Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.920
Filter
1.
Water Sci Technol ; 89(9): 2523-2537, 2024 May.
Article in English | MEDLINE | ID: mdl-38747965

ABSTRACT

Miscanthus sacchariflorus is previously demonstrated to be a potential candidate for remediation of cadmium (Cd) pollution. To explore its resistance strategy to Cd, a hydroponic experiment was conducted to determine the variations of photosynthetic activity in leaves and physiological response in roots of this plant. Results showed that the root of M. sacchariflorus was the primary location for Cd accumulation. The bioconcentration factor in the roots and rhizomes was >1, and the translocation factor from underground to aboveground was <1. Throughout the experimental period, treatment with 0.06 mM Cd2+ did not significantly alter the contents of chlorophyll a, chlorophyll b, or carotenoid. By contrast, treatment with 0.15 and 0.30 mM Cd2+ decreased the contents of chlorophyll a, chlorophyll b, and carotenoid; caused the deformation of the chlorophyll fluorescence transient curve; reduced the photochemical efficiency of photosystem II; and increased the contents of non-protein thiols, total flavone, and total phenol. These results indicate that M. sacchariflorus has good adaptability to 0.06 mM Cd2+. Moreover, the accumulation of the non-protein thiols, total flavone, and total phenol in roots may promote the chelation of Cd2+, thus alleviating Cd toxicity. This study provides theoretical support for using M. sacchariflorus to remediate Cd-polluted wetlands.


Subject(s)
Cadmium , Photosynthesis , Poaceae , Sulfhydryl Compounds , Cadmium/toxicity , Cadmium/metabolism , Photosynthesis/drug effects , Poaceae/metabolism , Poaceae/drug effects , Sulfhydryl Compounds/metabolism , Chlorophyll/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Biodegradation, Environmental
2.
Anal Bioanal Chem ; 416(11): 2871-2882, 2024 May.
Article in English | MEDLINE | ID: mdl-38581531

ABSTRACT

Antarctic seaweeds are vital components of polar marine ecosystems, playing a crucial role in nutrient cycling and supporting diverse life forms. The sulfur content in these organisms is particularly interesting due to its implication in biogeochemical processes and potential impacts on local and global environmental systems. In this study, we present a comprehensive characterization of seaweed collected in the Antarctic in terms of their total sulfur content and its distribution among different classes of species, including thiols, using various methods and high-sensitivity techniques. The data presented in this paper are unprecedented in the scientific literature. These methods allowed for the determination of total sulfur content and the distribution of sulfur compounds in different fractions, such as water-soluble and proteins, as well as the speciation of sulfur compounds in these fractions, providing valuable insights into the chemical composition of these unique marine organisms. Our results revealed that the total sulfur concentration in Antarctic seaweeds varied widely across different species, ranging from 5.5 to 56 g kg-1 dry weight. Furthermore, our investigation into the sulfur speciation revealed the presence of various sulfur compounds, including sulfate, and some thiols, which were quantified in all ten seaweed species evaluated. The concentration of these individual sulfur species also displayed considerable variability among the studied seaweeds. This study provides the first in-depth examination of total sulfur content and sulfur speciation in brown and red Antarctic seaweeds.


Subject(s)
Seaweed , Seaweed/chemistry , Antarctic Regions , Molecular Weight , Ecosystem , Sulfur/metabolism , Sulfur Compounds/metabolism , Vegetables , Sulfhydryl Compounds/metabolism
3.
Anal Chem ; 96(18): 7248-7256, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38655839

ABSTRACT

Ferroptosis modulation is a powerful therapeutic option for pancreatic ductal adenocarcinoma (PDAC) with a low 5-year survival rate and lack of effective treatment methods. However, due to the dual role of ferroptosis in promoting and inhibiting pancreatic tumorigenesis, regulating the degree of ferroptosis is very important to obtain the best therapeutic effect of PDAC. Biothiols are suitable as biomarkers of imaging ferroptosis due to the dramatic decreases of biothiol levels in ferroptosis caused by the inhibited synthesis pathway of glutathione (GSH) and the depletion of biothiol by reactive oxygen species. Moreover, a very recent study reported that cysteine (Cys) depletion can lead to pancreatic tumor ferroptosis in mice and may be employed as an effective therapeutic strategy for PDAC. Therefore, visualization of biothiols in ferroptosis of PDAC will be helpful for regulating the degree of ferroptosis, understanding the mechanism of Cys depletion-induced pancreatic tumor ferroptosis, and further promoting the study and treatment of PDAC. Herein, two biothiol-activable near-infrared (NIR) fluorescent/photoacoustic bimodal imaging probes (HYD-BX and HYD-DX) for imaging of pancreatic tumor ferroptosis were reported. These two probes show excellent bimodal response performances for biothiols in solution, cells, and tumors. Subsequently, they have been employed successfully for real-time visualization of changes in concentration levels of biothiols during the ferroptosis process in PDAC cells and HepG2 cells. Most importantly, they have been further applied for bimodal imaging of ferroptosis in pancreatic cancer in mice, with satisfactory results. The development of these two probes provides new tools for monitoring changes in concentration levels of biothiols in ferroptosis and will have a positive impact on understanding the mechanism of Cys depletion-induced pancreatic tumor ferroptosis and further promoting the study and treatment of PDAC.


Subject(s)
Ferroptosis , Fluorescent Dyes , Optical Imaging , Pancreatic Neoplasms , Photoacoustic Techniques , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Humans , Fluorescent Dyes/chemistry , Animals , Mice , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/metabolism , Infrared Rays , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology
4.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673722

ABSTRACT

The human Vitamin K Epoxide Reductase Complex (hVKORC1), a key enzyme that converts vitamin K into the form necessary for blood clotting, requires for its activation the reducing equivalents supplied by its redox partner through thiol-disulphide exchange reactions. The functionally related molecular complexes assembled during this process have never been described, except for a proposed de novo model of a 'precursor' complex of hVKORC1 associated with protein disulphide isomerase (PDI). Using numerical approaches (in silico modelling and molecular dynamics simulation), we generated alternative 3D models for each molecular complex bonded either covalently or non-covalently. These models differ in the orientation of the PDI relative to hVKORC1 and in the cysteine residue involved in forming protein-protein disulphide bonds. Based on a comparative analysis of these models' shape, folding, and conformational dynamics, the most probable putative complexes, mimicking the 'precursor', 'intermediate', and 'successor' states, were suggested. In addition, we propose using these complexes to develop the 'allo-network drugs' necessary for treating blood diseases.


Subject(s)
Molecular Dynamics Simulation , Protein Disulfide-Isomerases , Vitamin K Epoxide Reductases , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/chemistry , Vitamin K Epoxide Reductases/chemistry , Vitamin K Epoxide Reductases/metabolism , Vitamin K Epoxide Reductases/genetics , Humans , Disulfides/chemistry , Disulfides/metabolism , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/metabolism , Models, Molecular , Protein Conformation , Oxidation-Reduction , Protein Binding
5.
Chem Biol Interact ; 394: 110989, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38574836

ABSTRACT

Although few resistance mechanisms for histone deacetylase inhibitors (HDACis) have been described, we recently demonstrated that TMT1A (formerly METTL7A) and TMT1B (formerly METTL7B) can mediate resistance to HDACis with a thiol as the zinc-binding group by methylating and inactivating the drug. TMT1A and TMT1B are poorly characterized, and their normal physiological role has yet to be determined. As animal model systems are often used to determine the physiological function of proteins, we investigated whether the ability of these methyltransferases to methylate thiol-based HDACis is conserved across different species. We found that TMT1A was conserved across rats, mice, chickens, and zebrafish, displaying 85.7%, 84.8%, 60.7%, and 51.0% amino acid sequence identity, respectively, with human TMT1A. Because TMT1B was not found in the chicken or zebrafish, we focused our studies on the TMT1A homologs. HEK-293 cells were transfected to express mouse, rat, chicken, or zebrafish homologs of TMT1A and all conferred resistance to the thiol-based HDACIs NCH-51, KD-5170, and romidepsin compared to empty vector-transfected cells. Additionally, all homologs blunted the downstream effects of HDACi treatment such as increased p21 expression, increased acetylated histone H3, and cell cycle arrest. Increased levels of dimethylated romidepsin were also found in the culture medium of cells transfected to express any of the TMT1A homologs after a 24 h incubation with romidepsin compared to empty-vector transfected cells. Our results indicate that the ability of TMT1A to methylate molecules is conserved across species. Animal models may therefore be useful in elucidating the role of these enzymes in humans.


Subject(s)
Chickens , Histone Deacetylase Inhibitors , Methyltransferases , Zebrafish , Animals , Humans , Mice , Methyltransferases/metabolism , Methyltransferases/genetics , HEK293 Cells , Zebrafish/metabolism , Rats , Histone Deacetylase Inhibitors/pharmacology , Amino Acid Sequence , Sulfhydryl Compounds/metabolism , Depsipeptides/pharmacology , Methylation , Species Specificity , Conserved Sequence
6.
Anal Biochem ; 691: 115543, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38636731

ABSTRACT

Cancer development and progression are intimately related with post-translational protein modifications, e.g., highly reactive thiol moiety of cysteines enables structural rearrangements resulting in redox biological switches. In this context, redox proteomics techniques, such as 2D redox DIGE, biotin switch assay and OxIcat are fundamental tools to identify and quantify redox-sensitive proteins and to understand redox mechanisms behind thiol modifications. Given the great variability in redox proteomics protocols, problems including decreased resolution of peptides and low protein amounts even after enrichment steps may occur. Considering the biological importance of thiol's oxidation in melanoma, we adapted the biotin-switch assay technique for melanoma cells in order to overcome the limitations and improve coverage of detected proteins.


Subject(s)
Biotin , Melanoma , Oxidation-Reduction , Proteomics , Proteomics/methods , Melanoma/metabolism , Melanoma/pathology , Humans , Cell Line, Tumor , Biotin/chemistry , Biotin/metabolism , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/metabolism
7.
Redox Biol ; 71: 103094, 2024 May.
Article in English | MEDLINE | ID: mdl-38479221

ABSTRACT

Low-molecular-weight (LMW) thiols are produced in all living cells in different forms and concentrations. Glutathione (GSH), coenzyme A (CoA), bacillithiol (BSH), mycothiol (MSH), ergothioneine (ET) and trypanothione T(SH)2 are the main LMW thiols in eukaryotes and prokaryotes. LMW thiols serve as electron donors for thiol-dependent enzymes in redox-mediated metabolic and signaling processes, protect cellular macromolecules from oxidative and xenobiotic stress, and participate in the reduction of oxidative modifications. The level and function of LMW thiols, their oxidized disulfides and mixed disulfide conjugates in cells and tissues is tightly controlled by dedicated oxidoreductases, such as peroxiredoxins, glutaredoxins, disulfide reductases and LMW thiol transferases. This review provides the first summary of the current knowledge of structural and functional diversity of transferases for LMW thiols, including GSH, BSH, MSH and T(SH)2. Their role in maintaining redox homeostasis in single-cell and multicellular organisms is discussed, focusing in particular on the conjugation of specific thiols to exogenous and endogenous electrophiles, or oxidized protein substrates. Advances in the development of new research tools, analytical methodologies, and genetic models for the analysis of known LMW thiol transferases will expand our knowledge and understanding of their function in cell growth and survival under oxidative stress, nutrient deprivation, and during the detoxification of xenobiotics and harmful metabolites. The antioxidant function of CoA has been recently discovered and the breakthrough in defining the identity and functional characteristics of CoA S-transferase(s) is soon expected.


Subject(s)
Antioxidants , Sulfhydryl Compounds , Sulfhydryl Compounds/metabolism , Antioxidants/metabolism , Transferases/metabolism , Oxidation-Reduction , Glutathione/metabolism , Oxidoreductases/metabolism , Disulfides/chemistry
8.
J Obstet Gynaecol Res ; 50(4): 611-617, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38325805

ABSTRACT

AIM: We aim to compare the maternal serum thiol and ischemia-modified albumin (IMA) levels between pregnant women with placenta previa and those with uncomplicated pregnancies and to determine whether changes in these levels were useful in predicting cases of abnormally invasive placenta (AIP). METHODS: Fifty-five pregnant women diagnosed with placenta previa according to the diagnostic criteria (case group) were compared to 100 women with uncomplicated pregnancies of similar demographic characteristics (control group). The patients with placenta previa were further divided into two subgroups: AIP (n = 20) and placenta previa without invasion (n = 35). The maternal serum native thiol, total thiol, disulfide, and IMA levels of the groups were evaluated. RESULTS: The native thiol, total thiol, and IMA values were significantly lower in the case group than in the control group (p < 0.001). The disulfide values were similar between the study and control groups (p = 0.488). When the AIP and placenta previa without invasion groups were compared, the levels of native thiol, total thiol, disulfide, and IMA were similar (p > 0.05). CONCLUSIONS: Maternal serum thiol and IMA levels were lower in placenta previa cases compared to the control group. However, these parameters were not useful in predicting AIP cases.


Subject(s)
Placenta Previa , Serum Albumin, Human , Sulfhydryl Compounds , Female , Humans , Pregnancy , Biomarkers , Case-Control Studies , Disulfides/blood , Disulfides/chemistry , Oxidative Stress , Placenta Previa/diagnosis , Serum Albumin , Serum Albumin, Human/metabolism , Sulfhydryl Compounds/blood , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/metabolism
9.
Life Sci Alliance ; 7(5)2024 May.
Article in English | MEDLINE | ID: mdl-38383455

ABSTRACT

Oxidative post-translational modifications of protein thiols are well recognized as a readily occurring alteration of proteins, which can modify their function and thus control cellular processes. The development of techniques enabling the site-specific assessment of protein thiol oxidation on a proteome-wide scale significantly expanded the number of known oxidation-sensitive protein thiols. However, lacking behind are large-scale data on the redox state of proteins during ageing, a physiological process accompanied by increased levels of endogenous oxidants. Here, we present the landscape of protein thiol oxidation in chronologically aged wild-type Saccharomyces cerevisiae in a time-dependent manner. Our data determine early-oxidation targets in key biological processes governing the de novo production of proteins, protein folding, and degradation, and indicate a hierarchy of cellular responses affected by a reversible redox modification. Comparison with existing datasets in yeast, nematode, fruit fly, and mouse reveals the evolutionary conservation of these oxidation targets. To facilitate accessibility, we integrated the cross-species comparison into the newly developed OxiAge Database.


Subject(s)
Proteostasis , Sulfhydryl Compounds , Mice , Animals , Sulfhydryl Compounds/metabolism , Oxidation-Reduction , Saccharomyces cerevisiae/metabolism , Aging , Proteome/metabolism
10.
Chem Biodivers ; 21(5): e202301287, 2024 May.
Article in English | MEDLINE | ID: mdl-38385951

ABSTRACT

Microcystin-LR (MIC-LR) is a toxin which the mechanism of intoxication involves oxidative stress. Urolithin A (URO-A) is a metabolic product from the colonic fermentation of ellagic acid with antioxidant potential. This study aimed to evaluate the putative protective effect of URO-A against MIC-LR toxicity in C6 cells. C6 cells were incubated with MIC-LR (1 and 10 µM) and/or URO-A (3, 30, 60 and 100 µM) for 24 h. MIC-LR induced reactive species (RS) generation, depletion of total thiol (SH) groups, and survival loss when compared with the control group. Also, at 10 µM, MIC-LR induced CAT activity inhibition. URO-A caused CAT activity inhibition and showed a trend to increase RS generation (60 and 100 µM) per se. URO-A at 3 µM completely attenuated the RS generation and the impairment in SH groups caused by MIC-LR. Our results demonstrated that URO-A might offer a protective effect against toxicity caused by MIC-LR in glial cells by restoring the levels of RS and thiol groups.


Subject(s)
Cell Survival , Coumarins , Oxidative Stress , Coumarins/pharmacology , Coumarins/chemistry , Oxidative Stress/drug effects , Animals , Cell Survival/drug effects , Marine Toxins , Antioxidants/pharmacology , Antioxidants/chemistry , Rats , Dose-Response Relationship, Drug , Sulfhydryl Compounds/metabolism , Sulfhydryl Compounds/pharmacology , Reactive Oxygen Species/metabolism , Protective Agents/pharmacology , Protective Agents/chemistry , Catalase/metabolism
11.
J Am Chem Soc ; 146(6): 3974-3983, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38299512

ABSTRACT

Biologics, including proteins and antisense oligonucleotides (ASOs), face significant challenges when it comes to achieving intracellular delivery within specific organs or cells through systemic administrations. In this study, we present a novel approach for delivering proteins and ASOs to liver cells, both in vitro and in vivo, using conjugates that tether N-acetylated galactosamine (GalNAc)-functionalized, cell-penetrating polydisulfides (PDSs). The method involves the thiol-bearing cargo-mediated ring-opening polymerization of GalNAc-functionalized lipoamide monomers through the so-called aggregation-induced polymerization, leading to the formation of site-specific protein/ASO-PDS conjugates with narrow dispersity. The hepatocyte-selective intracellular delivery of the conjugates arises from a combination of factors, including first GalNAc binding with ASGPR receptors on liver cells, leading to cell immobilization, and the subsequent thiol-disulfide exchange occurring on the cell surface, promoting internalization. Our findings emphasize the critical role of the close proximity of the PDS backbone to the cell surface, as it governs the success of thiol-disulfide exchange and, consequently, cell penetration. These conjugates hold tremendous potential in overcoming the various biological barriers encountered during systemic and cell-specific delivery of biomacromolecular cargos, opening up new avenues for the diagnosis and treatment of a range of liver-targeting diseases.


Subject(s)
Biological Products , Galactosamine , Galactosamine/chemistry , Hepatocytes/metabolism , Oligonucleotides, Antisense/chemistry , Disulfides/metabolism , Sulfhydryl Compounds/metabolism , Biological Products/metabolism
12.
Appl Environ Microbiol ; 90(2): e0195923, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38193681

ABSTRACT

Propanethiol (PT) is a hazardous pollutant that poses risks to both the environment and human well-being. Pseudomonas putida S-1 has been identified as a microorganism capable of utilizing PT as its sole carbon source. However, the metabolic pathway responsible for PT degradation in P. putida S-1 has remained poorly understood, impeding its optimization and practical application. In this study, we investigated the catabolic network involved in PT desulfurization with P. putida S-1 and identified key gene modules crucial to this process. Notably, propanethiol oxidoreductase (PTO) catalyzes the initial degradation of PT, a pivotal step for P. putida S-1's survival on PT. PTO facilitates the oxidation of PT, resulting H2S, H2O2, and propionaldehyde (PA). Catalase-peroxidase catalyzes the conversion of H2O2 to oxygen and water, while PA undergoes gradual conversion to Succinyl-CoA, which is subsequently utilized in the tricarboxylic acid cycle. H2S is digested in a comprehensive desulfurization network where sulfide-quinone oxidoreductase (SQOR) predominantly converts it to sulfane sulfur. The transcriptome analysis suggests that sulfur can be finally converted to sulfite or sulfate and exported out of the cell. The PT degradation capacity of P. putida S-1 was enhanced by increasing the transcription level of PTO and SQOR genes in vivo.IMPORTANCEThis work investigated the PT catabolism pathway in Pseudomonas putida S-1, a microorganism capable of utilizing PT as the sole carbon source. Critical genes that control the initiation of PT degradation were identified and characterized, such as pto and sqor. By increasing the transcription level of pto and sqor genes in vivo, we have successfully enhanced the PT degradation efficiency and growth rate of P. putida S-1. This work does not only reveal a unique PT degradation pathway but also highlights the potential of enhancing the microbial desulfurization process in the bioremediation of thiol-contaminated environment.


Subject(s)
Oxidoreductases , Pseudomonas putida , Quinone Reductases , Humans , Oxidoreductases/metabolism , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Hydrogen Peroxide/metabolism , Sulfhydryl Compounds/metabolism , Biodegradation, Environmental , Sulfur/metabolism , Carbon/metabolism
13.
Arterioscler Thromb Vasc Biol ; 44(3): e82-e98, 2024 03.
Article in English | MEDLINE | ID: mdl-38205640

ABSTRACT

BACKGROUND: Integrins mediate the adhesion, crawling, and migration of neutrophils during vascular inflammation. Thiol exchange is important in the regulation of integrin functions. ERp72 (endoplasmic reticulum-resident protein 72) is a member of the thiol isomerase family responsible for the catalysis of disulfide rearrangement. However, the role of ERp72 in the regulation of Mac-1 (integrin αMß2) on neutrophils remains elusive. METHODS: Intravital microscopy of the cremaster microcirculation was performed to determine in vivo neutrophil movement. Static adhesion, flow chamber, and flow cytometry were used to evaluate in vitro integrin functions. Confocal fluorescent microscopy and coimmunoprecipitation were utilized to characterize the interactions between ERp72 and Mac-1 on neutrophil surface. Cell-impermeable probes and mass spectrometry were used to label reactive thiols and identify target disulfide bonds during redox exchange. Biomembrane force probe was performed to quantitatively measure the binding affinity of Mac-1. A murine model of acute lung injury induced by lipopolysaccharide was utilized to evaluate neutrophil-associated vasculopathy. RESULTS: ERp72-deficient neutrophils exhibited increased rolling but decreased adhesion/crawling on inflamed venules in vivo and defective static adhesion in vitro. The defect was due to defective activation of integrin Mac-1 but not LFA-1 (lymphocyte function-associated antigen-1) using blocking or epitope-specific antibodies. ERp72 interacted with Mac-1 in lipid rafts on neutrophil surface leading to the reduction of the C654-C711 disulfide bond in the αM subunit that is critical for Mac-1 activation. Recombinant ERp72, via its catalytic motifs, increased the binding affinity of Mac-1 with ICAM-1 (intercellular adhesion molecule-1) and rescued the defective adhesion of ERp72-deficient neutrophils both in vitro and in vivo. Deletion of ERp72 in the bone marrow inhibited neutrophil infiltration, ameliorated tissue damage, and increased survival during murine acute lung injury. CONCLUSIONS: Extracellular ERp72 regulates integrin Mac-1 activity by catalyzing disulfide rearrangement on the αM subunit and may be a novel target for the treatment of neutrophil-associated vasculopathy.


Subject(s)
Acute Lung Injury , Macrophage-1 Antigen , Animals , Mice , Acute Lung Injury/genetics , Acute Lung Injury/metabolism , Cell Adhesion , Disulfides , Intercellular Adhesion Molecule-1/metabolism , Lymphocyte Function-Associated Antigen-1/metabolism , Macrophage-1 Antigen/genetics , Macrophage-1 Antigen/metabolism , Neutrophil Infiltration , Neutrophils/metabolism , Sulfhydryl Compounds/metabolism
14.
Food Chem Toxicol ; 185: 114446, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244666

ABSTRACT

The aberrant increase or dysregulation of cytosolic Zn2+ concentration ([Zn2+]cyt) has been associated with cellular dysfunction and cytotoxicity. In this study, we postulated that Zn2+ mediates the cytotoxicity of thiol-reactive electrophiles. This notion was grounded on earlier research, which revealed that thiol-reactive electrophiles may disrupt Zn2+-binding motifs, consequently causing Zn2+ to be released from Zn2+-binding proteins, and leading to a surge in [Zn2+]cyt. The thiol-reactive electrophiles N-ethylmaleimide (NEM) and diamide were observed to induce an increase in [Zn2+]cyt, possibly through the impairment of Zn2+-binding motifs, and subsequent stimulation of reactive oxygen species (ROS) formation, resulting in cytotoxicity in primary cultured rat vascular smooth muscle cells. These processes were negated by the thiol donor N-acetyl-L-cysteine and the Zn2+ chelator TPEN. Similar outcomes were detected with co-treatment involving Zn2+ and Zn2+ ionophores such as pyrithione or disulfiram. Moreover, TPEN was found to inhibit cytotoxicity triggered by short-term exposure to various thiol-reactive electrophiles including hydrogen peroxide, acrylamide, acrylonitrile, diethyl maleate, iodoacetic acid, and iodoacetamide. In conclusion, our findings suggest that cytosolic Zn2+ acts as a universal mediator in the cytotoxic effects produced by thiol-reactive electrophiles.


Subject(s)
Ethylenediamines , Sulfhydryl Compounds , Zinc , Rats , Animals , Sulfhydryl Compounds/metabolism , Zinc/metabolism , Muscle, Smooth, Vascular/metabolism , Cytosol , Acids/metabolism
15.
Phytother Res ; 38(3): 1555-1573, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38281735

ABSTRACT

Anti-inflammatory and immune suppressive agents are required to moderate hyper-activation of lymphocytes under disease conditions or organ transplantation. However, selective disruption of mitochondrial redox has not been evaluated as a therapeutic strategy for suppression of T-cell-mediated pathologies. Using mitochondrial targeted curcumin (MitoC), we studied the effect of mitochondrial redox modulation on T-cell responses by flow cytometry, transmission electron microscopy, transcriptomics, and proteomics, and the role of Nrf2 was studied using Nrf2- /- mice. MitoC decreased mitochondrial TrxR activity, enhanced mitochondrial ROS (mROS) production, depleted mitochondrial glutathione, and suppressed activation-induced increase in mitochondrial biomass. This led to suppression of T-cell responses and metabolic reprogramming towards Treg differentiation. MitoC induced nuclear translocation and DNA binding of Nrf2, leading to upregulation of Nrf2-dependent genes and proteins. MitoC-mediated changes in mitochondrial redox and modulation of T-cell responses are abolished in Nrf2- /- mice. Restoration of mitochondrial thiols abrogated inhibition of T-cell responses. MitoC suppressed alloantigen-induced lymphoblast formation, inflammatory cytokines, morbidity, and mortality in acute graft-versus-host disease mice. Disruption of mitochondrial thiols but not mROS increase inculcates an Nrf2-dependent immune-suppressive disposition in T cells for the propitious treatment of graft-versus-host disease.


Subject(s)
Curcumin , Curcumin/analogs & derivatives , Graft vs Host Disease , Animals , Mice , Curcumin/pharmacology , NF-E2-Related Factor 2/metabolism , T-Lymphocytes , Disease Models, Animal , Graft vs Host Disease/metabolism , Graft vs Host Disease/pathology , Sulfhydryl Compounds/metabolism , Sulfhydryl Compounds/pharmacology
16.
Yakugaku Zasshi ; 144(1): 47-50, 2024.
Article in Japanese | MEDLINE | ID: mdl-38171794

ABSTRACT

Environmental electrophiles modify thiol groups of proteins in organs, disrupting cellular functions carried out by the modified proteins and increasing the risk of various diseases. The transcription factor NF-E2-related factor 2 (Nrf2) plays a crucial role in detoxifying electrophiles by forming glutathione adducts and subsequently excreting them into extracellular spaces. Supersulfides such as cysteine persulfides (CysSSH) produced by cystathionine γ-lyase (CSE) capture environmental electrophiles through sulfur adduct formation. However, the Nrf2 and CSE contributions to blocking environmental electrophile-mediated toxicity have yet to be evaluated. Therefore, we assessed the individual and combined roles of Nrf2 and CSE in suppressing toxicity induced by environmental electrophiles using Nrf2 knockout (KO), CSE KO, and Nrf2/CSE double KO (DKO) mice. Our findings indicate that CSE/Nrf2 DKO mice are more sensitive to environmental electrophiles compared to their single KO counterparts, highlighting the distinct mechanisms through which both pathways mitigate the toxic effects of reactive electrophiles. Moreover, diverse metabolites produced by symbiotic gut bacteria in the human body are known to exert various effects on host organ functions beyond the intestinal tract. We observed reduced blood supersulfide levels in mice lacking gut microflora compared to normal mice. Furthermore, we identified intestinal bacteria belonging to the families Ruminococcaceae and Lachnospiraceae as high CysSSH-producing bacteria. This suggests that the gut microbiota serves as a source of in vivo supersulfide molecules. These findings suggest that supersulfide derived from gut bacteria may act protectively against environmental electrophilic exposure in the host.


Subject(s)
Cystathionine gamma-Lyase , NF-E2-Related Factor 2 , Humans , Mice , Animals , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Cystathionine gamma-Lyase/genetics , Cystathionine gamma-Lyase/metabolism , Cystathionine gamma-Lyase/pharmacology , Glutathione/metabolism , Sulfhydryl Compounds/metabolism , Oxidative Stress
17.
Free Radic Biol Med ; 213: 371-393, 2024 03.
Article in English | MEDLINE | ID: mdl-38272324

ABSTRACT

Understanding the unique metabolic pathway of L. donovani is crucial for comprehending its biology under oxidative stress conditions. The de novo cysteine biosynthetic pathway of L. donovani is absent in humans and its product, cysteine regulates the downstream components of trypanothione-based thiol metabolism, important for maintaining cellular redox homeostasis. The role of serine o-acetyl transferase (SAT), the first enzyme of this pathway remains unexplored. In order to investigate the role of SAT protein, we cloned SAT gene into pXG-GFP+ vector for episomal expression of SAT in Amphotericin B sensitive L. donovani promastigotes. The SAT overexpression was confirmed by SAT enzymatic assay, GFP fluorescence, immunoblotting and PCR. Our study unveiled an upregulated expression of both LdSAT and LdCS of cysteine biosynthetic pathway and other downstream thiol pathway proteins in LdSAT-OE promastigotes. Additionally, there was an increase in enzymatic activities of LdSAT and LdCS proteins in LdSAT-OE, which was found similar to the Amp B resistant parasites, indicating a potential role of SAT protein in modulating drug resistance. We observed that the overexpression of SAT in Amp B sensitive parasites increases tolerance to drug pressure and oxidative stress via trypanothione-dependent antioxidant mechanism. Moreover, the in vitro J774A.1 macrophage infectivity assessment showed that SAT overexpression augments parasite infectivity. In LdSAT-OE promastigotes, antioxidant enzyme activities like APx and SOD were upregulated, intracellular reactive oxygen species were reduced with a corresponding increase in thiol level, emphasizing SAT's role in stress tolerance and enhanced infectivity. Additionally, the ROS mediated upregulation in the expression of LdSAT, LdCS, LdTryS and LdcTXNPx proteins reveals an essential cross talk between SAT and proteins of thiol metabolism in combating oxidative stress and maintaining redox homeostasis. Taken together, our results provide the first insight into the role of SAT protein in parasite infectivity and survival under drug pressure and oxidative stress.


Subject(s)
Leishmania donovani , Humans , Leishmania donovani/genetics , Leishmania donovani/metabolism , Sulfhydryl Compounds/metabolism , Serine O-Acetyltransferase/metabolism , Cysteine/metabolism , Antioxidants/metabolism , Oxidative Stress , Oxidation-Reduction , Drug Resistance/genetics
18.
mSystems ; 9(2): e0076423, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38289043

ABSTRACT

The major oral odor compound methyl mercaptan (CH3SH) is strongly associated with halitosis and periodontitis. CH3SH production stems from the metabolism of polymicrobial communities in periodontal pockets and on the tongue dorsum. However, understanding of CH3SH-producing oral bacteria and their interactions is limited. This study aimed to investigate CH3SH production by major oral bacteria and the impact of interspecies interactions on its generation. Using a newly constructed large-volume anaerobic noncontact coculture system, Fusobacterium nucleatum was found to be a potent producer of CH3SH, with that production stimulated by metabolic interactions with Streptococcus gordonii, an early dental plaque colonizer. Furthermore, analysis of extracellular amino acids using an S. gordonii arginine-ornithine antiporter (ArcD) mutant demonstrated that ornithine excreted from S. gordonii is a key contributor to increased CH3SH production by F. nucleatum. Further study with 13C, 15N-methionine, as well as gene expression analysis, revealed that ornithine secreted by S. gordonii increased the demand for methionine through accelerated polyamine synthesis by F. nucleatum, leading to elevated methionine pathway activity and CH3SH production. Collectively, these findings suggest that interaction between S. gordonii and F. nucleatum plays a key role in CH3SH production, providing a new insight into the mechanism of CH3SH generation in oral microbial communities. A better understanding of the underlying interactions among oral bacteria involved in CH3SH generation can lead to the development of more appropriate prophylactic approaches to treat halitosis and periodontitis. An intervention approach like selectively disrupting this interspecies network could also offer a powerful therapeutic strategy.IMPORTANCEHalitosis can have a significant impact on the social life of affected individuals. Among oral odor compounds, CH3SH has a low olfactory threshold and halitosis is a result of its production. Recently, there has been a growing interest in the collective properties of oral polymicrobial communities, regarded as important for the development of oral diseases, which are shaped by physical and metabolic interactions among community participants. However, it has yet to be investigated whether interspecies interactions have an impact on the production of volatile compounds, leading to the development of halitosis. The present findings provide mechanistic insights indicating that ornithine, a metabolite excreted by Streptococcus gordonii, promotes polyamine synthesis by Fusobacterium nucleatum, resulting in a compensatory increase in demand for methionine, which results in elevated methionine pathway activity and CH3SH production. Elucidation of the mechanisms related to CH3SH production is expected to lead to the development of new strategies for managing halitosis.


Subject(s)
Halitosis , Periodontitis , Humans , Fusobacterium nucleatum/genetics , Halitosis/microbiology , Sulfhydryl Compounds/metabolism , Bacteria , Streptococcus gordonii , Ornithine/metabolism , Methionine/metabolism , Polyamines/metabolism
19.
ACS Chem Biol ; 19(2): 325-335, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38230650

ABSTRACT

Protein-small molecule hybrids are structures that have the potential to combine the inhibitory properties of small molecules and the specificities of binding proteins. However, achieving such synergies is a substantial engineering challenge with fundamental principles yet to be elucidated. Recent work has demonstrated the power of the yeast display-based discovery of hybrids using a combination of fibronectin-binding domains and thiol-mediated conjugations to introduce small-molecule warheads. Here, we systematically study the effects of expanding the chemical diversity of these hybrids on the yeast surface by investigating a combinatorial set of fibronectins, noncanonical amino acid (ncAA) substitutions, and small-molecule pharmacophores. Our results show that previously discovered thiol-fibronectin hybrids are generally tolerant of a range of ncAA substitutions and retain binding functions to carbonic anhydrases following click chemistry-mediated assembly of hybrids with diverse linker structures. Most surprisingly, we identified several cases where replacement of a potent acetazolamide warhead with a substantially weaker benzenesulfonamide warhead still resulted in the assembly of multiple functional hybrids. In addition to these unexpected findings, we expanded the throughput of our system by validating a 96-well plate-based format to produce yeast-displayed hybrid conjugates in parallel. These efficient explorations of hybrid chemical diversity demonstrate that there are abundant opportunities to expand the functions of protein-small molecule hybrids and elucidate principles that dictate their efficient discovery and design.


Subject(s)
Fibronectins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Fibronectins/metabolism , Carrier Proteins/metabolism , Click Chemistry , Sulfhydryl Compounds/metabolism
20.
Proteins ; 92(4): 464-473, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37941304

ABSTRACT

Although S-nitrosylation of cysteines is a common protein posttranslational modification, little is known about its three-dimensional structural features. This paper describes a systematic survey of the data available in the Protein Data Bank. Several interesting observations could be made. (1) As a result of radiation damage, S-nitrosylated cysteines (Snc) are frequently reduced, at least partially. (2) S-nitrosylation may be a protection against irreversible thiol oxidation; because the NO group of Snc is relatively accessible to the solvent, it may act as a cork to protect the sulfur atoms of cysteines from oxidation by molecular oxygen to sulfenic, sulfinic, and sulfonic acid; moreover, Snc are frequently found at the start or end of helices and strands and this might shield secondary structural elements from unfolding.


Subject(s)
Cysteine , Proteins , Proteins/chemistry , Cysteine/chemistry , Sulfhydryl Compounds/metabolism , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...