Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
1.
Sci Rep ; 14(1): 9401, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658643

ABSTRACT

This study evaluated the impacts of sulfamethoxazole (SMX) on antioxidant, immune, histopathological dynamic changes, and gut microbiota of zebrafish. SMX was carried out five groups: 0 (C), 3 mg/L (T3), 6 mg/L (T6), 12 mg/L (T12), and 24 mg/L (T24), with 5 replicates per group for an 8-weeks chronic toxicity test. It was found that SMX is considered to have low toxicity to adult zebrafish. SMX with the concentration not higher than 24 mg/L has no obvious inhibitory effect on the growth of fish. Under different concentrations of SMX stress, oxidative damage and immune system disorder were caused to the liver and gill, with the 12 and 24 mg/L concentration being the most significant. At the same time, it also causes varying degrees of pathological changes in both intestinal and liver tissues. As the concentration of SMX increases, the composition and abundance of the gut microbiota in zebrafish significantly decrease.


Subject(s)
Gastrointestinal Microbiome , Liver , Sulfamethoxazole , Water Pollutants, Chemical , Zebrafish , Animals , Sulfamethoxazole/toxicity , Gastrointestinal Microbiome/drug effects , Water Pollutants, Chemical/toxicity , Liver/drug effects , Liver/pathology , Liver/metabolism , Oxidative Stress/drug effects , Ecosystem , Gills/drug effects , Gills/pathology
2.
Ecotoxicol Environ Saf ; 273: 116099, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38422788

ABSTRACT

Sulfamethoxazole (SMZ) is a frequently detected antibiotic in the environment, and there is a growing concern about its potential toxic effects on aquatic organisms. sea cucumber (Apostichopus japonicas) is a benthic invertebrate whose gut acts as a primary immune defense and serves critical protective barrier. In this study, growth performance, histology, gut microbiota, and metabolomics analyses were performed to investigate the toxic response in the intestine of sea cucumber effects caused by SMZ stress for 56 d by evaluating with different concentrations of SMZ (0, 1.2×10-3, and 1.2 mg/L). The weight gain rate of sea cucumbers under SMZ stress showed significant decrease, indicating that the growth of sea cucumbers was hindered. Analysis of the intestinal morphological features indicated that SMZ stimulation resulted in atrophy of the sea cucumber gut. In the 1.2×10-3 mg/L concentration, the thickness of muscle and mucosal layers was reduced by 12.40% and 21.39%, while in the 1.2 mg/L concentration, the reductions were 35.08% and 26.98%. The abundance and diversity of sea cucumber intestinal bacteria decreased significantly (P < 0.05) under the influence of SMZ. Notably, the intestinal bacteria of sea cucumber became homogenized with the increase in SMZ concentration, and the relative abundance of Ralstonia reached 81.64% under the stress of 1.2 mg/L concentration. The SMZ stress significantly impacted host metabolism and disrupted balance, particularly in L-threonine, L-tyrosine, neuronic acid, piperine, and docosapentaenoic acid. SMZ leads to dysregulation of metabolites, resulting in growth inhibition and potential inflammatory responses that could adversely affect the normal activities of aquatic organisms. Further metabolic pathway enrichment analyses demonstrated that impaired biosynthesis of unsaturated fatty acids and aminoacyl-tRNA biosynthesis metabolic pathway were major reasons for SMZ stress-induced intestinal bacteria dysbiosis. This research aims to provide some theoretical evidence for the ecological hazard assessment of antibiotics in water.


Subject(s)
Sea Cucumbers , Stichopus , Animals , Sulfamethoxazole/toxicity , Sulfamethoxazole/metabolism , Metabolomics , Bacteria/genetics
3.
Mar Pollut Bull ; 200: 116122, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340373

ABSTRACT

The misuse of antibiotics has brought potential ecological risks to marine ecosystems, especially under a changing climate. Laboratory experiments were conducted to understand the impact of rising temperatures and antibiotic sulfamethoxazole (SMX) abuse on marine diatom Phaeodactylum tricornutum. Temperatures of 21 and 24 °C were optimal for the growth and photosynthetic characteristics of P. tricornutum. When exposed to higher temperatures (≥27 °C), the growth and photosynthesis were inhibited. High concentrations of SMX (≥100 mg/L) caused rapid and acute toxicological effects on the phytoplankton. In contrast, low concentrations of SMX (1 mg/L) exhibited hormesis. When P. tricornutum was exposed to SMX at high temperatures, the stress on the phytoplankton was even more pronounced. This suggests that the combination of rising temperatures and antibiotic pollution may have a more significant negative impact on marine phytoplankton than either stressor alone. Neglecting the interaction between these stressors may lead to underestimating their combined effects on marine ecosystems.


Subject(s)
Diatoms , Sulfamethoxazole/toxicity , Temperature , Ecosystem , Photosynthesis , Phytoplankton , Anti-Bacterial Agents/toxicity
4.
Sci Total Environ ; 918: 170546, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38309340

ABSTRACT

The neurotoxic effects and mechanisms of low-dose and long-term sulfamethoxazole (SMZ) exposure remain unknown. This study exposed zebrafish to environmental SMZ concentrations and observed behavioral outcomes. SMZ exposure increased hyperactivity and altered the transcript levels of 17 genes associated with neurological function. It impaired intestinal function by reducing the number of intestinal goblet cells and lipid content. Metabolomic results indicated that the contents of several lipids and amino acids in the gut were altered, which might affect the expression levels of neurological function-related genes. Metagenomic results demonstrated that SMZ exposure substantially altered the composition of the gut microbiome. Zebrafish receiving a transplanted fecal microbiome from the SMZ group were also found to exhibit abnormal behavior, suggesting that the gut microbiome is an important target for SMZ exposure-induced neurobehavioral abnormalities. Multi-omics correlation analysis revealed that gut micrometabolic function was related to differential gut metabolite levels, which may affect neurological function through the gut-brain-axis. Reduced abundance of Lefsonia and Microbacterium was strongly correlated with intestinal metabolic function and may be the key bacterial genera in neurobehavioral changes. This study confirms for the first time that SMZ-induced neurotoxicity in zebrafish is closely mediated by alterations in the gut microbiome.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Zebrafish/genetics , Sulfamethoxazole/toxicity , Metagenome
5.
Sci Total Environ ; 918: 170857, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38340847

ABSTRACT

Sulfonamide antibiotics, extensively used in human and veterinary therapy, accumulate in agroecosystem soils through livestock manure and sewage irrigation. However, the interaction between sulfonamides and rice plants remains unclear. This study investigated the transformation behavior and toxicity of sulfamethoxazole (SMX) and its main metabolite, N4-acetyl-sulfamethoxazole (NASMX) in rice. SMX and NASMX were rapidly taken up by roots and translocated acropetally. NASMX showed higher accumulating capacity, with NASMX concentrations up to 20.36 ± 1.98 µg/g (roots) and 5.62 ± 1.17 µg/g (shoots), and with SMX concentrations up to 15.97 ± 2.53 µg/g (roots) and 3.22 ± 0.789 µg/g (shoots). A total of 18 intermediate transformation products of SMX were identified by nontarget screening using Orbitrap-HRMS, revealing pathways such as deamination, hydroxylation, acetylation, formylation, and glycosylation. Notably, NASMX transformed back into SMX in rice, a novel finding. Transcriptomic analysis highlights the involvements of cytochrome P450 (CYP450), acetyltransferase (ACEs) and glycosyltransferases (GTs) in these biotransformation pathways. Moreover, exposure to SMX and NASMX disrupts TCA cycle, amino acid, linoleic acid, nucleotide metabolism, and phenylpropanoid biosynthesis pathways of rice, with NASMX exerting a stronger impact on metabolic networks. These findings elucidate the sulfonamides' metabolism, phytotoxicity mechanisms, and contribute to assessing food safety and human exposure risk amid antibiotic pollution.


Subject(s)
Oryza , Sulfamethoxazole , Humans , Sulfamethoxazole/toxicity , Sulfamethoxazole/chemistry , Oryza/metabolism , Anti-Bacterial Agents/chemistry , Sulfonamides , Soil/chemistry , Sulfanilamide
6.
Environ Pollut ; 344: 123301, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38190873

ABSTRACT

The widespread application of sulfonamide antibiotics in aquaculture has raised concerns about their adverse environmental impacts. Periphyton plays a crucial role in the aquatic ecosystem. In this study, we examined sulfamethoxazole (SMX) effects on the community structure and interactions of periphyton in simulated aquaculture water. Our findings indicated that the total biomass of periphyton decreased, while the biomass of periphytic algae and the secretion of extracellular polymeric substances (EPS) increased at 0.7 × 10-3 mg/L. Under higher SMX concentrations (5 mg/L and 10 mg/L), periphyton growth was severely inhibited, the microbial community structure of periphyton were sharply altered, characterized by the cyanobacteria growth suppression and decrease in the diversity index of community. Furthermore, elevated SMX concentrations (5 mg/L and 10 mg/L) increased the ratio of negative relationships from 45.4% to 49.4%, which suggested that high SMX concentrations promoted potential competition among microbes and disrupted the microbial food webs in periphyton. The absolute abundance of sul1 and sul2 genes in T2 and T3 groups were 2-3 orders of magnitude higher than those in control group after 30 days of SMX exposure, which elevated the risk of resistance gene enrichment and dissemination in the natural environment. The study contributes to our understanding of the detrimental effects of antibiotic pollution, which can induce changes in the structure and interaction relationship of microbial communities in aquaculture water.


Subject(s)
Microbiota , Periphyton , Sulfamethoxazole/toxicity , Biomass , Water , Anti-Bacterial Agents/toxicity , Aquaculture
7.
Chemosphere ; 349: 140775, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38013024

ABSTRACT

Sulfamethoxazole (SMZ) is commonly used in aquaculture to treat bacterial infections, but its long-term residual properties in natural water can pose a direct threat to aquatic animals. This study is to investigate the effects of continuous exposure to SMZ on mud crabs (Scylla paramamosain) at four different concentrations (0, 10, 100, and 1000 ng/L) that reflect the range found in natural aquatic environments. The results confirmed that SMZ exposure reduced the expression levels of genes related to the innate immunity in mud crabs, including JAK, Astakine, TLR, and Crustin. It also stimulated oxidative stress, caused the production of reactive oxygen species and lower activities of antioxidant enzymes such as peroxidase, superoxide dismutase, catalase, and glutathione. SMZ exposure damaged the DNA of crab hemocytes and hepatopancreas tissue, and reduced the phagocytosis, ultimately leading to a decreased survival rates of mud crabs infected with Vibrio alginolyticus. These findings demonstrate that SMZ exposure has immunotoxic effects on mud crabs' innate immunity and reduces the ability to resist pathogen infections.


Subject(s)
Brachyura , Animals , Brachyura/metabolism , Antioxidants/metabolism , Sulfamethoxazole/toxicity , Sulfamethoxazole/metabolism , Immunity, Innate , Phagocytosis , Arthropod Proteins/genetics
8.
Environ Pollut ; 343: 123199, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38128712

ABSTRACT

Antibiotics are a contaminant class of worldwide concern as they are frequently detected in aquatic ecosystems. To better understand the impacts of antibiotics on aquatic ecosystems, we conducted an outdoor mesocosm experiment in which aquatic communities were exposed to different concentrations of the antibiotic sulfamethoxazole (0, 0.15, 1.5, 15 and 150 µg/L). These concentrations include mean (0.15 µg/L) and maximum detected concentrations (15 and 150 µg/L) in aquatic ecosystems worldwide. Sulfamethoxazole was applied once a week for eight consecutive weeks to 1530 L outdoor mesocosms in the Netherlands, followed by an eight-week recovery period. We evaluated phytoplankton-, bacterial- and invertebrate responses during and after sulfamethoxazole exposure and assessed impacts on organic matter decomposition. Contrary to our expectations, consistent treatment-related effects on algal and bacterial communities could not be demonstrated. In addition, sulfamethoxazole did not significantly affect zooplankton and macroinvertebrate communities. However, some effects on specific taxa were observed, with an increase in Mesostoma flatworm abundance (NOEC of <0.15 µg/L). In addition, eDNA analyses indicated negative impacts on the insects Odonata at a sulfamethoxazole concentration of 15 µg/L. Overall, environmentally relevant sulfamethoxazole concentration did not result in direct or indirect impairment of entire aquatic communities and ecological processes in our mesocosms. However, several specific macroinvertebrate taxa demonstrated significant (in)direct effects from sulfamethoxazole. Comparison of the results with the literature showed inconsistent results between studies using comparable, environmentally relevant, concentrations. Therefore, our study highlights the importance of testing the ecological impacts of pharmaceuticals (such as sulfamethoxazole) across multiple trophic levels spanning multiple aquatic communities, to fully understand its potential ecological threats.


Subject(s)
Ecosystem , Water Pollutants, Chemical , Animals , Anti-Bacterial Agents/toxicity , Sulfamethoxazole/toxicity , Sulfamethoxazole/analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Zooplankton , Fresh Water/analysis
9.
J Hazard Mater ; 464: 132962, 2024 02 15.
Article in English | MEDLINE | ID: mdl-37976862

ABSTRACT

Pyrite has been extensively tested for oxidizing contaminants via the activation of water molecule or dissolved oxygen, while the changing of oxidation species induced by contaminant's concentration has been largely underestimated. In this study, we revealed a self-acclimation mechanism of pyrite in terms of •OH conversion to 1O2 during the sulfamethoxazole (SMX) degradation process under oxic conditions. Two reaction stages of SMX degradation by pyrite were observed. The SMX concentration decreased by 70% rapidly in the first 12 h after the reaction was initiated, then, the removal rate began to decrease as the SMX concentration decreased. Importantly, •OH and O2•- were the dominant oxidizing species in stage one, while 1O2 was responsible for the further degradation of SMX in stage two. The self-acclimated mechanism of pyrite was proven to be caused by the conversion of oxidative species at the surface of pyrite. This process can overcome the shortages of •OH such as ultrashort lifetime and limited effective diffusion in the decontamination of micropollutant. Moreover, different reactive oxygen species will lead to different degradation pathways and environmental toxicity while degrading pollutants. This finding of oxidizing species' self-acclimation mechanism should be of concern when using pyrite for water treatment.


Subject(s)
Sulfamethoxazole , Water Pollutants, Chemical , Reactive Oxygen Species , Sulfamethoxazole/toxicity , Water Pollutants, Chemical/toxicity , Iron , Oxygen , Oxidation-Reduction
10.
Aquat Toxicol ; 265: 106760, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37977013

ABSTRACT

The incorrect use of antibiotics and pesticides poses significant risks of biological toxicity. Their simultaneous exposure could jeopardize fish health and hinder sustainable aquaculture. Here, we subjected grass carp to waterborne cypermethrin (0.65 µg/L) or/and sulfamethoxazole (0.30 µg/L) treatments for a duration of 6 weeks. We closely monitored the effects on intestinal function, the intestinal microbiome, and the liver metabolome. The results revealed that exposure to waterborne cypermethrin or/and sulfamethoxazole compromised intestinal barrier function and decreased the expression of intestinal tight junction proteins. Additionally, heightened levels of pro-inflammatory cytokines in the intestines and reduced antioxidant levels indicated systemic inflammation and oxidative stress, with more severe effects observed in the combined exposure group. 16S rRNA sequencing of intestinal tissues suggested Firmicutes play a key role in the intestinal microbiota. GC/MS metabolomics of the liver showed more differential metabolites (56) in the co-exposure group compared to cypermethrin (45) or sulfamethoxazole (32) alone, indicating greater toxicological effects with combined exposure. Our analyses also suggest that ATP-binding cassette transporters could serve as a novel endpoint for assessing the risk of pesticide and antibiotic mixtures in grass carp. In summary, this study underscores the potential ecological risks posed by antibiotics and pesticides to aquatic environments and products. It emphasizes the importance of the gut-liver axis as a comprehensive pathway for assessing the toxicity in fish exposed to environmental contaminants.


Subject(s)
Carps , Gastrointestinal Microbiome , Pesticides , Water Pollutants, Chemical , Animals , Sulfamethoxazole/toxicity , RNA, Ribosomal, 16S , Water Pollutants, Chemical/toxicity , Liver , Anti-Bacterial Agents/toxicity , Pesticides/pharmacology
11.
FEMS Microbiol Ecol ; 99(11)2023 10 17.
Article in English | MEDLINE | ID: mdl-37822015

ABSTRACT

The Aliivibrio fischeri bioassay was successfully applied in order to evaluate the acute effect of sulfamethoxazole (SMX), ciprofloxacin (CIP), chlortetracycline (CTC) and copper (Cu), alone or in binary, ternary, and overall mixture. The toxicity results are reported in terms of both effective concentrations, which inhibited 50% of the bacterium bioluminescence (EC50%), and in Toxic Units (TUs). The TUs were compared with predicted values obtained using the Concentration Addition model (CA). Finally, the toxicity of water extracts from a soil contaminated by the three antibiotics (7 mg Kg-1 each) in the presence/absence of copper (30 mg Kg-1) was also evaluated. Copper was the most toxic chemical (EC50: 0.78 mg L-1), followed by CTC (EC50: 3.64 mg L-1), CIP (96 mg L-1) and SMX (196 mg L-1). Comparing the TU and CA values of the mixtures, additive effects were generally found. However, a synergic action was recorded in the case of the CIP+Cu co-presence and antagonistic effects in the case of CTC+Cu and the ternary mixture (containing each antibiotic at 0.7 mg L-1), were identified. Soil water extracts did not show any toxicity, demonstrating the buffering ability of the soil to immobilize these chemicals.


Subject(s)
Chlortetracycline , Water Pollutants, Chemical , Aliivibrio fischeri , Anti-Bacterial Agents/toxicity , Biological Assay , Chlortetracycline/toxicity , Copper/toxicity , Soil , Sulfamethoxazole/toxicity , Water , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
12.
Water Res ; 246: 120753, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37871376

ABSTRACT

Incomplete mineralization of sulfamethoxazole (SMX) in wastewater treatment systems poses a threat to ecological health. The toxicity and environmental risk associated with SMX biodegradation in the sulfur-mediated biological process were examined for the first time through a long-term (180 days) bioreactor study and a series of bioassays. The results indicated that the sulfur-mediated biological system was highly resistant and tolerant to SMX toxicity, as evidenced by the enrichment of sulfate-reducing bacteria (SRB), the improved microbial metabolic activity, and the excellent performance on pollutants removal under long-term SMX exposure. SMX can be effectively biodegraded by the cleavage and rearrangement of the isoxazole ring, hydrogenation and hydroxylation reactions in sulfur-mediated biological wastewater system. These biodegradation pathways effectively reduced the acute toxicity, antibacterial activity, and ecotoxicities of SMX and its biotransformation products (TPs) in the effluent of the sulfur-mediated biological system. The TPs produced via hydrogenation (TP1), hydroxylation, and isoxazole ring cleavage (TP3, TP4, TP5, TP8, and TP9) exhibited lower toxicity than SMX. Under SMX stress, although the abundance of sulfonamide resistance genes increased, the total abundance of ARGs decreased due to the extrusion of some intracellular SMX by the efflux pump genes and the inactivation of some SMX through the biodegradation process. Efflux pump and inactivation, as the main resistance mechanisms of antibiotics in the sulfur-mediated biological system, play a crucial role in microbial self-defense. The findings of this study demonstrate the great potential of the sulfur-mediated biological system in SMX removal, detoxication, and ARGs environmental risk reduction.


Subject(s)
Sulfamethoxazole , Water Purification , Sulfamethoxazole/toxicity , Wastewater , Anti-Bacterial Agents , Biodegradation, Environmental , Isoxazoles
13.
Chemosphere ; 345: 140247, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37742764

ABSTRACT

Sulfamethoxazole (SMZ) and zinc (Zn) are widespread harmful materials in aquatic ecosystems and cause toxic effects to aquatic animals under their individual exposure. Although they often co-exist in aquatic environments, little is known about their joint effects and mechanism influencing aquatic animals. Herein, SMZ induced mitochondrial and lysosomal dysfunction, inhibited autophagy flux, and induced lipotoxicity. However, SMZ-induced changes of these physiological and metabolic processes above were reversed by Zn exposure, indicating the antagonism between Zn and SMZ. SOD1-knockdown abrogated the reversing effects of Zn on mitochondria dysfunction and autophagy flux blockage induced by SMZ, suggesting that SOD1 was essential for Zn to reverse SMZ-induced mitochondria dysfunction and autophagy impairment. Our further investigation found that Zn regulated STAT3 translocation to lysosomes and mitochondria to attenuate SMZ-induced lipotoxicity, and SOD1 was required for these processes. Mechanistically, STAT3 was associated with ATP6V1 A in a coiled-coil domain-dependent manner, and pS710-STAT3-and pY753-STAT3-independent manners. Moreover, SMZ suppressed autophagic degradation of damaged mitochondria via inhibiting interaction between STAT3 and ATP6V1 A and increasing pS710-STAT3 level; SMZ impaired mitochondrial ß-oxidation via decreasing pY753-STAT3 level and STAT3 mitochondrial localization. Zn reversed these SMZ-induced effects to alleviate SMZ-induced lipotoxicity. Taken together, our data showed that SMZ impaired mitochondrial ß-oxidation and lysosomal acidification via the downregulation of SOD1, leading to lipotoxicity, and that Zn reversed SMZ-induced changes of these important biological processes and attenuated SMZ-induced lipotoxicity. Thus, our study identified previously unidentified mechanisms for the antagonistic mechanisms of Zn and SMZ on aquatic animals, which provided novel insights into the environmental risk assessments of the joint exposure between heavy metals and antibiotics in the aquatic organisms.


Subject(s)
Sulfamethoxazole , Zinc , Animals , Zinc/metabolism , Sulfamethoxazole/toxicity , Sulfamethoxazole/metabolism , Ecosystem , Superoxide Dismutase-1/metabolism , Superoxide Dismutase-1/pharmacology , Acids/metabolism , Lysosomes/metabolism , Fresh Water , Mitochondria/metabolism
14.
Ecotoxicology ; 32(7): 858-873, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37633869

ABSTRACT

Soil contamination with micropollutants is an important global problem and the impact of these pollutants on living organisms cannot be underestimated. The effects of diclofenac (DCF) and sulfamethoxazole (SMX), their mixture (MIX), and wastewater containing these drugs on the mortality and reproduction of Eisenia fetida were investigated. The impact on the activities of antioxidant enzymes in earthworm cells was also assessed. Furthermore, the influence of the following parameters of the vertical flow constructed wetlands on wastewater toxicity was investigated: the dosing system, the presence of pharmaceuticals and the plants Miscanthus giganteus. The compounds and their mixture significantly affected the reproduction and mortality of earthworms. The calculated values of LC50,28 days values were 3.4 ± 0.3 mg kg-1 for DCF, 1.6 ± 0.3 mg kg-1 for SMX, and 0.9 ± 0.1 mg kg-1 for MIX. The EC50 (reproduction assay) for DCF was 1.2 ± 0.2 mg kg-1, whereas for SMX, it was 0.4 ± 0.1 mg kg-1, and for MIX, it was 0.3 ± 0.1 mg kg-1, respectively. The mixture toxicity index (MTI) was calculated to determine drug interactions. For both E. fetida mortality (MTI = 3.29) and reproduction (MTI = 3.41), the index was greater than 1, suggesting a synergistic effect of the mixture. We also observed a negative effect of wastewater (raw and treated) on mortality (32% for raw and 8% for treated wastewater) and fertility (66% and 39%, respectively) of E. fetida. It is extremely important to analyze the harmfulness of microcontaminants to organisms inhabiting natural environments, especially in the case of wastewater for irrigation of agricultural fields.


Subject(s)
Oligochaeta , Soil Pollutants , Animals , Diclofenac/toxicity , Wastewater/toxicity , Sulfamethoxazole/toxicity , Wetlands , Fertility , Soil , Oxidative Stress , Soil Pollutants/toxicity
15.
Sci Total Environ ; 894: 164943, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37329919

ABSTRACT

Antibiotics and nanoplastics are widely detected in the coastal ecosystem. However, the transcriptome mechanism elucidating the effect of antibiotics and nanoplastics co-exposure on the gene expression of aquatic organisms in coastal environment is still unclear. Here, single and joint effects of sulfamethoxazole (SMX) and polystyrene nanoplastics (PS-NPs) on the intestinal health and gene expression of medaka juveniles (Oryzias melastigma), which live in coastal environment, were investigated. The SMX and PS-NPs co-exposure decreased intestinal microbiota diversity compared to the PS-NPs, and caused more adverse effect on the intestinal microbiota composition and intestinal damage compared to the SMX, indicating that PS-NPs might enhance the toxicity of SMX on the medaka intestine. The increased abundance of Proteobacteria in the intestine was observed in the co-exposure group, which might induce the intestinal epithelium damage. In addition, the differentially expressed genes (DEGs) were mainly involved in the drug metabolism-other enzymes, drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450 pathways in visceral tissue after the co-exposure. The expression of the host immune system genes (e.g., ifi30) could be associated with the increased pathogens in intestinal microbiota. This study is useful for understanding the toxicity effect of antibiotics and NPs on aquatic organisms in coastal ecosystem.


Subject(s)
Oryzias , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Microplastics/metabolism , Oryzias/metabolism , Sulfamethoxazole/toxicity , Sulfamethoxazole/metabolism , Ecosystem , Polystyrenes/metabolism , Cytochrome P-450 Enzyme System/metabolism , Anti-Bacterial Agents/metabolism , Intestines , Water Pollutants, Chemical/analysis
16.
J Hazard Mater ; 455: 131571, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37178533

ABSTRACT

The present study quantitatively determined the degree and type of functional disturbance in the nitrifying microbiome caused by exposure to a single oxytetracycline (OTC) and a two-antibiotic mixture containing OTC and sulfamethoxazole (SMX). While the single antibiotic had a pulsed disturbance on nitritation that was recoverable within three weeks, the antibiotic mixture caused a more significant pulsed disturbance on nitritation and a potential press disturbance on nitratation that was not recoverable for over five months. Bioinformatic analysis revealed significant perturbations for both canonical nitrite-oxidizing (Nitrospira defluvii) and potential complete ammonium-oxidizing (Ca. Nitrospira nitrificans) populations that were strongly associated with the press perturbation on nitratation. In addition to this functional disturbance, the antibiotic mixture reduced the biosorption of OTC and altered its biotransformation pathways, resulting in different transformation products compared with those produced when OTC was treated as a single antibiotic. Collectively, this work elucidated how the antibiotic mixture can affect the degree, type, and duration of the functional disturbance on nitrifying microbiome and offer new insights into the environmental consequences of antibiotic residues (e.g., their fate, transformation, and ecotoxicity) when present as an antibiotic mixture rather than single antibiotics.


Subject(s)
Microbiota , Oxytetracycline , Anti-Bacterial Agents/toxicity , Oxytetracycline/toxicity , Sulfamethoxazole/toxicity , Nitrites/metabolism , Nitrification
17.
Chemosphere ; 333: 138888, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37209849

ABSTRACT

Graphite-phase carbon nitride (g-C3N4) has shown great potential for antibiotic wastewater treatment due to its unique electronic structure and corresponding to visible light. In this study, a series of Bi/Ce/g-C3N4 photocatalysts with different doping amount were developed by direct calcination method for Rhodamine B and sulfamethoxazole photocatalytic degradation. The experiment result shows that the photocatalytic performance of Bi/Ce/g-C3N4 catalysts were better than that of single component samples. Under the optimal experimental conditions, the degradation rates of RhB (20 min) and SMX (120 min) by 3Bi/Ce/g-C3N4 reached 98.3% and 70.5%, respectively. The theoretical calculation results of DFT show that after Bi and Ce doping modification, the band-gap width of g-C3N4 is reduced to 1.215 eV and carrier migration rate is greatly improved. The enhanced photocatalytic activity was mainly attributed to the capture of electrons after doping modification, which inhibition of photogenerated carriers recombination and reduced the gap width. The cyclic treatment experiment of sulfamethoxazole showed that Bi/Ce/g-C3N4 catalysts had good stability. Ecosar evaluation and leaching toxicity test showed that Bi/Ce/g-C3N4 can be safely used for wastewater treatment. This study provides a perfect strategy for modifying g-C3N4 and a new way to improve the photocatalytic performance.


Subject(s)
Graphite , Graphite/chemistry , Anti-Bacterial Agents/toxicity , Sulfamethoxazole/toxicity
18.
J Environ Manage ; 340: 117969, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37084645

ABSTRACT

The coexistence of nanoplastics and antibiotics in the aquatic environment has raised a complicated risk for ecosystems and human health. How the environmental factors e.g., light, regulate the interaction between nanoplastics and antibiotics and the resulting combined toxicity is poorly understood. Here, we investigated the individual and combined toxicity of polystyrene nanoplastics (nPS, 100 mg L1) and sulfamethoxazole (SMX, 2.5 and 10 mg L-1) toward the microalgae Chlamydomonas reinhardtii under low (LL, 16 µmol m-2·s-1), normal (NL, 40 µmol m-2·s-1), and high light (HL, 150 µmol m-2·s-1) in terms of cellular responses. Results indicated that the joint toxicity of nPS and SMX commonly exhibited a strong antagonistic/mitigative effect under LL/NL at 24 h, and under NL at 72 h. nPS could adsorb more SMX under LL/NL at 24 h (1.90/1.33 mg g-1) and under NL at 72 h (1.01 mg g-1), thereby alleviating SMX toxicity to C. reinhardtii. However, the self-toxicity of nPS had a negative influence on the degree of antagonism between nPS and SMX. The experimental results coupled with computational chemistry further revealed that the adsorption capacity of SMX on nPS was stimulated by low pH under LL/NL at 24 h (∼7.5), while by less co-existing saline ions (0.83 ppt) and algae-derived dissolved organic matter (9.04 mg L-1) under NL at 72 h. nPS toxicity that was responsible for the toxic action modes was mainly attributed to the shading effect induced by hetero-aggregation and hindrance of light transmittance (>60%), as well as being regulated by additives leaching (0.49-1.07 mg L-1) and oxidative stress. Overall, these findings provided a critical basis for the risk assessment and management of multiple pollutants in the complex natural environment.


Subject(s)
Chlamydomonas reinhardtii , Microalgae , Nanoparticles , Water Pollutants, Chemical , Humans , Polystyrenes/toxicity , Microplastics/toxicity , Sulfamethoxazole/toxicity , Ecosystem , Water Pollutants, Chemical/analysis , Anti-Bacterial Agents/pharmacology
19.
Aquat Toxicol ; 257: 106473, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36871484

ABSTRACT

Ethinylestradiol (EE2) and sulfamethoxazole (SMX) are among pharmaceuticals and personal care products (PPCPs) and regarded as emerging contaminants in groundwater worldwide. However, the ecotoxicity and potential risk of these co-contaminants remain unknown. We investigated the effects of early-life long-term co-exposure to EE2 and SMX in groundwater on life-history traits of Caenorhabditis elegans and determined potential ecological risks in groundwater. L1 larvae of wild-type N2 C. elegans were exposed to measured concentrations of EE2 (0.001, 0.75, 5.1, 11.8 mg/L) or SMX (0.001, 1, 10, 100 mg/L) or co-exposed to EE2 (0.75 mg/L, no observed adverse effect level derived from its reproductive toxicity) and SMX (0.001, 1, 10, 100 mg/L) in groundwater. Growth and reproduction were monitored on days 0 - 6 of the exposure period. Toxicological data were analyzed using DEBtox modeling to determine the physiological modes of action (pMoAs) and the predicted no-effect concentrations (PNECs) to estimate ecological risks posed by EE2 and SMX in global groundwater. Early-life EE2 exposure significantly inhibited the growth and reproduction of C. elegans, with lowest observed adverse effect levels (LOAELs) of 11.8 and 5.1 mg/L, respectively. SMX exposure impaired the reproductive capacity of C. elegans (LOAEL = 0.001 mg/L). Co-exposure to EE2 and SMX exacerbated ecotoxicity (LOAELs of 1 mg/L SMX for growth, and 0.001 mg/L SMX for reproduction). DEBtox modeling showed that the pMoAs were increased growth and reproduction costs for EE2 and increased reproduction costs for SMX. The derived PNEC falls within the range of detected environmental levels of EE2 and SMX in groundwater worldwide. The pMoAs for EE2 and SMX combined were increased growth and reproduction costs, resulting in lower energy threshold values than single exposure. Based on global groundwater contamination data and energy threshold values, we calculated risk quotients for EE2 (0.1 - 123.0), SMX (0.2 - 91.3), and combination of EE2 and SMX (0.4 - 341.1). Our findings found that co-contamination by EE2 and SMX exacerbates toxicity and ecological risk to non-target organisms, suggesting that the ecotoxicity and ecological risk of co-contaminants of pharmaceuticals should be considered to sustainably manage groundwater and aquatic ecosystems.


Subject(s)
Groundwater , Water Pollutants, Chemical , Animals , Sulfamethoxazole/toxicity , Caenorhabditis elegans , Ethinyl Estradiol/toxicity , Ecosystem , Water Pollutants, Chemical/toxicity , Pharmaceutical Preparations
20.
Chemosphere ; 325: 138410, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36925019

ABSTRACT

Microbial fuel cells (MFCs) are a promising and sustainable technology which can generate electricity and treat antibiotic wastewater simultaneously. However, the antibiotic resistance genes (ARGs) induced by antibiotics in MFCs increase risks to ecosystems and human health. In this study, the activities of enzymes and regulation genes related to ARGs in MFCs spiked with sulfamethoxazole (SMX) were evaluated to explore the induction mechanism of ARGs. Under lower doses of SMX (10 mg/L and 20 mg/L SMX in this study), microorganisms tend to up regulate catalase and RpoS regulon to induce sul1, sul3 and intI1. The microorganisms exposed to higher doses of SMX (30 mg/L and 40 mg/L SMX in this study) tend to up regulate superoxide dismutase and SOS response to generate sul2 and sulA. Moreover, the exposure concentrations of SMX had no significant effect on the electricity production of MFCs. This work suggested that the ARGs in MFCs might be inhibited by affecting enzymatic activities and regulatory genes according to the antibiotic concentration without affecting the electricity production.


Subject(s)
Bioelectric Energy Sources , Sulfamethoxazole , Humans , Sulfamethoxazole/toxicity , Ecosystem , Anti-Bacterial Agents/toxicity , Genes, Bacterial , Drug Resistance, Microbial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...