Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 118: 105-112, 2016 Jan 25.
Article in English | MEDLINE | ID: mdl-26540625

ABSTRACT

The objective of this study was to evaluate the feasibility of 10 commonly used active pharmaceutical ingredients (APIs) compounded in oral suspensions using an internationally used suspending vehicle (SyrSpend(®) SF PH4 liquid): (i) amlodipine, (as besylate) 1.0mg/mL; (ii) chloroquine phosphate,15.0 mg/mL; (iii) dapsone, 2.0 mg/mL; (iv) phenytoin, 15.0 mg/mL; (v) pyridoxine hydrochloride, 50.0 mg/mL; (vi) sulfadiazine, 100.0 mg/mL; (vii) sulfasalazine, 100.0 mg/mL; (viii) tetracycline hydrochloride, 25.0 mg/mL; (ix) trimethoprim, 10.0 mg/mL; and (x) zonisamide, 10.0 mg/mL. All suspensions were stored both at controlled refrigeration (2-8 °C) and controlled room temperature (20-25 °C). Feasibility was assessed by measuring the percent recovery at varying time points throughout a 90-day period. API quantification was performed by high-performance liquid chromatography (HPLC-UV), via a stability-indicating method. Given the percentage of recovery of the APIs within the suspensions, the expiration date of the final products (API+vehicle) was at least 90 days for all suspensions with regard to both the controlled temperatures. This suggests that the vehicle is stable for compounding APIs from different pharmacological classes.


Subject(s)
Drug Stability , Drug Storage/methods , Suspensions/analysis , Suspensions/standards , Administration, Oral , Amlodipine/analysis , Amlodipine/standards , Chloroquine/analogs & derivatives , Chloroquine/analysis , Chloroquine/standards , Chromatography, High Pressure Liquid/methods , Dapsone/analysis , Dapsone/standards , Drug Storage/standards , Feasibility Studies , Hydrogen-Ion Concentration , Isoxazoles/analysis , Isoxazoles/standards , Phenytoin/analysis , Phenytoin/standards , Pyridoxine/analysis , Pyridoxine/standards , Sulfadiazine/analysis , Sulfadiazine/standards , Sulfasalazine/analysis , Sulfasalazine/standards , Tetracycline/analysis , Tetracycline/standards , Trimethoprim/analysis , Trimethoprim/standards , Zonisamide
2.
Chemosphere ; 90(6): 2027-34, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23245764

ABSTRACT

Antimicrobials, among them sulfonamides are widely used in veterinary medicine and can contaminate the environment. The degree to which antimicrobials adsorb onto soil particles varies widely, as does the mobility of these drugs. Sulfadiazine (SDZ) was used to study the adsorption-desorption in Brazilian soil-water systems, using batch equilibrium experiments. Sorption of SDZ was carried out using four types of soils. Adsorption and desorption data were well fitted with Freundlich isotherms in log form (r>0.999) and (0.984

Subject(s)
Anti-Infective Agents/analysis , Soil Pollutants/analysis , Soil/chemistry , Sulfadiazine/analysis , Adsorption , Brazil , Kinetics , Models, Chemical
3.
J Vet Pharmacol Ther ; 24(2): 83-8, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11442781

ABSTRACT

Time-related concentrations in milk of a combination of trimethoprim-sulphadiazine (TMP-SDZ) intramammary formulated infusion and its relationship with pathogenic bacteria strains minimum inhibitory concentrations (MICs) isolated from clinical mastitis cows were analysed. The MICs study was performed for Escherichia coli, Staphylococcus aureus and Streptococcus sp. strains. The SDZ concentrations in milk were analysed using high-performance liquid chromatography (HPLC) and TMP using a microbiological assay. Ten lactating cows milked three times daily were used in the time-concentration studies of TMP-SDZ. Milk samples (approximately 20 mL) from the treated mammary quarters were taken at 6, 12, 24, 30 and 36 h after first administration. In order to define the withdrawal time, milk samples from the treated mammary quarters were taken at 24, 36, 48, 72, 84 and 96 h, after finishing the therapy. The MICs fluctuated between 1 and 8 microg/mL. Effective therapeutic concentrations lasted for 36 h when intramammary infusion was repeated three times every 12 h. No TMP was detected in milk for 24 h after finishing therapy. Milk SDZ concentrations were below 0.1 microg/mL in all treated cows after 84 h finishing therapy. At 96 h after finishing therapy, no SDZ milk concentrations were found in six animals, although four animals of the experimental group still had concentrations of 0.07 microg/mL.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Anti-Infective Agents, Urinary/pharmacokinetics , Mastitis, Bovine/drug therapy , Milk/microbiology , Sulfadiazine/pharmacokinetics , Trimethoprim/pharmacokinetics , Animals , Anti-Bacterial Agents/analysis , Anti-Infective Agents, Urinary/analysis , Cattle , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Female , Kinetics , Mastitis, Bovine/microbiology , Milk/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Streptococcus/drug effects , Streptococcus/isolation & purification , Sulfadiazine/analysis , Trimethoprim/analysis
SELECTION OF CITATIONS
SEARCH DETAIL