowed a detailed analysis of its catalytic site and showed the presence of a lactose-binding site where the beta-linked galactose accepting the sialic acid is placed. In this article, the acceptor substrate specificity of lactose derivatives was studied by high pH anion-exchange chromatography with pulse amperometric detection. The lactose open chain derivatives lactitol and lactobionic acid, as well as other derivatives, were found to be good acceptors of sialic acid. Lactitol, which was the best of the ones tested, effectively inhibited the transfer of sialic acid to N-acetyllactosamine. Furthermore, lactitol inhibited parasite mucins re-sialylation when incubated with live trypanosomes and TcTS. Lactitol also diminished the T. cruzi infection in cultured Vero cells by 20-27%. These results indicate that compounds directed to the lactose binding site might be good inhibitors of TcTS.


Subject(s)
Enzyme Inhibitors/chemistry , Glycoproteins/chemistry , Neuraminidase/chemistry , Sugar Alcohols/chemistry , Trypanosoma cruzi/enzymology , Animals , Binding Sites/drug effects , Chagas Disease/drug therapy , Chagas Disease/parasitology , Chlorocebus aethiops , Glycoproteins/metabolism , Neuraminidase/metabolism , Protein Binding/drug effects , Protein Structure, Tertiary , Sialic Acids/chemistry , Substrate Specificity/drug effects , Sugar Alcohols/metabolism , Sugar Alcohols/pharmacology , Trypanosoma cruzi/pathogenicity , Vero Cells , Virulence/drug effects
6.
Appl Microbiol Biotechnol ; 59(4-5): 472-6, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12172612

ABSTRACT

An intergeneric osmotolerant hybrid yeast, PB2, was used together with the parental strains to study glycerol and arabitol production in batch culture. This fusion product was previously obtained by protoplast fusion between Torulaspora delbrueckii and Saccharomyces cerevisiae. Polyols and biomass production were determined in batch culture under aerobic conditions. Under the conditions tested, using PB2 hybrid and both parental strains, the best results were obtained with the hybrid. Arabitol reached a final concentration of 70 g/l and glycerol was increased to up to 50 g/l.


Subject(s)
Glycerol/metabolism , Hybridization, Genetic , Protoplasts/physiology , Saccharomycetales/metabolism , Sugar Alcohols/metabolism , Culture Media , Fermentation , Industrial Microbiology/methods , Osmotic Pressure , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/physiology , Saccharomycetales/genetics , Saccharomycetales/physiology
7.
Rev Latinoam Microbiol ; 44(3-4): 137-56, 2002.
Article in Spanish | MEDLINE | ID: mdl-17061488

ABSTRACT

The term halophile is used for all those organisms belonging to hypersaline habitats; they constitute an interesting class of organisms able to compete successfully in salt water and to resist its denaturing effects. A wide diversity of microorganisms, prokaryotic and eukaryotic belong to this category. Halophile organisms have strategies allowing them not only to withstand osmotic stress, but also to function better in the presence of salt, in spite of maintaining high intracellular concentrations of salt, partly due to the synthesis of compatible solutes that allow them to balance their osmotic pressure. We describe the characteristics of some halophile organisms and D. hansenii (halophile yeast), that allow them to resist high concentrations of salt. The interest to know the great diversity microorganisms living in hypersaline habitats is growing, and has begun to be the center of recent investigations, since halophile organisms produce an wide variety of biomolecules that can be used for different applications. In this review we describe some mechanisms with which some halophile organisms count to resist the high concentration of salts, mainly NaCl.


Subject(s)
Adaptation, Physiological , Halobacteriales/physiology , Saccharomycetales/physiology , Animals , Bacterial Proteins/physiology , Biotechnology/methods , Chlorophyta/physiology , Energy Metabolism , Enzyme Activation , Eukaryotic Cells/drug effects , Eukaryotic Cells/physiology , Fungal Proteins/physiology , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Fungal , Halobacteriales/drug effects , Intracellular Fluid/chemistry , Membrane Lipids/metabolism , Mitogen-Activated Protein Kinases/physiology , Osmolar Concentration , Osmotic Pressure , Plant Physiological Phenomena , Saccharomycetales/drug effects , Saline Solution, Hypertonic/pharmacology , Solubility , Sugar Alcohols/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL