Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Pharmacol Rep ; 76(5): 1147-1159, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39150661

ABSTRACT

BACKGROUND: Currently, there is no antiviral licensed to treat chikungunya fever, a disease caused by the infection with Alphavirus chikungunya (CHIKV). Treatment is based on analgesic and anti-inflammatory drugs to relieve symptoms. Our study aimed to evaluate the antiviral activity of sulfadoxine (SFX), an FDA-approved drug, and its derivatives complexed with silver(I) (AgSFX), salicylaldehyde Schiff base (SFX-SL), and with both Ag and SL (AgSFX-SL) against CHIKV. METHODS: The anti-CHIKV activity of SFX and its derivatives was investigated using BHK-21 cells infected with CHIKV-nanoluc, a marker virus-carrying nanoluciferase reporter. Dose-response and time of drug-addition assays were performed in order to assess the antiviral effects of the compounds, as well as in silico data and ATR-FTIR analysis for insights on their mechanisms of action. RESULTS: The SFX inhibited 34% of CHIKV replication, while AgSFX, SFX-SL, and AgSFX-SL enhanced anti-CHIKV activity to 84%, 89%, and 95%, respectively. AgSFX, SFX-SL, and AgSFX-SL significantly decreased viral entry and post-entry to host cells, and the latter also protected cells against infection. Additionally, molecular docking calculations and ATR-FTIR analysis demonstrated interactions of SFX-SL, AgSFX, and AgSFX-SL with CHIKV. CONCLUSIONS: Collectively, our findings suggest that the addition of metal ions and/or Schiff base to SFX improved its antiviral activity against CHIKV.


Subject(s)
Antiviral Agents , Chikungunya Fever , Chikungunya virus , Sulfadoxine , Chikungunya virus/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Animals , Cell Line , Sulfadoxine/pharmacology , Chikungunya Fever/drug therapy , Chikungunya Fever/virology , Cricetinae , Schiff Bases/pharmacology , Silver/pharmacology , Silver/chemistry , Virus Replication/drug effects , Molecular Docking Simulation , Dose-Response Relationship, Drug , Humans , Aldehydes
2.
Malar J ; 21(1): 306, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36307852

ABSTRACT

BACKGROUND: Resistance to anti-malarial drugs is associated with polymorphisms in target genes and surveillance for these molecular markers is important to detect the emergence of mutations associated with drug resistance and signal recovering sensitivity to anti-malarials previously used. METHODS: The presence of polymorphisms in genes associated with Plasmodium falciparum resistance to chloroquine and sulfadoxine-pyrimethamine was evaluated by Sanger sequencing, in 85 P. falciparum day of enrollment samples from a therapeutic efficacy study of artemether-lumefantrine conducted in 2018-2019 in Quibdo, Colombia. Samples were genotyped to assess mutations in pfcrt (codons 72-76), pfdhfr (codons 51, 59, 108, and 164), and pfdhps genes (codons 436, 437, 540, and 581). Further, the genetic diversity of infections using seven neutral microsatellites (NMSs) (C2M34, C3M69, Poly α, TA1, TA109, 2490, and PfPK2) was assessed. RESULTS: All isolates carried mutant alleles for pfcrt (K76T and N75E), and for pfdhfr (N51I and S108N), while for pfdhps, mutations were observed only for codon A437G (32/73, 43.8%). Fifty samples (58.8%) showed a complete neutral microsatellites (NMS) profile. The low mean number of alleles (2 ± 0.57) per locus and mean expected heterozygosity (0.17 ± 0.03) showed a reduced genetic diversity. NMS multilocus genotypes (MMG) were built and nine MMG were identified. CONCLUSIONS: Overall, these findings confirm the fixation of chloroquine and pyrimethamine-resistant alleles already described in the literature, implying that these drugs are not currently appropriate for use in Colombia. In contrast, mutations in the pfdhps gene were only observed at codon 437, an indication that full resistance to sulfadoxine has not been achieved in Choco. MMGs found matched the clonal lineage E variant 1 previously reported in northwestern Colombia.


Subject(s)
Antimalarials , Malaria, Falciparum , Humans , Sulfadoxine/pharmacology , Sulfadoxine/therapeutic use , Pyrimethamine/pharmacology , Pyrimethamine/therapeutic use , Antimalarials/pharmacology , Antimalarials/therapeutic use , Plasmodium falciparum , Chloroquine/pharmacology , Chloroquine/therapeutic use , Colombia , Malaria, Falciparum/epidemiology , Artemether/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Drug Combinations , Drug Resistance/genetics , Polymorphism, Genetic , Codon
3.
Am J Trop Med Hyg ; 103(6): 2217-2223, 2020 12.
Article in English | MEDLINE | ID: mdl-32996445

ABSTRACT

Chloroquine remains the first-line treatment for uncomplicated malaria in Haiti, and until recently, sulfadoxine-pyrimethamine was the second-line treatment. A few studies have reported the presence of molecular markers for resistance in Plasmodium falciparum parasites, and in vivo therapeutic efficacy studies (TESs) have been limited. Recognizing the history of antimalarial resistance around the globe and the challenges of implementing TESs in low-endemic areas, the Ministry of Health established a surveillance program to detect molecular markers of antimalarial resistance in Haiti. Sentinel sites were purposefully selected in each of Haiti's 10 administrative departments; an 11th site was selected in Grand'Anse, the department with the highest number of reported cases. Factors considered for site selection included the number of malaria cases identified, observed skills of laboratory technicians conducting rapid diagnostic tests (RDTs), stock and storage conditions of RDTs, accuracy of data reporting to the national surveillance system, and motivation to participate. Epidemiologic data from 2,437 patients who tested positive for malaria from March 2016 to December 2018 and consented to provide samples for molecular sequencing are presented here. Of these, 936 (38.4%) patients reported self-treatment with any medication since the onset of their illness before diagnosis; overall, 69 (2.8%) patients reported taking an antimalarial. Ten patients (0.4%) reported travel away from their home for at least one night in the month before diagnosis. Establishing a molecular surveillance program for antimalarial drug resistance proved practical and feasible in a resource-limited setting and will provide the evidence needed to make informed treatment policy decisions at the national level.


Subject(s)
Antimalarials/pharmacology , Chloroquine/pharmacology , Drug Resistance/genetics , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology , Adolescent , Adult , Aged , Child , Child, Preschool , Drug Combinations , Female , Haiti/epidemiology , Humans , Infant , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Male , Middle Aged , Plasmodium falciparum/drug effects , Sentinel Surveillance , Young Adult
4.
Emerg Infect Dis ; 26(5): 902-909, 2020 05.
Article in English | MEDLINE | ID: mdl-32310062

ABSTRACT

Haiti is striving for zero local malaria transmission by the year 2025. Chloroquine remains the first-line treatment, and sulfadoxine/pyrimethamine (SP) has been used for mass drug-administration pilot programs. In March 2016, nationwide molecular surveillance was initiated to assess molecular resistance signatures for chloroquine and SP. For 778 samples collected through December 2017, we used Sanger sequencing to investigate putative resistance markers to chloroquine (Pfcrt codons 72, 74, 75, and 76), sulfadoxine (Pfdhps codons 436, 437, 540, 581, 613), and pyrimethamine (Pfdhfr codons 50, 51, 59, 108, 164). No parasites harbored Pfcrt point mutations. Prevalence of the Pfdhfr S108N single mutation was 47%, and we found the triple mutant Pfdhfr haplotype (108N, 51I, and 59R) in a single isolate. We observed no Pfdhps variants except in 1 isolate (A437G mutation). These data confirm the lack of highly resistant chloroquine and SP alleles in Haiti and support the continued use of chloroquine and SP.


Subject(s)
Antimalarials , Malaria, Falciparum , Alleles , Antimalarials/pharmacology , Antimalarials/therapeutic use , Chloroquine/pharmacology , Chloroquine/therapeutic use , Drug Resistance/genetics , Haiti/epidemiology , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Mutation , Plasmodium falciparum/genetics , Pyrimethamine/pharmacology , Pyrimethamine/therapeutic use , Sulfadoxine/pharmacology , Sulfadoxine/therapeutic use
5.
Viruses ; 13(1)2020 12 29.
Article in English | MEDLINE | ID: mdl-33383619

ABSTRACT

Despite the severe morbidity caused by Zika fever, its specific treatment is still a challenge for public health. Several research groups have investigated the drug repurposing of chloroquine. However, the highly toxic side effect induced by chloroquine paves the way for the improvement of this drug for use in Zika fever clinics. Our aim is to evaluate the anti-Zika virus (ZIKV) effect of hybrid compounds derived from chloroquine and sulfadoxine antimalarial drugs. The antiviral activity of hybrid compounds (C-Sd1 to C-Sd7) was assessed in an in-vitro model of human cervical and Vero cell lines infected with a Brazilian (BR) ZIKV strain. First, we evaluated the cytotoxic effect on cultures treated with up to 200 µM of C-Sds and observed CC50 values that ranged from 112.0 ± 1.8 to >200 µM in cervical cells and 43.2 ± 0.4 to 143.0 ± 1.3 µM in Vero cells. Then, the cultures were ZIKV-infected and treated with up to 25 µM of C-Sds for 48 h. The treatment of cervical cells with C-Sds at 12 µM induced a reduction of 79.8% ± 4.2% to 90.7% ± 1.5% of ZIKV-envelope glycoprotein expression in infected cells as compared to 36.8% ± 2.9% of infection in vehicle control. The viral load was also investigated and revealed a reduction of 2- to 3-logs of ZIKV genome copies/mL in culture supernatants compared to 6.7 ± 0.7 × 108 copies/mL in vehicle control. The dose-response curve by plaque-forming reduction (PFR) in cervical cells revealed a potent dose-dependent activity of C-Sds in inhibiting ZIKV replication, with PFR above 50% and 90% at 6 and 12 µM, respectively, while 25 µM inhibited 100% of viral progeny. The treatment of Vero cells at 12 µM led to 100% PFR, confirming the C-Sds activity in another cell type. Regarding effective concentration in cervical cells, the EC50 values ranged from 3.2 ± 0.1 to 5.0 ± 0.2 µM, and the EC90 values ranged from 7.2 ± 0.1 to 11.6 ± 0.1 µM, with selectivity index above 40 for most C-Sds, showing a good therapeutic window. Here, our aim is to investigate the anti-ZIKV activity of new hybrid compounds that show highly potent efficacy as inhibitors of ZIKV in-vitro infection. However, further studies will be needed to investigate whether these new chemical structures can lead to the improvement of chloroquine antiviral activity.


Subject(s)
Antiviral Agents/pharmacology , Chloroquine/pharmacology , Sulfadoxine/pharmacology , Virus Replication/drug effects , Zika Virus/drug effects , Zika Virus/physiology , Animals , Cell Line , Cell Survival/drug effects , Cells, Cultured , Chlorocebus aethiops , Chloroquine/analogs & derivatives , Chloroquine/chemistry , Humans , Molecular Structure , Sulfadoxine/analogs & derivatives , Sulfadoxine/chemistry , Vero Cells , Zika Virus Infection/drug therapy , Zika Virus Infection/virology
6.
Mem Inst Oswaldo Cruz ; 114: e180425, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30726345

ABSTRACT

BACKGROUND AND OBJECTIVE: Brazil is responsible for a large number of Plasmodium vivax cases in America. Given the emergence of P. vivax parasites resistant to chloroquine and the effectiveness of antifolates in vivax malaria treatment together with a correlation between mutations in P. vivax dhfr and dhps genes and SP treatment failure, the point mutations in these genes were investigated. METHODS: Blood samples from 54 patients experiencing vivax malaria symptomatic episodes in the Amazonian Region were investigated. Genomic DNA was extracted using a DNA extraction kit (QIAGENTM). Nested polymerase chain reaction (PCR) amplification was carried out followed by Sanger sequencing to detect single nucleotide polymorphisms (SNPs). FINDINGS: All tested isolates showed non-synonymous mutations in pvdhfr gene: 117N (54/54, 100%) and 58R (25/54, 46%). Double mutant allele 58R/117N (FRTNI, 28%) was the most frequent followed by triple mutant alleles (58R/117N/173L, FRTNL, 11%; 58R/61M/117N, FRMNI, 5% 117N/173L, FSTNL, 4%) and quadruple mutant allele (58R/61M/117N/173L, FRMNL, 2%). A single mutation was observed at codon C383G in pvdhps gene (SGKAV, 48%). CONCLUSION: No evidence of molecular signatures associated with P. vivax resistance to SP was observed in the Brazilian samples.


Subject(s)
Antimalarials/pharmacology , Drug Resistance/genetics , Malaria, Vivax/parasitology , Plasmodium vivax/genetics , Point Mutation/genetics , Protozoan Proteins/genetics , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology , Alleles , Brazil , DNA, Protozoan/genetics , Drug Combinations , Endemic Diseases , Humans , Plasmodium vivax/drug effects , Polymerase Chain Reaction , Polymorphism, Single Nucleotide
7.
Am J Trop Med Hyg ; 95(4): 811-816, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27430541

ABSTRACT

Chloroquine (CQ) remains the first-line treatment of malaria in Haiti. Given the challenges of conducting in vivo drug efficacy trials in low-endemic settings like Haiti, molecular surveillance for drug resistance markers is a reasonable approach for detecting resistant parasites. In this study, 349 blood spots were collected from suspected malaria cases in areas in and around Port-au-Prince from March to July 2010. Among them, 121 samples that were Plasmodium falciparum positive by polymerase chain reaction were genotyped for drug-resistant pfcrt, pfdhfr, pfdhps, and pfmdr1 alleles. Among the 108 samples that were successfully sequenced for CQ resistant markers in pfcrt, 107 were wild type (CVMNK), whereas one sample carried a CQ-resistant allele (CVIET). Neutral microsatellite genotyping revealed that the CQ-resistant isolate was distinct from all other samples in this study. Furthermore, the remaining parasite specimens appeared to be genetically distinct from other reported Central and South American populations.


Subject(s)
Antimalarials/pharmacology , Drug Resistance/genetics , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Alleles , Chloroquine/pharmacology , Drug Combinations , Earthquakes , Genetics, Population , Haiti/epidemiology , Haplotypes , Humans , Malaria, Falciparum/epidemiology , Membrane Transport Proteins/genetics , Microsatellite Repeats/genetics , Multidrug Resistance-Associated Proteins/genetics , Mutation , Plasmodium falciparum/classification , Plasmodium falciparum/drug effects , Prevalence , Protozoan Proteins/genetics , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology
8.
Malar J ; 15: 309, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27267365

ABSTRACT

BACKGROUND: Malaria is a major parasitic disease, affecting millions of people in endemic areas. Plasmodium falciparum parasites are responsible for the most severe cases and its resistance to anti-malarial drugs is notorious. This is a possible obstacle to the effectiveness of intermittent preventive treatment (IPT) based on sulfadoxine-pyrimethamine (SP) cures administrated to pregnant women (IPTp) during their pregnancy. As this intervention is recommended in Angola since 2006, it has assessed, in this country, the molecular profiles in P. falciparum dhfr and dhps, two polymorphic genes associated to pyrimethamine and sulfadoxine resistance, respectively. METHODS: Blood samples from 52 falciparum patients were collected in Lubango, Angola and pfdhfr and pfdhps polymorphisms were analysed using nested-PCR and DNA sequencing. RESULTS: In the pfdhfr gene, the 108N mutation was almost fixed (98 %), followed by 59R (63 %), 51I (46 %), 50R and 164L (2 %, respectively). No 16V/S mutations were found. The most common double mutant genotype was CNRN (59 + 108; 46 %), followed by CICN (51 + 108; 29 %) whereas IRN (51 + 59 + 108; 15 %), CNRNVL (59 + 108 + 164; 2 %) and RICN (50 + 51 + 108; 2 %) triple mutant genotypes were detected. Investigations of the pfdhps gene showed that the 437G mutation was the most prevalent (97 %). Only two and one samples disclosed the 540E (7 %) and the 436A (3 %), respectively. Single mutant SGKAA (437; 86 %) was higher than SGEAA (437 + 540; 7 %) or AGKAA (436 + 437; 3 %) double mutants genotypes. No polymorphism was detected at codons 581G and 613T/S. Combining pfdhfr and pfdhps alleles two triple mutant haplotypes (double mutant in dhfr and single mutant in dhps) were observed: the ACICNVI/SGKAA in 14 (56 %) samples and the ACNRNVI/SGKAA in five (20 %) samples. One quadruple mutant haplotype was detected (ACIRNVI/SGKAA) in six (24 %) P. falciparum samples. No quintuple pfdhfr-pfdhps mutant was noted. CONCLUSION: pfdhfr and pfdhps gene mutations in isolates from Lubango are suggestive of a low-grade SP resistance and IPT for pregnant women and infant based on SP treatment could be effective. Routine molecular studies targeting polymorphism in these two genes need to be routinely conducted at country level.


Subject(s)
Antimalarials/pharmacology , Dihydropteroate Synthase/genetics , Drug Resistance , Plasmodium falciparum/drug effects , Plasmodium falciparum/isolation & purification , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology , Tetrahydrofolate Dehydrogenase/genetics , Angola , Drug Combinations , Humans , Malaria, Falciparum/parasitology , Mutation , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Polymerase Chain Reaction , Polymorphism, Genetic , Protozoan Proteins/genetics , Sequence Analysis, DNA
9.
Rev Peru Med Exp Salud Publica ; 31(2): 282-7, 2014 Apr.
Article in Spanish | MEDLINE | ID: mdl-25123867

ABSTRACT

The frequency of mutations in pfCRT and DHFR/DHPS genes of Plasmodium falciparum associated with resistance to chloroquine and sulfadoxine-pyrimethamine was evaluated in 83 strains from the districts of Esmeralda and Machala, located on the borders of Ecuador-Peru and Ecuador-Colombia in 2002. Polymerase chain reaction (PCR), conventional and its variants, was used. Mutations in the pfCRT gene were found in more than 90% of the samples from Esmeralda and Machala. For the DHFR gene, 90% of the strains were mutant samples from Esmeralda, 3 were double mutations and 1 was a triple mutation. In Machala, 25% were simple mutant forms and 75% mixed mutant forms (wild forms/mutant). In conclusion, resistance to chloroquine has been fixed in strains carrying K76T pfCRT mutation, whereas genetic imprinting for resistance to pyrimethamine is evolving, particularly in the district of Esmeralda.


Subject(s)
Alleles , Antimalarials/pharmacology , Chloroquine/pharmacology , Mutation , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology , Colombia , Drug Combinations , Drug Resistance , Ecuador , Humans , Peru
10.
Rev. peru. med. exp. salud publica ; 31(2): 282-287, abr.-jun. 2014. ilus
Article in Spanish | LILACS, LIPECS | ID: lil-719506

ABSTRACT

Se evaluó la frecuencia de mutaciones en los genes pfCRT y DHFR/DHPS del Plasmodium falciparum asociados a la resistencia a cloroquina y sulfadoxina-pirimetamina en 83 cepas provenientes de los distritos Esmeralda y Machala ubicados en las fronteras entre Ecuador-Perú y Ecuador-Colombia durante el año 2002. Se empleó la reacción en cadena de polimerasa (PCR) convencional y sus variantes. El gen pfCRT presentó más de 90% de muestras mutantes en Esmeralda y Machala. Para el gen DHFR, el 90% de las cepas fueron muestras mutantes en Esmeralda, tres fueron mutaciones dobles y una triple; en Machala se encontró 25% de formas mutantes simples y 75% de formas mixtas (formas silvestres/mutantes). En conclusión, la resistencia a cloroquina se ha fijado en las cepas portadoras de la mutación K76T pfCRT, mientras que la impronta genética a la resistencia a pirimetamina está en evolución, principalmente en el distrito de Esmeralda.


The frequency of mutations in pfCRT and DHFR/DHPS genes of Plasmodium falciparum associated with resistance to chloroquine and sulfadoxine-pyrimethamine was evaluated in 83 strains from the districts of Esmeralda and Machala, located on the borders of Ecuador-Peru and Ecuador-Colombia in 2002. Polymerase chain reaction (PCR), conventional and its variants, was used. Mutations in the pfCRT gene were found in more than 90% of the samples from Esmeralda and Machala. For the DHFR gene, 90% of the strains were mutant samples from Esmeralda, 3 were double mutations and 1 was a triple mutation. In Machala, 25% were simple mutant forms and 75% mixed mutant forms (wild forms/mutant). In conclusion, resistance to chloroquine has been fixed in strains carrying K76T pfCRT mutation, whereas genetic imprinting for resistance to pyrimethamine is evolving, particularly in the district of Esmeralda.


Subject(s)
Humans , Alleles , Antimalarials/pharmacology , Chloroquine/pharmacology , Mutation , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology , Colombia , Drug Combinations , Drug Resistance , Ecuador , Peru
11.
Am J Trop Med Hyg ; 90(5): 840-5, 2014 May.
Article in English | MEDLINE | ID: mdl-24615126

ABSTRACT

Chloroquine (CQ) is used as a first-line therapy for the treatment of Plasmodium falciparum malaria in Nicaragua. We investigated the prevalence of molecular markers associated with CQ and sulfadoxine-pyrimethamine (SP) resistance in P. falciparum isolates obtained from the North Atlantic Autonomous Region of Nicaragua. Blood spots for this study were made available from a CQ and SP drug efficacy trial conducted in 2005 and also from a surveillance study performed in 2011. Polymorphisms in P. falciparum CQ resistance transporter, dihydrofolate reductase, and dihydropteroate synthase gene loci that are associated with resistance to CQ, pyrimethamine, and sulfadoxine, respectively, were detected by DNA sequencing. In the 2005 dataset, only 2 of 53 isolates had a CQ resistance allele (CVIET), 2 of 52 had a pyrimethamine resistance allele, and 1 of 49 had a sulfadoxine resistance allele. In the 2011 dataset, none of 45 isolates analyzed had CQ or SP resistance alleles.


Subject(s)
Chloroquine/pharmacology , Drug Resistance/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology , Alleles , Antimalarials/pharmacology , DNA, Protozoan/genetics , Dihydropteroate Synthase/genetics , Drug Combinations , Humans , Malaria, Falciparum/drug therapy , Membrane Transport Proteins/genetics , Nicaragua , Plasmodium falciparum/isolation & purification , Polymorphism, Genetic , Sequence Analysis, DNA , Tetrahydrofolate Dehydrogenase/genetics
12.
Braz J Infect Dis ; 17(5): 596-600, 2013.
Article in English | MEDLINE | ID: mdl-23850323

ABSTRACT

Plasmodium vivax and Plasmodium falciparum are becoming resistant to drugs including antifolates, sulphonamides and chloroquine. This study was focused at sequence analysis of resistant genes of these parasites against sulphadoxine-pyrimethamine and chloroquine, from Bannu, Pakistan. Known mutations were detected at codons 57, 58 and 117 of pvdhfr gene of P. vivax, while none of the isolates had any pvdhps mutation. Similarly P. falciparum isolates exhibited double 59R+108N mutations in pfdhfr, and single 437G in pfdhps thus demonstrating the existance of triple mutant 59R+108N+437G haplotype in this region. The key chloroquine resistance mutation, 76T in pfcrt was observed in 100% of the P. falciparum isolates, with haplotype SVMNT which is also associated with resistance to amodiaquine. Some novel mutations were also observed in pvdhfr and pfdhfr genes.


Subject(s)
Antimalarials/pharmacology , Chloroquine/pharmacology , Drug Resistance/genetics , Plasmodium falciparum/genetics , Plasmodium vivax/genetics , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology , Drug Combinations , Humans , Mutation/genetics , Pakistan , Plasmodium falciparum/drug effects , Plasmodium falciparum/isolation & purification , Plasmodium vivax/drug effects , Plasmodium vivax/isolation & purification , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Protozoan Proteins/genetics , Sequence Analysis
13.
Infect Genet Evol ; 18: 183-90, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23714094

ABSTRACT

Colombia has four main malaria transmission zones. In vivo efficacy studies carried out in these areas showed big differences in the response of Plasmodium falciparum to treatment with sulphadoxine-pyrimethamine. In addition, there is still insufficient information about the genetics of P. falciparum populations. The objective of this study was to determine the haplotypes in dhfr and dhps genes of P. falciparum circulating in two distinct endemic zones. Samples from patients with non-complicated P. falciparum malaria were collected: 135 from Tumaco and 206 from Tierralta. Alleles 108 and 51 of the dhfr gene, and 437 and 540 of the dhps gene were analyzed by PCR/enzymatic restriction, while alleles 59 and 164 (dhfr), and 581(dhps) by PCR/dot blot/hybridization. Five different haplotypes were found, of which the triple mutant 51I/C59/108N/I164/437G/K540/A581 was the most frequent (54.6%). In Tumaco, the parasites with wild haplotype predominated, while mutant parasites predominated in Tierralta. Another interesting finding is the presence of the C59R mutation in the dhfr gene in two samples, a mutation rarely found in South America. These data provide information about parasite population genetics and highlight the importance of starting a long term molecular surveillance program.


Subject(s)
Antimalarials/pharmacology , Haplotypes/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology , Adult , Antimalarials/therapeutic use , Colombia , Dihydropteroate Synthase/genetics , Drug Combinations , Drug Resistance , Endemic Diseases , Female , Genes, Protozoan , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Male , Mutation/genetics , Plasmodium falciparum/enzymology , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use , Tetrahydrofolate Dehydrogenase/genetics
14.
Jpn J Infect Dis ; 65(6): 465-75, 2012.
Article in English | MEDLINE | ID: mdl-23183197

ABSTRACT

Malaria is a protozoan disease transmitted by the bite of the Anopheles mosquito. Among five species that can infect humans, Plasmodium falciparum is responsible for the most severe human malaria. Resistance of P. falciparum to chloroquine and pyrimethamine/sulfadoxine, conventionally used antimalarial drugs, is already widely distributed in many endemic areas. As a result, artemisinin-based combination therapies have been rapidly and widely adopted as first-line antimalarial treatments since the mid-2000s. Recent population and evolutionary genetic analyses have proven that the geographic origins of parasite lineages resistant to the conventional drugs are considerably limited. Almost all resistance emerged from either Southeast Asia or South America. The Greater Mekong subregion in Southeast Asia is probably the most alarming source of resistance, from which P. falciparum resistant to chloroquine and pyrimethamine/sulfadoxine dispersed to Africa. The emergence of artemisinin resistance has also recently been confirmed in the Greater Mekong. The WHO Global Malaria Programme has recently launched a "Global Plan for Artemisinin Resistance Containment," which aims to prevent the spread of artemisinin resistance while also stopping the emergence of novel resistance. However, an inadequate understanding of a mechanism of artemisinin resistance and the lack of reliable genetic markers to monitor artemisinin resistance make it difficult to survey the spread of resistance. Elucidation of such markers would substantially contribute to the design of an effective policy for the containment of artemisinin resistance.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Biological Evolution , Drug Resistance , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Africa , Asia, Southeastern , Chloroquine/pharmacology , Drug Combinations , Gene Flow , Humans , Pyrimethamine/pharmacology , South America , Sulfadoxine/pharmacology
15.
Malar J ; 11: 275, 2012 Aug 13.
Article in English | MEDLINE | ID: mdl-22889367

ABSTRACT

BACKGROUND: Malaria caused by Plasmodium falciparum infects roughly 30,000 individuals in Haiti each year. Haiti has used chloroquine (CQ) as a first-line treatment for malaria for many years and as a result there are concerns that malaria parasites may develop resistance to CQ over time. Therefore it is important to prepare for alternative malaria treatment options should CQ resistance develop. In many other malaria-endemic regions, antifolates, particularly pyrimethamine (PYR) and sulphadoxine (SDX) treatment combination (SP), have been used as an alternative when CQ resistance has developed. This study evaluated mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes that confer PYR and SDX resistance, respectively, in P. falciparum to provide baseline data in Haiti. This study is the first comprehensive study to examine PYR and SDX resistance genotypes in P. falciparum in Haiti. METHODS: DNA was extracted from dried blood spots and genotyped for PYR and SDX resistance mutations in P. falciparum using PCR and DNA sequencing methods. Sixty-one samples were genotyped for PYR resistance in codons 51, 59, 108 and 164 of the dhfr gene and 58 samples were genotyped for SDX resistance codons 436, 437, 540 of the dhps gene in P. falciparum. RESULTS: Thirty-three percent (20/61) of the samples carried a mutation at codon 108 (S108N) of the dhfr gene. No mutations in dhfr at codons 51, 59, 164 were observed in any of the samples. In addition, no mutations were observed in dhps at the three codons (436, 437, 540) examined. No significant difference was observed between samples collected in urban vs rural sites (Welch's T-test p-value = 0.53 and permutations p-value = 0.59). CONCLUSION: This study has shown the presence of the S108N mutation in P. falciparum that confers low-level PYR resistance in Haiti. However, the absence of SDX resistance mutations suggests that SP resistance may not be present in Haiti. These results have important implications for ongoing discussions on alternative malaria treatment options in Haiti.


Subject(s)
Antimalarials/pharmacology , Dihydropteroate Synthase/genetics , Drug Resistance , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology , Tetrahydrofolate Dehydrogenase/genetics , Drug Combinations , Genotype , Haiti , Humans , Malaria, Falciparum/parasitology , Mutant Proteins/genetics , Mutation, Missense , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Polymerase Chain Reaction , Sequence Analysis, DNA
16.
J Infect Dis ; 204(12): 1980-8, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22021623

ABSTRACT

BACKGROUND: Plasmodium falciparum malaria resistant to chloroquine and pyrimethamine originated in limited foci and migrated to Africa. It remains unresolved whether P. falciparum resistance to sulfadoxine, which is conferred by mutations in dihydropteroate synthase (DHPS), evolved following a similar pattern. METHODS: The dhps locus of 893 P. falciparum isolates from 12 countries in Asia, the Pacific Islands, Africa, and South America was sequenced. Haplotypes of 6 microsatellite loci flanking the dhps locus were determined to define the genetic relationships among sulfadoxine-resistant lineages. RESULTS: Six distinct sulfadoxine-resistant lineages were identified. Highly resistant lineages appear to have originated only in Southeast Asia and South America. Two resistant lineages found throughout Southeast Asia have been introduced to East Africa, where they appear to have spread. CONCLUSIONS: The infrequent selection of parasites highly resistant to sulfadoxine and the subsequent migration of resistant lineages from Asia to Africa are similar to the patterns observed in chloroquine and pyrimethamine resistance. These findings strongly suggest that the global migration of resistant parasites has played a decisive role in the establishment of drug-resistant P. falciparum parasites, and that similar patterns may be anticipated for the spread of artemisinin resistance.


Subject(s)
Antimalarials/pharmacology , Drug Resistance/genetics , Genes, Protozoan , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Sulfadoxine/pharmacology , Africa, Eastern , Alleles , Animals , Asia, Southeastern , Dihydropteroate Synthase/genetics , Haplotypes , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Sequence Analysis, DNA , South America
17.
Antimicrob Agents Chemother ; 54(8): 3121-5, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20498318

ABSTRACT

The therapeutic efficacy of sulfadoxine-pyrimethamine (SP) in treating uncomplicated Plasmodium falciparum malaria is unevenly distributed in Colombia. The Andes mountain range separates regions in the west where malaria is endemic from those in the east and constitutes a barrier against gene flow and the dispersal of parasite populations. The distribution of dhfr and dhps genotypes of 146 P. falciparum samples from the eastern Amazon and Orinoco basins and Northwest and Southwest Pacific regions of Colombia was consistent with the documented levels of therapeutic efficacy of SP. The diversity of four dhfr- and dhps-linked microsatellites indicated that double- and triple-mutant alleles for both resistance loci have a single origin. Likewise, multilocus association genotypes, including two unlinked microsatellite loci, suggested that genetic exchanges between the eastern Orinoco and Northwest Pacific populations has taken place across the Andes, most probably via migration of infected people.


Subject(s)
Antimalarials/pharmacology , Drug Resistance/genetics , Emigration and Immigration , Malaria, Falciparum/transmission , Plasmodium falciparum/drug effects , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology , Alleles , Animals , Antimalarials/therapeutic use , Colombia/epidemiology , Dihydropteroate Synthase/genetics , Drug Combinations , Gene Frequency , Genotype , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Microsatellite Repeats , Molecular Sequence Data , Parasitic Sensitivity Tests , Plasmodium falciparum/genetics , Pyrimethamine/therapeutic use , Sequence Analysis, DNA , Sulfadoxine/therapeutic use , Tetrahydrofolate Dehydrogenase/genetics
18.
PLoS One ; 4(8): e6762, 2009 Aug 26.
Article in English | MEDLINE | ID: mdl-19707564

ABSTRACT

BACKGROUND: Sulfadoxine-pyrimethamine was a common first line drug therapy to treat uncomplicated falciparum malaria, but increasing therapeutic failures associated with the development of significant levels of resistance worldwide has prompted change to alternative treatment regimes in many national malaria control programs. METHODOLOGY AND FINDING: We conducted an in vivo therapeutic efficacy trial of sulfadoxine-pyrimethamine at two locations in the Peruvian Amazon enrolling 99 patients of which, 86 patients completed the protocol specified 28 day follow up. Our objective was to correlate the presence of polymorphisms in P. falciparum dihydrofolate reductase and dihydropteroate synthase to in vitro parasite susceptibility to sulfadoxine and pyrimethamine and to in vivo treatment outcomes. Inhibitory concentration 50 values of isolates increased with numbers of mutations (single [108N], sextuplet [BR/51I/108N/164L and 437G/581G]) and septuplet (BR/51I/108N/164L and 437G/540E/581G) with geometric means of 76 nM (35-166 nM), 582 nM (49-6890- nM) and 4909 (3575-6741 nM) nM for sulfadoxine and 33 nM (22-51 nM), 81 nM (19-345 nM), and 215 nM (176-262 nM) for pyrimethamine. A single mutation present in the isolate obtained at the time of enrollment from either dihydrofolate reductase (164L) or dihydropteroate synthase (540E) predicted treatment failure as well as any other single gene alone or in combination. Patients with the dihydrofolate reductase 164L mutation were 3.6 times as likely to be treatment failures [failures 85.4% (164L) vs 23.7% (I164); relative risk = 3.61; 95% CI: 2.14 - 6.64] while patients with the dihydropteroate synthase 540E were 2.6 times as likely to fail treatment (96.7% (540E) vs 37.5% (K540); relative risk = 2.58; 95% CI: 1.88 - 3.73). Patients with both dihydrofolate reductase 164L and dihydropteroate synthase 540E mutations were 4.1 times as likely to be treatment failures [96.7% vs 23.7%; RR = 4.08; 95% CI: 2.45 - 7.46] compared to patients having both wild forms (I164 and K540). CONCLUSIONS: In this part of the Amazon basin, it may be possible to predict treatment failure with sulfadoxine-pyrimethamine equally well by determination of either of the single mutations dihydrofolate reductase 164L or dihydropteroate synthase 540E. TRIAL REGISTRATION: ClinicalTrials.gov NCT00951106.


Subject(s)
Antimalarials/pharmacology , Dihydropteroate Synthase/genetics , Plasmodium falciparum/enzymology , Point Mutation , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology , Tetrahydrofolate Dehydrogenase/genetics , Animals , Plasmodium falciparum/drug effects
19.
Malar J ; 8: 156, 2009 Jul 14.
Article in English | MEDLINE | ID: mdl-19602248

ABSTRACT

BACKGROUND: The goal of the present study was the characterization of Plasmodium falciparum genes associated to malaria drug resistance (pfcrt, pfdhfr and pfdhps), in samples from two Brazilian localities. METHODS: Parasites from 65 P. falciparum samples were genotyped using nested-PCR and direct DNA sequencing. RESULTS: Six resistant sulphadoxine-pyrimethamine (SP) pfdhfr genotypes and one haplotype associated to SP sensitivity were detected. For pfcrt gene, SVMNT chloroquine (CQ)-resistant genotype was detected as well as the CVMNK CQ-sensitive haplotype in the same sample from Paragominas, that showed a SP-sensitive genotype. CONCLUSION: This study is the first to document the sensitivity of P. falciparum parasites to CQ and SP in Brazilian field samples. The importance of these findings is discussed.


Subject(s)
Antimalarials/pharmacology , Chloroquine/pharmacology , Drug Resistance/genetics , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology , Animals , Antimalarials/therapeutic use , Brazil/epidemiology , Drug Combinations , Endemic Diseases , Haplotypes , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/genetics , Parasitic Sensitivity Tests , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Polymerase Chain Reaction , Polymorphism, Single Nucleotide/drug effects , Sequence Analysis, DNA
20.
Am J Trop Med Hyg ; 81(1): 19-22, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19556560

ABSTRACT

Plasmodium vivax isolates from French Guiana were studied for the presence of mutations associated with sulfadoxine/pyrimethamine (SP) drug resistance. Ninety-six blood samples were collected from 2000 to 2005 from symptomatic malaria patients. SP drug resistance was predicted by determining point mutations in the dihydrofolate reductase (pvdhfr) and dihydropteroate synthase (pvdhps) genes. All samples showed mutant genotypes in both genes with a prevalence > 90% for the 58R, 117N, 382C, and 383G. A new mutation (116G) in pvdhfr was found at a frequency of 3.3%. Six different pvdhfr/dhps multilocus genotypes were observed with the predominance of the quintuple mutant-type 58R/117N/173L-382C/383G (59.3%). No significant differences were observed between the prevalence of haplotypes and the year of collection. Our results indicate that, in this area, the fixation of SP drug-resistant parasites in the P. vivax population is stable.


Subject(s)
Antimalarials/pharmacology , Dihydropteroate Synthase/genetics , Mutation , Plasmodium vivax/drug effects , Plasmodium vivax/genetics , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology , Tetrahydrofolate Dehydrogenase/genetics , Animals , Drug Combinations , Drug Resistance , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL