Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26.688
Filter
1.
J Environ Sci (China) ; 147: 342-358, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003052

ABSTRACT

Secondary iron-sulfate minerals such as jarosite, which are easily formed in acid mine drainage, play an important role in controlling metal mobility. In this work, the typical iron-oxidizing bacterium Acidithiobacillus ferrooxidans ATCC 23270 was selected to synthesize jarosite in the presence of antimony ions, during which the solution behavior, synthetic product composition, and bacterial metabolism were studied. The results show that in the presence of Sb(V), Fe2+ was rapidly oxidized to Fe3+ by A. ferrooxidans and Sb(V) had no obvious effect on the biooxidation of Fe2+ under the current experimental conditions. The presence of Sb(III) inhibited bacterial growth and Fe2+ oxidation. For the group with Sb(III), products with amorphous phases were formed 72 hr later, which were mainly ferrous sulfate and pentavalent antimony oxide, and the amorphous precursor was finally transformed into a more stable crystal phase. For the group with Sb(V), the morphology and structure of jarosite were changed in comparison with those without Sb. The biomineralization process was accompanied by the removal of 94% Sb(V) to form jarosite containing the Fe-Sb-O complex. Comparative transcriptome analysis shows differential effects of Sb(III) and Sb(V) on bacterial metabolism. The expression levels of functional genes related to cell components were much more downregulated for the group with Sb(III) but much more regulated for that with Sb(V). Notably, cytochrome c and nitrogen fixation-relevant genes for the A.f_Fe2+_Sb(III) group were enhanced significantly, indicating their role in Sb(III) resistance. This study is of great value for the development of antimony pollution control and remediation technology.


Subject(s)
Acidithiobacillus , Antimony , Sulfates , Acidithiobacillus/metabolism , Acidithiobacillus/drug effects , Sulfates/metabolism , Ferric Compounds , Oxidation-Reduction , Mining , Iron/metabolism
2.
J Environ Sci (China) ; 147: 83-92, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003086

ABSTRACT

The environmental threat posed by stibnite is an important geoenvironmental issue of current concern. To better understand stibnite oxidation pathways, aerobic abiotic batch experiments were conducted in aqueous solution with varying δ18OH2O value at initial neutral pH for different lengths of time (15-300 days). The sulfate oxygen and sulfur isotope compositions as well as concentrations of sulfur and antimony species were determined. The sulfur isotope fractionation factor (Δ34SSO4-stibnite) values decreased from 0.8‰ to -2.1‰ during the first 90 days, and increased to 2.6‰ at the 180 days, indicating the dominated intermediate sulfur species such as S2O32-, S0, and H2S (g) involved in Sb2S3 oxidation processes. The incorporation of O into sulfate derived from O2 (∼100%) indicated that the dissociated O2 was only directly adsorbed on the stibnite-S sites in the initial stage (0-90 days). The proportion of O incorporation into sulfate from water (27%-52%) increased in the late stage (90-300 days), which suggested the oxidation mechanism changed to hydroxyl attack on stibnite-S sites promoted by nearby adsorbed O2 on stibnite-Sb sites. The exchange of oxygen between sulfite and water may also contributed to the increase of water derived O into SO42-. The new insight of stibnite oxidation pathway contributes to the understanding of sulfide oxidation mechanism and helps to interpret field data.


Subject(s)
Oxidation-Reduction , Oxygen Isotopes , Sulfates , Sulfur Isotopes , Sulfur Isotopes/analysis , Sulfates/chemistry , Oxygen Isotopes/analysis , Antimony/chemistry , Models, Chemical , Aerobiosis , Oxygen/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Oxides
3.
Microbiome ; 12(1): 152, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152482

ABSTRACT

BACKGROUND: H2S imbalances in the intestinal tract trigger Crohn's disease (CD), a chronic inflammatory gastrointestinal disorder characterized by microbiota dysbiosis and barrier dysfunction. However, a comprehensive understanding of H2S generation in the gut, and the contributions of both microbiota and host to systemic H2S levels in CD, remain to be elucidated. This investigation aimed to enhance comprehension regarding the sulfidogenic potential of both the human host and the gut microbiota. RESULTS: Our analysis of a treatment-naive CD cohorts' fecal metagenomic and biopsy metatranscriptomic data revealed reduced expression of host endogenous H2S generation genes alongside increased abundance of microbial exogenous H2S production genes in correlation with CD. While prior studies focused on microbial H2S production via dissimilatory sulfite reductases, our metagenomic analysis suggests the assimilatory sulfate reduction (ASR) pathway is a more significant contributor in the human gut, given its high prevalence and abundance. Subsequently, we validated our hypothesis experimentally by generating ASR-deficient E. coli mutants ∆cysJ and ∆cysM through the deletion of sulfite reductase and L-cysteine synthase genes. This alteration significantly affected bacterial sulfidogenic capacity, colon epithelial cell viability, and colonic mucin sulfation, ultimately leading to colitis in murine model. Further study revealed that gut microbiota degrade sulfopolysaccharides and assimilate sulfate to produce H2S via the ASR pathway, highlighting the role of sulfopolysaccharides in colitis and cautioning against their use as food additives. CONCLUSIONS: Our study significantly advances understanding of microbial sulfur metabolism in the human gut, elucidating the complex interplay between diet, gut microbiota, and host sulfur metabolism. We highlight the microbial ASR pathway as an overlooked endogenous H2S producer and a potential therapeutic target for managing CD. Video Abstract.


Subject(s)
Crohn Disease , Gastrointestinal Microbiome , Hydrogen Sulfide , Sulfates , Crohn Disease/microbiology , Humans , Hydrogen Sulfide/metabolism , Animals , Mice , Sulfates/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Feces/microbiology , Dysbiosis/microbiology , Colon/microbiology , Metagenomics , Oxidation-Reduction , Disease Models, Animal , Female
4.
Sci Rep ; 14(1): 18093, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39103552

ABSTRACT

12-oxophytodienoate reductase 3 (OPR3) is a key enzyme in the biosynthesis of jasmonoyl-L-isoleucine, the receptor-active form of jasmonic acid and crucial signaling molecule in plant defense. OPR3 was initially crystallized as a self-inhibitory dimer, implying that homodimerization regulates enzymatic activity in response to biotic and abiotic stresses. Since a sulfate ion is bound to Y364, mimicking a phosphorylated tyrosine, it was suggested that dimer formation might be controlled by reversible phosphorylation of Y364 in vivo. To investigate OPR3 homodimerization and its potential physiological role in more detail, we performed analytical gel filtration and dynamic light scattering on wild-type OPR3 and three variants (R283D, R283E, and Y364P). The experiments revealed a rapid and highly sensitive monomer-dimer equilibrium for all OPR3 constructs. We crystallized all constructs with and without sulfate to examine its effect on the dimerization process and whether reversible phosphorylation of Y364 triggers homodimerization in vivo. All OPR3 constructs crystallized in their monomeric and dimeric forms independent of the presence of sulfate. Even variant Y364P, lacking the putative phosphorylation site, was crystallized as a self-inhibitory homodimer, indicating that Y364 is not required for dimerization. Generally, the homodimer is relatively weak, and our results raise doubts about its physiological role in regulating jasmonate biosynthesis.


Subject(s)
Protein Multimerization , Phosphorylation , Oxylipins/metabolism , Cyclopentanes/metabolism , Oxidoreductases/metabolism , Oxidoreductases/chemistry , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/chemistry , Crystallography, X-Ray , Solanum lycopersicum/metabolism , Solanum lycopersicum/enzymology , Solanum lycopersicum/genetics , Sulfates/metabolism , Oxidoreductases Acting on CH-CH Group Donors
5.
Water Sci Technol ; 90(3): 824-843, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39141037

ABSTRACT

In recent years, studies on the degradation of emerging organic contaminants by sulfate radical (SO4-·) based advanced oxidation processes (SR-AOPs) have triggered increasing attention. Metal-loaded biochar (Me-BC) can effectively prevent the agglomeration and leaching of transition metals, and its good physicochemical properties and abundant active sites induce outstanding in activating persulfate (PS) for pollutant degradation, which is of great significance in the field of advanced oxidation. In this paper, we reviewed the preparation method and stability of Me-BC, the effect of metal loading on the physicochemical properties of biochar, the pathways of pollutant degradation by Me-BC-activated PS (including free radical pathways: SO4-·, hydroxyl radical (·OH), superoxide radicals (O2-·); non-free radical pathways: singlet oxygen (1O2), direct electron transfer), and discussed the activation of different active sites (including metal ions, persistent free radicals, oxygen-containing functional groups, defective structures, etc.) in the SR-AOPs system. Finally, the prospect was presented for the current research progress of Me-BC in SR-AOPs technology.


Subject(s)
Charcoal , Sulfates , Water Pollutants, Chemical , Charcoal/chemistry , Sulfates/chemistry , Water Pollutants, Chemical/chemistry , Metals/chemistry , Oxidation-Reduction
6.
Water Sci Technol ; 90(3): 1047-1069, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39141051

ABSTRACT

Single-atom catalysts (SACs) exhibit outstanding catalytic activity due to their highly dispersed metal centers. Activating persulfates (PS) with SACs can generate various reactive oxygen species (ROS) to efficiently degrade emerging organic contaminants (EOCs) in aqueous environments, offering unique advantages such as high reaction rates and excellent stability. This technique has been extensively researched and holds enormous potential applications. In this paper, we comprehensively elaborated on the synthesis methods of SACs and their limitations, and factors influencing the catalytic performance of SACs, including metal center characteristics, coordination environment, and types of substrates. We also analyzed practical considerations for application. Subsequently, we discussed the mechanism of SACs activating PS for EOCs degradation, encompassing adsorption processes, radical pathways, and non-radical pathways. Finally, we provide prospects and outline our vision for future research, aiming to guide advancements in applying this technique.


Subject(s)
Sulfates , Water Pollutants, Chemical , Catalysis , Water Pollutants, Chemical/chemistry , Sulfates/chemistry , Water Purification/methods
7.
Tech Coloproctol ; 28(1): 99, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138737

ABSTRACT

BACKGROUND: This study aimed to compare oral sulfate solution (OSS) with polyethylene glycol (PEG) for bowel preparation before colonoscopy. METHODS: A literature search was performed on PubMed, Ovid, and Cochrane Databases for randomized clinical trials (RCT) comparing OSS with PEG for bowel preparation before colonoscopy. The last search was performed on 22 August 2023. The primary outcome was the quality of bowel preparation. The outcomes were compared by meta-analysis and trial sequential analysis (TSA). RESULTS: A total of 14 RCTs with 4526 patients were included. OSS was comparable with PEG regarding adequate bowel preparation [P = 0.16, odds ratio (OR) = 1.19, 95% confidence interval (CI) [0.93, 1.51], I2 = 0%]. However, OSS showed obvious priority in excellent bowel preparation (P < 0.001, OR = 1.62, 95% CI [1.27, 2.05], I2 = 0%) and total Boston bowel preparation scale (BBPS) [P = 0.02, weighted mean difference (WMD) = 0.27, 95% CI [0.05, 0.50], I2 = 84%]. Additionally, the detection rate of polyps (P = 0.001, OR = 1.44, 95% CI [1.15, 1.80], I2 = 0%) and adenoma (P = 0.007, OR = 1.22, 95% CI [1.06, 1.42], I2 = 0%) was significantly higher in the OSS group. The two groups showed comparable incidence of adverse events except for a higher incidence of dizziness (P = 0.02, OR = 1.74, 95% CI [1.08, 2.83], I2 = 11%) was indicated in the OSS group. Moreover, OSS was associated with a higher satisfaction score (P = 0.02, WMD = 0.62, 95% CI [0.09, 1.15], I2 = 70%). In the TSA, the cumulative Z-curve crossed both the conventional boundary and trial sequential monitoring boundary and the required information size has been reached for excellent bowel preparation and total BBPS. CONCLUSION: The current data demonstrated that OSS was associated with better quality of bowel preparation. More clinical trials are still needed to confirm other outcomes.


Subject(s)
Cathartics , Colonoscopy , Polyethylene Glycols , Randomized Controlled Trials as Topic , Sulfates , Humans , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/adverse effects , Colonoscopy/methods , Cathartics/administration & dosage , Cathartics/adverse effects , Sulfates/administration & dosage , Administration, Oral , Female , Male , Middle Aged , Adult , Preoperative Care/methods , Aged , Colonic Polyps
8.
Environ Sci Technol ; 58(33): 14949-14960, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39126387

ABSTRACT

The presence and induced secondary reactions of natural organic matter (NOM) significantly affect the remediation efficacy of in situ chemical oxidation (ISCO) systems. However, it remains unclear how this process relates to organic radicals generated from reactions between the NOM and oxidants. The study, for the first time, reported the vital roles and transformation pathways of carbon-centered radicals (CCR•) derived from NOM in activated persulfate (PS) systems. Results showed that both typical terrestrial/aquatic NOM isolates and collected NOM samples produced CCR• by scavenging activated PS and greatly enhanced the dehalogenation performance under anoxic conditions. Under oxic conditions, newly formed CCR• could be oxidized by O2 and generate organic peroxide intermediates (ROO•) to catalytically yield additional •OH without the involvement of PS. Nuclear magnetic resonance (NMR) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) results indicated that CCR• predominantly formed from carboxyl and aliphatic structures instead of aromatics within NOM through hydrogen abstraction and decarboxylation reactions by SO4•- or •OH. Specific anoxic reactions (i.e., dehalogenation and intramolecular cross-coupling reactions) further promoted the transformation of CCR• to more unsaturated and polymerized/condensed compounds. In contrast, oxic propagation of ROO• enhanced bond breakage/ring cleavage and degradation of CCR• due to the presence of additional •OH and self-decomposition. This study provides novel insights into the role of NOM and O2 in ISCO and the development of engineered strategies for creating organic radicals capable of enhancing the remediation of specific contaminants and recovering organic carbon.


Subject(s)
Carbon , Carbon/chemistry , Oxidation-Reduction , Sulfates/chemistry
9.
Water Sci Technol ; 89(12): 3208-3225, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39150421

ABSTRACT

A carbon material Cu-corn straw-sludge biochar (Cu-CSBC) was prepared by hydrothermally modifying sewage sludge and corn stover. The composite coupled to ultrasound can effectively catalyze the activation of PS for organic pollutants degradation, and the removal rate of 20 mg/L TC reached 89.15% in 5 min in the presence of 0.5 g/L Cu-CSBC and 3 mM PS. The synergistic effect between the factors in the system, the reaction mechanism, and the efficient removal of TC in the aqueous environment were explored in a Cu-CSBC/US/PS system established for that purpose. Quenching experiments and electron paramagnetic resonance analysis both demonstrated the Cu-CSBC/US/PS system generated •OH, SO4-•, 1O2, and O2- •, which involved in the reaction. The Cu, carboxyl, and hydroxyl groups on the Cu-CSBC surface promoted the generation of radicals and non-radicals for the degradation process, which was dominated by both radical and non-radical pathways. The degradation pathway is proposed by measuring the intermediate products with LC-MS. Finally, the stability of the Cu-CSBC/US/PS system was tested under various reaction conditions. This study not only prepared a novel biochar composite material for the active degradation of organic pollutants by PS but also provided an effective method for the resource utilization of solid waste and sludge treatment.


Subject(s)
Anti-Bacterial Agents , Charcoal , Sewage , Water Pollutants, Chemical , Charcoal/chemistry , Sewage/chemistry , Anti-Bacterial Agents/chemistry , Water Pollutants, Chemical/chemistry , Pyrolysis , Biomass , Sulfates/chemistry , Ultrasonic Waves , Waste Disposal, Fluid/methods
10.
Mikrochim Acta ; 191(9): 549, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39162737

ABSTRACT

An intense cathodic electrochemiluminescence (ECL) is reported from a polarized glassy carbon electrode (GCE) in peroxydisulfate solution. After the polarization in 1 M Na2SO4 at the potential of - 3.7 V for 3 s, carbon nanosheets (C-NSs) were in situ grown on the surface of the GCE. Measured in 100 mM K2S2O8 solution, the ECL intensity of the GCE/C-NSs is 112-fold that of a bare GCE. The ECL spectrum revealed that the true ECL luminophore in the GCE/C-NSs-peroxydisulfate system is O2/S2O82- which is promoted by C-NSs. When Cu2+ was electrochemically enriched and reduced to Cu(0) on the catalytic sites of C-NSs, the ECL from GCE/C-NSs/Cu in K2S2O8 solution was decreased with increasing logarithmic concentration of Cu2+ in the range from 10 pM to 1 µM, with a limit of detection (LOD) of 3 pM. An immunoanalysis method is proposed via a biometallization strategy using CuS nanoparticles as the tags and carcinoembryonic antigen (CEA) as the model analyte. After the immune recognition in the microplate, the CuS tags in the immunocomplex were dissolved and the resultant Cu2+ was electrochemically enriched and reduced on the catalytic sites of C-NSs, quenching the ECL intensity of GCE/C-NSs-O2/S2O82- system. The proposed ECL immunoanalysis method was used to quantify CEA in actual serum samples with an LOD of 1.0 fg mL-1, possessing the advantages of simple electrode modification, high sensitivity and good reproducibility.


Subject(s)
Carbon , Carcinoembryonic Antigen , Copper , Electrochemical Techniques , Electrodes , Luminescent Measurements , Carbon/chemistry , Luminescent Measurements/methods , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Carcinoembryonic Antigen/blood , Carcinoembryonic Antigen/immunology , Carcinoembryonic Antigen/analysis , Copper/chemistry , Limit of Detection , Humans , Nanostructures/chemistry , Immunoassay/methods , Copper Sulfate/chemistry , Metal Nanoparticles/chemistry , Glass/chemistry , Sulfates/chemistry
11.
Chemosphere ; 363: 142953, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39089337

ABSTRACT

In this study, we have utilized theoretical calculations to predict the reaction active sites of naproxen when reacting with radicals and to further study the thermodynamics and kinetics of the reactions with ·OH and SO4-·. The evidence, derived from the average local ionization energy and electrostatic potential, points to the naphthalene ring as the preferred site of attack, especially for the C2, C6, C9, and C10 sites. The changes in Gibbs free energy and enthalpy of the reactions initiated by ·OH and SO4-· ranged between -19.6 kcal/mol - 26.3 kcal/mol and -22.3 kcal/mol -18.5 kcal/mol, respectively. More in-depth investigation revealed that RA2 pathway for ·OH exhibited the lowest free energy of activation, suggesting this reaction is more inclined to proceed. The second-order rate constant results indicate the ·OH attacking reaction is faster than reactions initiated by SO4·-, yet controlled by diffusion. The consistency between theoretical findings and experimental data underscores the validity of this computational method for our study.


Subject(s)
Hydroxyl Radical , Naproxen , Sulfates , Thermodynamics , Naproxen/chemistry , Kinetics , Hydroxyl Radical/chemistry , Sulfates/chemistry , Water/chemistry , Models, Chemical
12.
Protein Sci ; 33(9): e5146, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39150147

ABSTRACT

D2 is a structural and cooperative domain of Thermotoga maritima Arginine Binding Protein, that possesses a remarkable conformational stability, with a denaturation temperature of 102.6°C, at pH 7.4. The addition of potassium thiocyanate causes a significant decrease in the D2 denaturation temperature. The interactions of thiocyanate ions with D2 have been studied by means of isothermal titration calorimetry measurements and molecular dynamics simulations. It emerged that: (a) 20-30 thiocyanate ions interact with the D2 surface and are present in its first solvation shell; (b) each of them makes several contacts with protein groups, both polar and nonpolar ones. The addition of guanidinium thiocyanate causes a marked destabilization of the D2 native state, because both the ions are denaturing agents. However, on adding to the solution containing D2 and guanidinium thiocyanate a stabilizing agent, such as TMAO, sucrose or sodium sulfate, a significant increase in denaturation temperature occurs. The present results confirm that counteraction is a general phenomenon for globular proteins.


Subject(s)
Molecular Dynamics Simulation , Protein Stability , Thermotoga maritima , Thiocyanates , Thiocyanates/chemistry , Thermotoga maritima/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Protein Denaturation/drug effects , Sulfates/chemistry , Methylamines/chemistry , Protein Domains , Guanidines/chemistry
13.
Curr Protoc ; 4(7): e1102, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39041106

ABSTRACT

Sulfate-reducing bacteria (SRB) are crucial players in global biogeochemical cycling and some have been implicated in the anaerobic biodegradation of organic pollutants, including recalcitrant and hazardous polycyclic aromatic hydrocarbons (PAHs). Obtaining PAH-degrading SRB cultures for laboratories is of paramount importance in the development of the young field of anaerobic biodegradation of PAHs. SRB grow exceptionally slowly on PAH substrates and are highly sensitive to oxygen. Consequently, enrichment and maintenance of PAH-degrading SRB cultures and characterization of the biodegradation process remain a tedious and formidable task, especially for new researchers. To address these technical constraints, we have developed robust and effective protocols for obtaining and characterizing PAH-degrading SRB cultures. In this set of protocols, we describe step-by-step procedures for preparing inocula from contaminated soil or sediment, preparing anoxic medium, establishing enrichment cultures with PAHs as substrates under completely anaerobic sulfate-reducing conditions, successive culture transfers to obtain highly enriched cultures, rapid verification of the viability of SRB in slow-growing cultures, assessment of PAH degradation by extracting residuals using organic solvent and subsequent analysis by gas chromatography-mass spectrometry, and spectrophotometric determination of sulfate and sulfide in miniaturized, medium-throughput format. These protocols are expected to serve as a comprehensive manual for obtaining and characterizing PAH-degrading sulfate-reducing cultures. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Obtaining PAH-degrading strictly anaerobic sulfate-reducing enrichment cultures from contaminated soil and sediment Support Protocol 1: Operation and maintenance of an anaerobic workstation Support Protocol 2: Setup of gas purging systems for preparing anoxic solutions Support Protocol 3: Verification of viability in slow-growing SRB enrichment cultures Support Protocol 4: Extraction of genomic DNA from low-biomass cultures Basic Protocol 2: Extraction of residual PAH from liquid culture and analysis by GC-MS Basic Protocol 3: Spectrophotometric determination of sulfate concentration in SRB cultures Basic Protocol 4: Spectrophotometric determination of sulfide concentrations in SRB cultures by the methylene blue method Alternate Protocol: Spectrophotometric determination of sulfide concentrations in SRB cultures by the colloidal copper sulfide method.


Subject(s)
Biodegradation, Environmental , Geologic Sediments , Polycyclic Aromatic Hydrocarbons , Sulfates , Polycyclic Aromatic Hydrocarbons/metabolism , Geologic Sediments/microbiology , Anaerobiosis , Sulfates/metabolism , Soil Pollutants/metabolism , Soil Pollutants/analysis , Soil Microbiology , Gas Chromatography-Mass Spectrometry
14.
Environ Sci Pollut Res Int ; 31(37): 49744-49756, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39080173

ABSTRACT

Regular groundwater quality monitoring in resource-constrained regions present formidable challenges in terms of funding, testing facilities and manpower; necessitating the development of easily implementable monitoring techniques. This study proposes a copula-based risk assessment model utilizing easily measurable indicators (e.g., turbidity, alkalinity, pH, total dissolved solids (TDS), conductivity), to monitor the contaminates in groundwater which are otherwise difficult to measure (i.e., iron, nitrate, sulfate, fluoride, etc.). Preliminary correlation between the indicators and the target contaminates were identified using Pearson coefficient. Best representative univariate distributions for these pairs were selected using the Akaike Information Criterion (AIC), which were used in the formulation of the copula model. Validation against observed data showcased the model's high accuracy, supported by consistent Kendall Tau correlation coefficients. Through this model, conditional probabilities of the contaminants not exceeding the permissible limits set by the Bureau of Indian Standards (BIS) were calculated using indicator concentration. Notably, an inverse correlation between iron concentration and conductivity was noted, with the likelihood of iron exceeding BIS limits decreasing from 90 to 50% as conductivity rose from 500 to 2000 micromhos/cm. TDS emerged as a pivotal indicator for nitrate and sulfate concentrations, with the probability of sulfate surpassing 10 mg/l decreasing from 75 to 25% as TDS increased from 250 to 750 mg/l. Likewise, the probability of nitrate exceeding 1 mg/l decreased from 90 to 60% with TDS levels reaching 1500 mg/l. Furthermore, a 63% probability of fluoride concentrations remaining below 1 mg/l was observed at turbidity levels of 0-10 NTU. These findings hold significant implications for policymakers and researchers since the model can provide crucial insights into the risks associated with the contaminates exceeding the permissible limit, facilitating the development of an efficient monitoring and management strategies to ensure safe drinking water access for vulnerable populations.


Subject(s)
Environmental Monitoring , Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Environmental Monitoring/methods , Risk Assessment , Water Pollutants, Chemical/analysis , Nitrates/analysis , Sulfates/analysis
15.
Chemosphere ; 362: 142727, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964722

ABSTRACT

Efficient dewatering of sewage sludge is an energy- and carbon-saving procedure for sludge treatment in wastewater treatment facilities. The ultrasound-coupled divalent iron ion activated persulfate process can effectively promote sludge dewatering and improve organic substance content. Under the action of ultrasound (US 50 w/L), divalent iron ions (Fe2+) 200 mg/g (TS), and persulfate (PDS) 200 mg/g (TS) for 60 min, the capillary suction time (CST) was reduced by 79.74%, and the moisture content of the dewatered sludge cake reached 56.51 wt%. The organic carbon content of treated sludge was also four times higher than the original sludge and types were richer in short-chain volatile species in US/Fe2+/PDS. Moreover, the correlation analysis found that the relationship of between CST and SV30, Zeta and lactate dehydrogenase (LDH) were positive correlation, and the relationship of SCOD and TC were positively correlated with the PN (SB-EPS). Mechanistic studies showed that the US/Fe2+/PDS system could produce oxygen activators by US coupling Fe2+ to strengthen the effect of activated PDS strongly, while the sulfate radicals (SO4·-) radical was a dominant role. The cracking mechanism is divided into two pathways effectively degraded the macromolecule EPS into a small-molecule acid and further reduced the water-holding interfacial affinity as follow: (1) the radical path dominated by hydroxyl radicals (·OH), SO4·-, and superoxide radical (O2·-); (2) the non-radicals dominated by monoclinic oxygen (1O2). Afterwards, the electrostatic force and interfacial free energy were reduced, resulting in enhanced self-flocculation and mobility to enhanced dewaterability. These findings demonstrated the US/Fe2+/PDS system had significant advantages in sludge cracking and provided theoretical support for its practical application.


Subject(s)
Iron , Sewage , Sodium Compounds , Sulfates , Waste Disposal, Fluid , Wastewater , Sulfates/chemistry , Sewage/chemistry , Waste Disposal, Fluid/methods , Iron/chemistry , Sodium Compounds/chemistry , Wastewater/chemistry
16.
Environ Sci Process Impacts ; 26(8): 1391-1404, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38973648

ABSTRACT

The presence of impurities is a significant restriction to the use of natural iron minerals as catalysts in the advanced oxidation process (AOP), especially if applied for soil remediation. This study evaluated the catalytic activity of tropical soil, which has relatively low impurities and naturally contains iron, for the remediation of phenanthrene (PHE) contamination. The system showed good performance, and the best result was 81% PHE removal after 24 h under experimental conditions of pH 7, [PHE]0 = 300 mg/50 g soil, temperature 55 °C, air flow = 260 mL min-1, and [persulfate]0 = 20 mg kg-1, while the mineralization was 61%. Nevertheless, certain limitations were noted in the soil matrix following the remediation procedure, including the appearance of cracks in the soil aggregate, reduction in the crystal size of the soil particles, and decline in the iron and aluminium contents. The results confirmed that the radicals play a major role in the remediation process. SO4˙- was more dominant than O2˙-, while HO˙ played a minor role. Additionally, the by-products were detected by gas chromatography-mass spectroscopy (GC-MS), and the degradation pathway of PHE is proposed. Toxicity assessment tests were performed by using a computational method. In spite of the challenges, this research achieved notable progress in soil remediation, taking a significant step forward in implementing the AOP without catalysts to activate oxidants and remove PHE within the soil. Also, this approach supports sustainability by reducing the need for extra materials and providing an environmentally friendly way of soil remediation.


Subject(s)
Environmental Restoration and Remediation , Iron , Oxidation-Reduction , Phenanthrenes , Soil Pollutants , Soil , Phenanthrenes/chemistry , Phenanthrenes/analysis , Soil Pollutants/analysis , Soil Pollutants/chemistry , Iron/chemistry , Environmental Restoration and Remediation/methods , Soil/chemistry , Catalysis , Sulfates/chemistry
17.
J Hazard Mater ; 476: 135049, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38970973

ABSTRACT

Sulfate-reducing bacteria (SRB) are known to alter methylmercury (MeHg) production in paddy soil, but the effect of SRB on MeHg dynamics in rhizosphere and rice plants remains to be fully elucidated. The present study investigated the impact of SRB on MeHg levels in unsterilized and γ-sterilized mercury-polluted paddy soils, with the aim to close this knowledge gap. Results showed that the presence of SRB reduced MeHg production by ∼22 % and ∼17 % in the two soils, but elevated MeHg contents by approximately 55 % and 99 % in rice grains, respectively. Similar trend at smaller scales were seen in roots and shoots. SRB inoculation exerted the most profound impact on amino acid metabolism in roots, with the relative response of L-arginine positively linking to MeHg concentrations in rhizosphere. The SRB-induced enrichment of MeHg in rice plants may be interpreted by the stronger presence of endophytic nitrogen-related microbes (e.g. Methylocaldum, Hyphomicrobium and Methylocystis) and TGA transcription factors interacting with glutathione metabolism and calmodulin. Our study provides valuable insights into the complex effects of SRB inoculation on MeHg dynamics in rice ecosystems, and may help to develop strategies to effectively control MeHg accumulation in rice grains.


Subject(s)
Methylmercury Compounds , Oryza , Rhizosphere , Soil Pollutants , Oryza/metabolism , Oryza/microbiology , Oryza/growth & development , Methylmercury Compounds/metabolism , Soil Pollutants/metabolism , Soil Microbiology , Plant Roots/metabolism , Plant Roots/microbiology , Sulfates/metabolism , Bacteria/metabolism , Sulfur-Reducing Bacteria/metabolism , Biodegradation, Environmental
18.
Int J Biol Macromol ; 275(Pt 2): 133743, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38986975

ABSTRACT

Due to wonderful taste, rich nutrition and biological functions, many marine green algae in the genus Caulerpa have been recently developed as candidates for green caviar. A novel water-soluble sulfated xylogalactomannan CO-0-1 was obtained from the green algae Caulerpa okamurae. CO-0-1 was mainly composed of mannose (Man), galactose (Gal), and xylose (Xyl) at the ratio of 4.4:4.0:1.4 with the molecular weight at 470 kDa and the sulfate content at 12.78 %. The sulfated xylogalactomannan had Man at the backbone with →4)-ß-D-Manp-(1→ and →2)-ß-D-Manp-(1→ as the main chain and branches at O-3 position. The side chains contained →3)-ß-D-Galp-(1→ and minor →2)-ß-D-Xylp(1→. The sulfate groups only distributed at the side chains and at O-6 position of →3)-ß-D-Galp-(1→ and O-4 position of (1→2)-ß-D-Xylp. The anticoagulant activity indicated that CO-0-1 displayed intrinsic anticoagulant and specific anti-thrombin activities. The investigation expanded the utilization and development scene and scope of the green algae Caulerpa okamurae.


Subject(s)
Anticoagulants , Caulerpa , Mannans , Anticoagulants/chemistry , Anticoagulants/pharmacology , Anticoagulants/isolation & purification , Caulerpa/chemistry , Mannans/chemistry , Mannans/pharmacology , Mannans/isolation & purification , Molecular Weight , Sulfates/chemistry , Humans
19.
Chemosphere ; 363: 142824, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996980

ABSTRACT

The disposal and resource utilization of sewage sludge (SS) have always been significant challenges for environmental protection. This study employed straightforward pyrolysis to prepare iron-containing sludge biochar (SBC) used as a catalyst and to recover bio-oil used as fuel energy. The results indicated that SBC-700 could effectively activate persulfate (PS) to remove 97.2% of 2,4-dichlorophenol (2,4-DCP) within 60 min. Benefiting from the appropriate iron content, oxygen-containing functional groups and defective structures provide abundant active sites. Meanwhile, SBC-700 exhibits good stability and reusability in cyclic tests and can be easily recovered by magnetic separation. The role of non-radicals is emphasized in the SBC-700/PS system, and in particular, single linear oxygen (1O2) is proposed to be the dominant reactive oxygen. The bio-oil, a byproduct of pyrolysis, exhibits a higher heating value (HHV) of about 30 MJ/kg, with H/C and O/C ratios comparable to those of biodiesel. The energy recovery rate of the SS pyrolysis system was calculated at 80.5% with a lower input cost. In conclusion, this investigation offers a low-energy consumption and sustainable strategy for the resource utilization of SS while simultaneously degrading contaminants.


Subject(s)
Charcoal , Chlorophenols , Pyrolysis , Sewage , Sulfates , Charcoal/chemistry , Sewage/chemistry , Chlorophenols/chemistry , Sulfates/chemistry , Biofuels/analysis , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Catalysis , Iron/chemistry , Plant Oils , Polyphenols
20.
Appl Microbiol Biotechnol ; 108(1): 419, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012392

ABSTRACT

Waste glycerol is produced in excess by several industries, such as during biodiesel production. In this work, the metabolic versatility of anaerobic sludge was explored towards waste glycerol valorization. By applying different environmental (methanogenic and sulfate-reducing) conditions, three distinct microbial cultures were obtained from the same inoculum (anaerobic granular sludge), with high microbial specialization, within three different phyla (Thermodesulfobacteriota, Euryarchaeota and Pseudomonadota). The cultures are capable of glycerol conversion through different pathways: (i) glycerol conversion to methane by a bacterium closely related to Solidesulfovibrio alcoholivorans (99.8% 16S rRNA gene identity), in syntrophic relationship with Methanofollis liminatans (98.8% identity), (ii) fermentation to propionate by Propionivibrio pelophilus strain asp66 (98.6% identity), with a propionate yield of 0.88 mmol mmol-1 (0.71 mg mg-1) and a propionate purity of 80-97% and (iii) acetate production coupled to sulfate reduction by Desulfolutivibrio sulfoxidireducens (98.3% identity). In conclusion, starting from the same inoculum, we could drive the metabolic and functional potential of the microbiota towards the formation of several valuable products that can be used in industrial applications or as energy carriers. KEY POINTS: Versatility of anaerobic cultures was explored for waste glycerol valorization Different environmental conditions lead to metabolic specialization Biocommodities such as propionate, acetate and methane were produced.


Subject(s)
Fermentation , Glycerol , Methane , RNA, Ribosomal, 16S , Sewage , Glycerol/metabolism , Sewage/microbiology , Anaerobiosis , RNA, Ribosomal, 16S/genetics , Methane/metabolism , Phylogeny , Sulfates/metabolism , Propionates/metabolism , Biofuels , Acetates/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics
SELECTION OF CITATIONS
SEARCH DETAIL