Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 459
Filter
1.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125961

ABSTRACT

Garlic is a vegetable with numerous pro-health properties, showing high antioxidant capacity, and cytotoxicity for various malignant cells. The inhibition of cell proliferation by garlic is mainly attributed to the organosulfur compounds (OSCs), but it is far from obvious which constituents of garlic indeed participate in the antioxidant and cytotoxic action of garlic extracts. This study aimed to obtain insight into this question by examining the antioxidant activity and cytotoxicity of six OSCs and five phenolics present in garlic. Three common assays of antioxidant activity were employed (ABTS● decolorization, DPPH● decolorization, and FRAP). Cytotoxicity of both classes of compounds to PEO1 and SKOV-3 ovarian cancer cells, and MRC-5 fibroblasts was compared. Negligible antioxidant activities of the studied OSCs (alliin, allicin, S-allyl-D-cysteine, allyl sulfide, diallyl disulfide, and diallyl trisulfide) were observed, excluding the possibility of any significant contribution of these compounds to the total antioxidant capacity (TAC) of garlic extracts estimated by the commonly used reductive assays. Comparable cytotoxic activities of OSCs and phenolics (caffeic, p-coumaric, ferulic, gallic acids, and quercetin) indicate that both classes of compounds may contribute to the cytotoxic action of garlic.


Subject(s)
Allyl Compounds , Antioxidants , Disulfides , Garlic , Phenols , Plant Extracts , Sulfides , Sulfinic Acids , Garlic/chemistry , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Phenols/pharmacology , Phenols/chemistry , Disulfides/pharmacology , Disulfides/chemistry , Cell Line, Tumor , Plant Extracts/pharmacology , Plant Extracts/chemistry , Sulfinic Acids/pharmacology , Sulfinic Acids/chemistry , Sulfides/pharmacology , Sulfides/chemistry , Allyl Compounds/pharmacology , Allyl Compounds/chemistry , Sulfur Compounds/pharmacology , Sulfur Compounds/chemistry , Cysteine/analogs & derivatives , Cysteine/chemistry , Cysteine/pharmacology , Cell Survival/drug effects , Cell Proliferation/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism
2.
J Agric Food Chem ; 72(27): 15133-15141, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38944760

ABSTRACT

The post-harvest fumigant, sulfuryl fluoride (SO2F2), is a >1000-fold more potent greenhouse gas than carbon dioxide and methane. Pilot studies have shown that SO2F2 fumes vented from fumigation chambers can be captured and hydrolyzed by hydroxide (OH-) and hydrogen peroxide (H2O2) at pH ∼ 12 in a scrubber, producing SO42- and F- as waste salts. To reduce the costs and challenges associated with purchasing and mixing these reagents onsite, this study evaluates the electrochemical generation of OH- and H2O2 within spent scrubbing solution, taking advantage of the waste SO42- and F- as free sources of electrolyte. The study used a gas diffusion electrode constructed from carbon paper coated with carbon black as a catalyst selective for the reduction of O2 to H2O2. Under galvanostatic conditions, the study evaluated the effect of electrochemical conditions, including applied cathodic current density and electrolyte strength. Within an electrolyte containing 200 mM SO42- and 400 mM F-, comparable to the waste salts generated by a SO2F2 scrubbing event, the system produced 250 mM H2O2 at pH 12.6 within 4 h with a Faradaic efficiency of 98.8% for O2 reduction to H2O2. In a scrubbing-water sample from lab-scale fumigation, the system generated ∼200 mM H2O2 at pH 13.5 within 4 h with a Faradaic efficiency of 75.6%. A comparison of the costs to purchase NaOH and H2O2 against the electricity costs for electrochemical treatment indicated that the electrochemical approach could be 38-71% lower, depending on the local cost of electricity.


Subject(s)
Fumigation , Hydrogen Peroxide , Hydroxides , Sulfinic Acids , Hydrogen Peroxide/chemistry , Hydrolysis , Sulfinic Acids/chemistry , Hydroxides/chemistry , Electrochemical Techniques/methods , Pesticides/chemistry
3.
J Org Chem ; 89(14): 10127-10147, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38924796

ABSTRACT

This report describes a Pd-catalyzed picolinamide-directed site-selective C(sp2)-H sulfonylation of amino acids and peptides with sodium sulfinates in moderate to good yields. Sulfonylation of levodopa and dopamine drug molecules and late-stage directed peptide sulfonylation are studied for the first time. Broad substrate scope having various functionalities, late-stage drug modifications, and various post synthetic utilities such as chalcogenation, bromination, olefination, and arylation are potential advantages.


Subject(s)
Amides , Amino Acids , Palladium , Peptides , Picolinic Acids , Palladium/chemistry , Catalysis , Amino Acids/chemistry , Peptides/chemistry , Molecular Structure , Picolinic Acids/chemistry , Amides/chemistry , Sulfinic Acids/chemistry
4.
J Agric Food Chem ; 72(23): 13228-13239, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38810088

ABSTRACT

Limited alliinase resources cause difficulties in the biosynthesis of thiosulfinates (e.g., allicin), restricting their applications in the agricultural and food industries. To effectively biosynthesize thiosulfinates, this study aimed to excavate bacterial alliinase resources and elucidate their catalytic properties. Two bacterial cystathionine ß-lyases (MetCs) possessing high alliinase activity (>60 U mg -1) toward L-(-)-alliin were identified from Allium sativum rhizosphere isolates. Metagenomic exploration revealed that cystathionine ß-lyase from Bacillus cereus (BcPatB) possessed high activity toward both L-(±)-alliin and L-(+)-alliin (208.6 and 225.1 U mg -1), respectively. Although these enzymes all preferred l-cysteine S-conjugate sulfoxides as substrates, BcPatB had a closer phylogenetic relationship with Allium alliinases and shared several similar features with A. sativum alliinase. Interestingly, the Trp30Ile31Ala32Asp33 Met34 motif in a cuspate loop of BcPatB, especially sites 31 and 32 at the top of the motif, was modeled to locate near the sulfoxide of L-(+)-alliin and is important for substrate stereospecificity. Moreover, the stereoselectivity and activity of mutants I31V and A32G were higher toward L-(+)-alliin than those of mutant I31L/D33E toward L-(-)-alliin. Using bacterial alliinases and chemically synthesized substrates, we obtained thiosulfinates with high antimicrobial and antinematode activities that could provide insights into the protection of crops and food.


Subject(s)
Bacterial Proteins , Garlic , Substrate Specificity , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Garlic/chemistry , Garlic/enzymology , Garlic/genetics , Sulfinic Acids/chemistry , Sulfinic Acids/metabolism , Bacillus cereus/enzymology , Bacillus cereus/genetics , Bacillus cereus/metabolism , Disulfides/chemistry , Disulfides/metabolism , Phylogeny , Stereoisomerism , Amino Acid Sequence , Bacteria/enzymology , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Kinetics , Carbon-Sulfur Lyases/metabolism , Carbon-Sulfur Lyases/genetics , Carbon-Sulfur Lyases/chemistry , Cysteine/analogs & derivatives
5.
Chembiochem ; 25(9): e202400131, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38597743

ABSTRACT

Many actinobacterial species contain structural genes for iron-dependent enzymes that consume ergothioneine by way of O2-dependent dioxygenation. The resulting product ergothioneine sulfinic acid is stable under physiological conditions unless cleavage to sulfur dioxide and trimethyl histidine is catalyzed by a dedicated desulfinase. This report documents that two types of ergothioneine sulfinic desulfinases have evolved by convergent evolution. One type is related to metal-dependent decarboxylases while the other belongs to the superfamily of rhodanese-like enzymes. Pairs of ergothioneine dioxygenases (ETDO) and ergothioneine sulfinic acid desulfinase (ETSD) occur in thousands of sequenced actinobacteria, suggesting that oxidative ergothioneine degradation is a common activity in this phylum.


Subject(s)
Ergothioneine , Ergothioneine/metabolism , Ergothioneine/chemistry , Actinobacteria/enzymology , Biocatalysis , Sulfinic Acids/chemistry , Sulfinic Acids/metabolism , Dioxygenases/metabolism , Dioxygenases/chemistry
6.
Molecules ; 29(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542956

ABSTRACT

Natural products, particularly medicinal plants, are crucial in combating cancer and aiding in the discovery and development of new therapeutic agents owing to their biologically active compounds. They offer a promising avenue for developing effective anticancer medications because of their low toxicity, diverse chemical structures, and ability to target various cancers. Allicin is one of the main ingredients in garlic (Allium sativum L.). It is a bioactive sulfur compound maintained in various plant sections in a precursor state. Numerous studies have documented the positive health benefits of this natural compound on many chronic conditions, including gastric, hepatic, breast, lung, cervical, prostate, and colon cancer. Moreover, allicin may target several cancer hallmarks or fundamental biological traits and functions that influence cancer development and spread. Cancer hallmarks include sustained proliferation, evasion of growth suppressors, metastasis, replicative immortality, angiogenesis, resistance to cell death, altered cellular energetics, and immune evasion. The findings of this review should provide researchers and medical professionals with a solid basis to support fundamental and clinical investigations of allicin as a prospective anticancer drug. This review outlines the anticancer role of allicin in each hallmark of cancer.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Garlic , Plants, Medicinal , Male , Humans , Plant Extracts/chemistry , Prospective Studies , Sulfinic Acids/chemistry , Disulfides , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Colonic Neoplasms/drug therapy , Garlic/chemistry
7.
J Agric Food Chem ; 71(49): 19207-19220, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37943254

ABSTRACT

Garlic has been used worldwide as a spice due to its pungent taste and flavor-enhancing properties. As a main biologically active component of the freshly crushed garlic extracts, allicin (diallyl thiosulfinate) is converted from alliin by alliinase upon damaging the garlic clove, which has been reported to have many potent beneficial biological functions. In this work, allicin formation, stability, bioavailability, and metabolism process are examined and summarized. The biological functions of allicin and potential underlying mechanisms are reviewed and discussed, including antioxidation, anti-inflammation, antidiabetic, cardioprotective, antineurodegenerative, antitumor, and antiobesity effects. Novel delivery systems of allicin with enhanced stability, encapsulation efficiency, and bioavailability are also evaluated, such as nanoparticles, gels, liposomes, and micelles. This study could provide a comprehensive understanding of the physiochemical properties and health benefits of allicin, with great potential for further applications in the food and nutraceutical industries.


Subject(s)
Disulfides , Garlic , Biological Availability , Dietary Supplements , Garlic/chemistry , Sulfinic Acids/chemistry , Antioxidants/metabolism
8.
Molecules ; 28(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37049805

ABSTRACT

SuFEx chemistry is based on the unique reactivity of the sulfonyl fluoride group with a range of nucleophiles. Accordingly, sulfonyl fluorides label multiple nucleophilic amino acid residues, making these reagents popular in both chemical biology and medicinal chemistry applications. The reactivity of sulfonyl fluorides nominates this warhead chemotype as a candidate for an external, activation-free general labelling tag. Here, we report the synthesis and characterization of a small sulfonyl fluoride library that yielded the 3-carboxybenzenesulfonyl fluoride warhead for tagging tractable targets at nucleophilic residues. Based on these results, we propose that coupling diverse fragments to this warhead would result in a library of sulfonyl fluoride bits (SuFBits), available for screening against protein targets. SuFBits will label the target if it binds to the core fragment, which facilitates the identification of weak fragments by mass spectrometry.


Subject(s)
Amino Acids , Fluorides , Fluorides/chemistry , Amino Acids/chemistry , Sulfinic Acids/chemistry , Mass Spectrometry
9.
Proc Natl Acad Sci U S A ; 119(37): e2208540119, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36070343

ABSTRACT

Diversity Oriented Clicking (DOC) is a discovery method geared toward the rapid synthesis of functional libraries. It combines the best attributes of both classical and modern click chemistries. DOC strategies center upon the chemical diversification of core "SuFExable" hubs-exemplified by 2-Substituted-Alkynyl-1-Sulfonyl Fluorides (SASFs)-enabling the modular assembly of compounds through multiple reaction pathways. We report here a range of stereoselective Michael-type addition pathways from SASF hubs including reactions with secondary amines, carboxylates, 1H-1,2,3-triazole, and halides. These high yielding conjugate addition pathways deliver unprecedented ß-substituted alkenyl sulfonyl fluorides as single isomers with minimal purification, greatly enriching the repertoire of DOC and holding true to the fundamentals of modular click chemistry. Further, we demonstrate the potential for biological function - a key objective of click chemistry - of this family of SASF-derived molecules as covalent inhibitors of human neutrophil elastase.


Subject(s)
Click Chemistry , Fluorides , Leukocyte Elastase , Proteinase Inhibitory Proteins, Secretory , Sulfinic Acids , Click Chemistry/methods , Fluorides/chemical synthesis , Fluorides/chemistry , Fluorides/pharmacology , Humans , Leukocyte Elastase/antagonists & inhibitors , Proteinase Inhibitory Proteins, Secretory/chemical synthesis , Proteinase Inhibitory Proteins, Secretory/chemistry , Proteinase Inhibitory Proteins, Secretory/pharmacology , Sulfinic Acids/chemical synthesis , Sulfinic Acids/chemistry , Sulfinic Acids/pharmacology
10.
Int J Mol Sci ; 23(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35805955

ABSTRACT

Garlic, Allium sativum, has long been utilized for a number of medicinal purposes around the world, and its medical benefits have been well documented. The health benefits of garlic likely arise from a wide variety of components, possibly working synergistically. Garlic and garlic extracts, especially aged garlic extracts (AGEs), are rich in bioactive compounds, with potent anti-inflammatory, antioxidant and neuroprotective activities. In light of these effects, garlic and its components have been examined in experimental models of Alzheimer's disease (AD), the most common form of dementia without therapy, and a growing health concern in aging societies. With the aim of offering an updated overview, this paper reviews the chemical composition, metabolism and bioavailability of garlic bioactive compounds. In addition, it provides an overview of signaling mechanisms triggered by garlic derivatives, with a focus on allicin and AGE, to improve learning and memory.


Subject(s)
Alzheimer Disease , Biological Products , Garlic , Aged , Alzheimer Disease/drug therapy , Antioxidants/pharmacology , Antioxidants/therapeutic use , Disulfides , Garlic/chemistry , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Sulfinic Acids/chemistry , Sulfinic Acids/pharmacology , Sulfinic Acids/therapeutic use
11.
Int J Mol Sci ; 23(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35743050

ABSTRACT

Fungal infections of the lung are an increasing problem worldwide and the search for novel therapeutic agents is a current challenge due to emerging resistance to current antimycotics. The volatile defence substance allicin is formed naturally by freshly injured garlic plants and exhibits broad antimicrobial potency. Chemically synthesised allicin was active against selected fungi upon direct contact and via the gas phase at comparable concentrations to the pharmaceutically used antimycotic amphotericin B. We investigated the suppression of fungal growth by allicin vapour and aerosols in vitro in a test rig at air flow conditions mimicking the human lung. The effect of allicin via the gas phase was enhanced by ethanol. Our results suggest that allicin is a potential candidate for development for use in antifungal therapy for lung and upper respiratory tract infections.


Subject(s)
Mycoses , Sulfinic Acids , Disulfides , Humans , Lung , Mycoses/drug therapy , Sulfinic Acids/chemistry , Sulfinic Acids/pharmacology , Sulfinic Acids/therapeutic use
12.
Org Biomol Chem ; 20(17): 3506-3510, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35420611

ABSTRACT

A copper-catalyzed cascade reaction of α-diazocarbonyl compounds with ethenesulfonyl fluoride (ESF) is developed, affording a variety of highly functionalized pyrazolyl aliphatic sulfonyl fluorides in good to excellent yields (66-98%). This transformation features broad substrates, exclusive regioselectivity, high atom economy and operational simplicity, thus providing a straightforward method for the direct construction of pyrazole-containing aliphatic sulfonyl fluorides, which will provide great applicable value in medicinal chemistry and other related disciplines.


Subject(s)
Fluorides , Sulfinic Acids , Chemistry, Pharmaceutical , Fluorides/chemistry , Pyrazoles , Sulfinic Acids/chemistry
13.
Org Biomol Chem ; 20(8): 1652-1655, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35142766

ABSTRACT

We herein describe a C4 sulfonylmethylation of pyrazol-5-amines with glyoxylic acid and sodium sulfinates. The reaction only needed water as a solvent, and it featured mild reaction conditions, simple operation, and high regioselectivity. Various C4 sulfonylmethylated pyrazol-5-amines were obtained in good to excellent yields. Moreover, this sulfonylmethylation method was applicable for C(sp2)-H sulfonylmethylation of other substrates such as enamines, indoles, and antipyrines by adding a catalyst and changing the solvent. Biological evaluation revealed that some products had antiproliferative activity against cancer cell lines.


Subject(s)
Amines/chemical synthesis , Antineoplastic Agents/chemical synthesis , Glyoxylates/chemistry , Pyrazoles/chemical synthesis , Sulfinic Acids/chemistry , Amines/chemistry , Amines/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Methylation , Molecular Structure , Pyrazoles/chemistry , Pyrazoles/pharmacology
14.
Pharmacol Res ; 177: 106118, 2022 03.
Article in English | MEDLINE | ID: mdl-35134476

ABSTRACT

Phytochemicals have attracted attention in the oncological field because they are biologically friendly and have relevant pharmacological activities. Thanks to the intense and unique spicy aroma, garlic is one of the most used plants for cooking. Its consumption is correlated to health beneficial effects towards several chronic diseases, such as cancer, mainly attributable to allicin, a bioactive sulfur compound stored in different plant parts in a precursor form. The objective of this review is to present and critically discuss the chemistry and biosynthesis of allicin, its pharmacokinetic profile, its anticancer mechanisms and molecular targets, and its selectivity towards tumor cells. The research carried out so far revealed that allicin suppresses the growth of different types of tumors. In particular, it targets many signaling pathways associated with cancer development. Future research directions are also outlined to further characterize this promising natural product.


Subject(s)
Biological Products , Garlic , Neoplasms , Disulfides/therapeutic use , Garlic/chemistry , Humans , Neoplasms/drug therapy , Sulfinic Acids/chemistry , Sulfinic Acids/pharmacology , Sulfinic Acids/therapeutic use
15.
ChemSusChem ; 15(7): e202102557, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35174969

ABSTRACT

Electrosynthesis has recently attracted more and more attention due to its great potential to replace chemical oxidants or reductants in molecule-electrode electron transfer. Sulfonyl compounds such as sulfonyl hydrazides, sulfinic acids (and their salts), sulfonyl halides have been discovered as practical precursors of several radicals. As electrochemical redox reactions can provide green and efficient pathways for the activation of sulfonyl compounds, studies for electrosynthesis have rapidly increased. Several types of radicals can be generated from anodic oxidation or cathodic reduction of sulfonyl compounds and can initiate fluoroalkylation, benzenesulfonylation, cyclization or rearrangement. In this Review, we summarize the electrosynthesis developments involving sulfonyl compounds mainly in the last decade.


Subject(s)
Oxidants , Sulfinic Acids , Cyclization , Electrodes , Oxidation-Reduction , Sulfinic Acids/chemistry
16.
Chembiochem ; 23(4): e202100628, 2022 02 16.
Article in English | MEDLINE | ID: mdl-34918441

ABSTRACT

Fatty acids play fundamental structural, metabolic, functional, and signaling roles in all biological systems. Altered fatty acid levels and metabolism have been associated with many pathological conditions. Chemical probes have greatly facilitated biological studies on fatty acids. Herein, we report the development and characterization of an alkynyl-functionalized long-chain fatty acid-based sulfonyl fluoride probe for covalent labelling, enrichment, and identification of fatty acid-associated proteins in living cells. Our quantitative chemical proteomics show that this sulfonyl fluoride probe targets diverse classes of fatty acid-associated proteins including many metabolic serine hydrolases that are known to be involved in fatty acid metabolism and modification. We further validate that the probe covalently modifies the catalytically or functionally essential serine or tyrosine residues of its target proteins and enables evaluation of their inhibitors. The sulfonyl fluoride-based chemical probe thus represents a new tool for profiling the expression and activity of fatty acid-associated proteins in living cells.


Subject(s)
Fatty Acids/metabolism , Molecular Probes/metabolism , Sulfinic Acids/metabolism , Fatty Acids/chemistry , HEK293 Cells , Humans , Molecular Probes/chemistry , Molecular Structure , Sulfinic Acids/chemistry
17.
Chembiochem ; 23(4): e202100388, 2022 02 16.
Article in English | MEDLINE | ID: mdl-34490706

ABSTRACT

We have designed and synthesized six different multivalent electrophiles as carbohydrate affinity labeling probes. Evaluation of the reactivity of the electrophiles against peanut agglutinin (PNA) and Ricinus communis agglutinin (RCA) showed that p- and m-aryl sulfonyl fluoride are effective protein reactive groups that label carbohydrate binding lectins in a ligand-dependent fashion at a nanomolar probe concentration. Analysis of the selectivity of affinity labeling in the presence of excess BSA as a nonspecific protein indicated that m-arylsulfonyl fluoride is a more selective protein-reactive group, albeit with attenuated reactivity. Further analysis showed that the labeling efficiency of the multivalent electrophilic probes can be improved by employing reaction conditions involving 25 °C instead of typically employed 4 °C. Both isomers of arylsulfonyl fluoride groups together represent promising affinity labels for target identification studies that could serve as more efficient alternatives to photoreactive groups.


Subject(s)
Lectins/analysis , Sulfinic Acids/chemistry , Agglutinins/metabolism , Molecular Structure , Peanut Agglutinin/chemistry , Ricinus/chemistry , Sulfinic Acids/chemical synthesis , Sulfinic Acids/pharmacology
18.
Int J Mol Sci ; 22(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34502071

ABSTRACT

We evaluated the role of allicin in periodontitis using an in silico and in vitro design. An in silico docking analysis was performed to assess the plausible interactions between allicin and PD-L1. The cytokine profile of gingival crevicular fluid (GCF) samples obtained from periodontitis patients was estimated by cytometric bead array. CD3+ lymphocytes isolated from the peripheral blood were sorted and characterized using immunomagnetic techniques. Cultured and expanded lymphocytes were treated with the GCF samples to induce T-cell exhaustion. Optimum concentrations of allicin were added to exhausted lymphocytes to compare the expression of TIM-3 and LAG-3 gene expression at baseline and post-treatment. Allicin was found to bind to the PD-L1 molecule as revealed by the in-silico experiment, which is possibly an inhibitory interaction although not proven. GCF from periodontitis patients had significantly higher concentrations of TNF-α, CCL2, IL-6, IFN-γ, and CXCL8 than controls. GCF treatment of CD3+ lymphocytes from the periodontitis patients significantly increased expression of T-cell exhaustion markers TIM-3 and LAG-3. Allicin administration with GCF treatment resulted in significant lowering of the expression of exhaustion markers. Allicin may exert an immunostimulatory role and reverse immune-destructive mechanisms such as T-cell exhaustion.


Subject(s)
B7-H1 Antigen/metabolism , Disulfides/pharmacology , Periodontitis/metabolism , Sulfinic Acids/pharmacology , T-Lymphocytes/drug effects , Antigens, CD/genetics , Antigens, CD/metabolism , B7-H1 Antigen/chemistry , Binding Sites , Cells, Cultured , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Chemokine CXCL6/genetics , Chemokine CXCL6/metabolism , Disulfides/chemistry , Hepatitis A Virus Cellular Receptor 2/genetics , Hepatitis A Virus Cellular Receptor 2/metabolism , Humans , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Protein Binding , Sulfinic Acids/chemistry , T-Lymphocytes/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Lymphocyte Activation Gene 3 Protein
19.
J Enzyme Inhib Med Chem ; 36(1): 1860-1873, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34425715

ABSTRACT

To discover novel scaffolds as leads against dementia, a series of δ-aryl-1,3-dienesulfonyl fluorides with α-halo, α-aryl and α-alkynyl were assayed for ChE inhibitory activity, in which compound A10 was identified as a selective BuChE inhibitor (IC50 = 0.021 µM for eqBChE, 3.62 µM for hBuChE). SAR of BuChE inhibition showed: (i) o- > m- > p-; -OCH3 > -CH3 > -Cl (-Br) for δ-aryl; (ii) α-Br > α-Cl, α-I. Compound A10 exhibited neuroprotective, BBB penetration, mixed competitive inhibitory effect on BuChE (Ki = 29 nM), and benign neural and hepatic safety. Treatment with A10 could almost entirely recover the Aß1-42-induced cognitive dysfunction to the normal level, and the assessment of total amount of Aß1-42 confirmed its anti-amyloidogenic profile. Therefore, the potential BuChE inhibitor A10 is a promising effective lead for the treatment of AD.


Subject(s)
Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/chemistry , Cholinesterases/metabolism , Neuroprotective Agents/chemistry , Sulfinic Acids/chemistry , Alkynes/chemistry , Amyloid/metabolism , Animals , Behavior, Animal , Blood-Brain Barrier/metabolism , Cell Survival/drug effects , Cholinesterase Inhibitors/pharmacology , Drug Design , Humans , Liver , Male , Mice, Inbred ICR , Molecular Docking Simulation , Molecular Structure , Morris Water Maze Test , Nervous System , Neuroprotective Agents/pharmacology , Structure-Activity Relationship , Sulfinic Acids/pharmacology
20.
Eur J Med Chem ; 225: 113786, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34464874

ABSTRACT

The emergence of the C797S mutation in EGFR is a frequent mechanism of resistance to osimertinib in the treatment of non-small cell lung cancer (NSCLC). In the present work, we report the design, synthesis and biochemical characterization of UPR1444 (compound 11), a new sulfonyl fluoride derivative which potently and irreversibly inhibits EGFRL858R/T790M/C797S through the formation of a sulfonamide bond with the catalytic residue Lys745. Enzymatic assays show that compound 11 displayed an inhibitory activity on EGFRWT comparable to that of osimertinib, and it resulted more selective than the sulfonyl fluoride probe XO44, recently reported to inhibit a significant part of the kinome. Neither compound 11 nor XO44 inhibited EGFRdel19/T790M/C797S triple mutant. When tested in Ba/F3 cells expressing EGFRL858R/T790M/C797S, compound 11 resulted significantly more potent than osimertinib at inhibiting both EGFR autophosphorylation and proliferation, even if the inhibition of EGFR autophosphorylation by compound 11 in Ba/F3 cells was not long lasting.


Subject(s)
Lysine/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Sulfinic Acids/pharmacology , Animals , Biocatalysis , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Lysine/metabolism , Mice , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Sulfinic Acids/chemical synthesis , Sulfinic Acids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL