Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.964
Filter
1.
Sci Rep ; 14(1): 12655, 2024 06 02.
Article in English | MEDLINE | ID: mdl-38825597

ABSTRACT

Potato peel waste (PPW) is an underutilized substrate which is produced in huge amounts by food processing industries. Using PPW a feedstock for production of useful compounds can overcome the problem of waste management as well as cost-effective. In present study, potential of PPW was investigated using chemical and thermochemical treatment processes. Three independent variables i.e., PPW concentration, dilute sulphuric acid concentration and liberation time were selected to optimize the production of fermentable sugars (TS and RS) and phenolic compounds (TP). These three process variables were selected in the range of 5-15 g w/v substrate, 0.8-1.2 v/v acid conc. and 4-6 h. Whole treatment process was optimized by using box-behnken design (BBD) of response surface methodology (RSM). Highest yield of total and reducing sugars and total phenolic compounds obtained after chemical treatment was 188.00, 144.42 and 43.68 mg/gds, respectively. The maximum yield of fermentable sugars attained by acid plus steam treatment were 720.00 and 660.62 mg/gds of TS and RS, respectively w.r.t 5% substrate conc. in 0.8% acid with residence time of 6 h. Results recorded that acid assisted autoclaved treatment could be an effective process for PPW deconstruction. Characterization of substrate before and after treatment was checked by SEM and FTIR. Spectras and micrographs confirmed the topographical variations in treated substrate. The present study was aimed to utilize biowaste and to determine cost-effective conditions for degradation of PWW into value added compounds.


Subject(s)
Phenols , Solanum tuberosum , Solanum tuberosum/chemistry , Solanum tuberosum/metabolism , Phenols/chemistry , Sulfuric Acids/chemistry , Fermentation , Sugars/metabolism , Sugars/analysis , Acids/chemistry
2.
Geobiology ; 22(3): e12594, 2024.
Article in English | MEDLINE | ID: mdl-38700397

ABSTRACT

Lehman Caves is an extensively decorated high desert cave that represents one of the main tourist attractions in Great Basin National Park, Nevada. Although traditionally considered a water table cave, recent studies identified abundant speleogenetic features consistent with a hypogenic and, potentially, sulfuric acid origin. Here, we characterized white mineral deposits in the Gypsum Annex (GA) passage to determine whether these secondary deposits represent biogenic minerals formed during sulfuric acid corrosion and explored microbial communities associated with these and other mineral deposits throughout the cave. Powder X-ray diffraction (pXRD), scanning electron microscopy with electron dispersive spectroscopy (SEM-EDS), and electron microprobe analyses (EPMA) showed that, while most white mineral deposits from the GA contain gypsum, they also contain abundant calcite, silica, and other phases. Gypsum and carbonate-associated sulfate isotopic values of these deposits are variable, with δ34SV-CDT between +9.7‰ and +26.1‰, and do not reflect depleted values typically associated with replacement gypsum formed during sulfuric acid speleogenesis. Petrographic observations show that the sulfates likely co-precipitated with carbonate and SiO2 phases. Taken together, these data suggest that the deposits resulted from later-stage meteoric events and not during an initial episode of sulfuric acid speleogenesis. Most sedimentary and mineral deposits in Lehman Caves have very low microbial biomass, with the exception of select areas along the main tour route that have been impacted by tourist traffic. High-throughput 16S rRNA gene amplicon sequencing showed that microbial communities in GA sediments are distinct from those in other parts of the cave. The microbial communities that inhabit these oligotrophic secondary mineral deposits include OTUs related to known ammonia-oxidizing Nitrosococcales and Thaumarchaeota, as well as common soil taxa such as Acidobacteriota and Proteobacteria. This study reveals microbial and mineralogical diversity in a previously understudied cave and expands our understanding of the geomicrobiology of desert hypogene cave systems.


Subject(s)
Bacteria , Caves , Minerals , Caves/microbiology , Minerals/analysis , Bacteria/classification , Bacteria/metabolism , Nevada , Archaea/metabolism , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Parks, Recreational , RNA, Ribosomal, 16S/genetics , Sulfuric Acids , Phylogeny , Microbiota , Calcium Sulfate/chemistry , Microscopy, Electron, Scanning
3.
BMC Oral Health ; 24(1): 513, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698366

ABSTRACT

BACKGROUND: This study aims to evaluate the effect of surface treatment and resin cement on the shear bond strength (SBS) and mode of failure of polyetheretherketone (PEEK) to lithium disilicate ceramic (LDC). This is suggested to study alternative veneering of PEEK frameworks with a ceramic material. METHODS: eighty discs were prepared from PEEK blank and from lithium disilicate ceramic. Samples were divided into four groups according to surface treatment: Group (A) air abraded with 110 µm Al2O3, Group (AP) air abrasion and primer application, Group (S) 98% sulfuric acid etching for 60 s, Group (SP) Sulfuric acid and primer. Each group was subdivided into two subgroups based on resin cement type used for bonding LDC:1) subgroup (L) self- adhesive resin cement and 2) subgroup (B) conventional resin cement (n = 10). Thermocycling was done for all samples. The bond strength was assessed using the shear bond strength test (SBS). Failure mode analysis was done at 50X magnification with a stereomicroscope. Samples were chosen from each group for scanning electron microscope (SEM). The three-way nested ANOVA followed by Tukey's post hoc test were used for statistical analysis of results. Comparisons of effects were done utilizing one way ANOVA and (p < 0.05). RESULTS: The highest mean of shear bond strength values was demonstrated in Group of air abrasion with primer application using conventional resin cement (APB) (12.21 ± 2.14 MPa). Sulfuric acid groups showed lower shear bond strength values and the majority failed in thermocycling especially when no primer was applied. The failure mode analysis showed that the predominant failure type was adhesive failure between cement and PEEK, while the remaining was mixed failure between cement and PEEK. CONCLUSION: The air abrasion followed by primer application and conventional resin cement used for bonding Lithium Disilicate to PEEK achieved the best bond strength. Primer application did not have an effect when self-adhesive resin cement was used in air-abraded groups. Priming step is mandatory whenever sulfuric acid etching surface treatment is utilized for PEEK.


Subject(s)
Benzophenones , Dental Bonding , Dental Porcelain , Dental Stress Analysis , Ketones , Materials Testing , Polyethylene Glycols , Polymers , Resin Cements , Shear Strength , Surface Properties , Dental Bonding/methods , Acid Etching, Dental/methods , Sulfuric Acids , Ceramics/chemistry , Air Abrasion, Dental/methods , Aluminum Oxide , Dental Veneers , Dental Etching/methods , Humans
4.
J Environ Manage ; 359: 120963, 2024 May.
Article in English | MEDLINE | ID: mdl-38728980

ABSTRACT

An efficient recycling process is developed to recover valuable materials from overhaul slag and reduce its harm to the ecological environment. The high temperature sulfuric acid roasting - water leaching technology is innovatively proposed to prepare Li2CO3 from overhaul slag. Under roasting conditions, fluorine volatilizes into the flue gas with HF, lithium is transformed into NaLi(SO4), aluminum is firstly transformed into NaAl(SO4)2, and then decomposed into Al2O3, so as to selective extraction of lithium. Under the optimal roasting - leaching conditions, the leaching rate of lithium and aluminum are 95.6% and 0.9%, respectively. Then the processes of impurity removal, and settling lithium are carried out. The Li2CO3 with recovery rate of 72.6% and purity of 98.6% could be obtained under the best settling lithium conditions. Compared with the traditional process, this work has short flow, high controllability, remarkable technical, economic, and environmental benefits. This comprehensive recycling technology is suitable for overhaul slag, and has great practical application potential for the disposal of other hazardous wastes in electrolytic aluminum industry.


Subject(s)
Lithium Carbonate , Recycling , Sulfuric Acids , Sulfuric Acids/chemistry , Recycling/methods , Lithium Carbonate/chemistry , Aluminum/chemistry , Lithium/chemistry , Water/chemistry
5.
Dent Med Probl ; 61(2): 249-255, 2024.
Article in English | MEDLINE | ID: mdl-38652924

ABSTRACT

BACKGROUND: As polyether ether ketone (PEEK) is a relatively new material in dentistry, its bonding properties with regard to dental acrylic base materials are not fully known. To ensure the long-term success of removable dentures with a PEEK framework, the base materials must be well bonded to each other. OBJECTIVES: The study aimed to investigate the effects of different kinds of surface roughening treatment on PEEK and acrylic resin bonding. MATERIAL AND METHODS: Eighty PEEK specimens (N = 80) were randomly divided into 5 groups (n = 16 per group) and subjected to various surface roughening treatment (control, grinding, sandblasting, tribochemical silica coating (CoJet), and sulfuric acid etching). Heat-polymerized acrylic resin was applied to the treated surfaces of the PEEK specimens. The shear bond strength (SBS) test, environmental scanning electron microscopy (ESEM) analysis and three-dimensional (3D) surface topography analysis were performed. The statistical analysis of the data was conducted using the analysis of variance (ANOVA) and Tukey's multiple comparison test. RESULTS: The one-way ANOVA showed significant differences in the SBS values between the groups (p = 0.001). Sandblasting, tribochemical silica coating and sulfuric acid etching resulted in high SBS values (p = 0.001). The highest SBS values were observed in the sulfuric acid etching group (8.83 ±3.63 MPa), while the lowest SBS values were observed in the control group (3.33 ±2.50 MPa). CONCLUSIONS: The additional roughening treatment applied to the PEEK surface increases the bond strength with heat-polymerized acrylic resin.


Subject(s)
Acrylic Resins , Benzophenones , Dental Bonding , Ketones , Polyethylene Glycols , Polymers , Surface Properties , Pilot Projects , Ketones/chemistry , Polyethylene Glycols/chemistry , Acrylic Resins/chemistry , Microscopy, Electron, Scanning , Materials Testing , Humans , Shear Strength , Sulfuric Acids/chemistry , Dental Stress Analysis
6.
PLoS One ; 19(4): e0300021, 2024.
Article in English | MEDLINE | ID: mdl-38635818

ABSTRACT

Trypanosoma cruzi (T. cruzi) is the causative agent of Chagas' disease, a parasitic infection responsible for significant morbidity and mortality in Latin America. The current treatments have many serious drawbacks and new drugs are urgently required. In the UK, T. cruzi is classified by the Advisory Committee on Dangerous Pathogens (ACDP) as a Hazard Group 3 organism and strict safety practices must be adhered to when handling this pathogen in the laboratory. Validated inactivation techniques are required for safe T. cruzi waste disposal and removal from Containment Level 3 (CL3) facilities for storage, transportation and experimental analysis. Here we assess three T. cruzi. inactivation methods. These include three freeze-thaw cycles, chemical inactivation with Virkon disinfectant, and air drying on Whatman FTA cards (A, B, C, Elute) and on a Mitra microsampling device. After each treatment parasite growth was monitored for 4-6 weeks by microscopic examination. Three freeze-thaw cycles were sufficient to inactivate all T. cruzi CLBrener Luc life cycle stages and Silvio x10/7 A1 large epimastigote cell pellets up to two grams wet weight. Virkon treatment for one hour inactivated T. cruzi Silvio x10/7 subclone A1 and CLBrener Luc both in whole blood and cell culture medium when incubated at a final concentration of 2.5% Virkon, or at ≥1% Virkon when in tenfold excess of sample volume. Air drying also inactivated T. cruzi CLBrener Luc spiked blood when dried on FTA A, B or Elute cards for ≥30 minutes and on a Mitra Microsampler for two hours. However, T. cruzi CLBrener Luc were not inactivated on FTA C cards when dried for up to two hours. These experimentally confirmed conditions provide three validated T. cruzi inactivation methods which can be applied to other related ACDP Hazard Group 2-3 kinetoplastid parasites.


Subject(s)
Aminopyridines , Chagas Disease , Sulfuric Acids , Trypanosoma cruzi , Humans , Chagas Disease/parasitology , Peroxides
7.
Carbohydr Res ; 539: 109104, 2024 May.
Article in English | MEDLINE | ID: mdl-38643706

ABSTRACT

Cellulose nanocrystals (CNCs) are crystalline domains isolated from cellulosic fibers. They have been utilized in a wide range of applications, such as reinforcing fillers, antibacterial agents and manufacturing of biosensors. Whitin this context, the aim of this work was to obtain and analyze CNCs extracted from bacterial nanocellulose (BNC) using two distinct methods combined with milling pre-treatment: an acidic hydrolysis using 64 % sulfuric acid and an enzymatic hydrolysis using a commercial cellulase enzyme mixture. The CNCs obtained from the enzymatic route (e-CNCs) were observed to be spherical nanoparticles with diameter of 56 ± 11 nm. In contrast, the CNCs from the acid hydrolysis (a-CNCs) appeared as needle-shaped nanoparticles with a high aspect ratio with lengths/widths of 158 ± 64 nm/11 ± 2 nm. The surface zeta potential (ZP) of the a-CNCs was -30,8 mV, whereas the e-CNCs has a potential of +2.70 ± 3.32 mV, indicating that a-CNCs consisted of negatively charged particles with higher stability in solution. Although the acidic route resulted in nanocrystals with a slightly higher crystallinity index compared to the enzymatic route, e-CNCs was found to be more thermally stable than BNC and a-CNCs. Here, we also confirmed the safety of a-CNCs and e-CNCs using L929 cell line. Lastly, this article describes two different CNCs synthesis approaches that leads to the formation of nanoparticles with different dimensions, morphology and unique physicochemical properties. To the best of our knowledge, this is the first study to yield spherical nanoparticles as a result of BNC enzymatic treatment.


Subject(s)
Cellulose , Nanoparticles , Cellulose/chemistry , Nanoparticles/chemistry , Hydrolysis , Cellulase/chemistry , Cellulase/metabolism , Sulfuric Acids/chemistry , Animals , Mice , Particle Size
8.
Environ Sci Pollut Res Int ; 31(20): 29513-29524, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38578595

ABSTRACT

Municipal sludge generated from wastewater treatment plants can cause a serious environmental and economic burden. A novel hybrid conditioning strategy was developed to enhance the dewatering performance of sludge, employing 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4mim][CF3SO3]) treatment combined with H2SO4 acidification. Following conditioning, the capillary suction time ( CST normalized ), the specific resistance of filtration (SRF), and moisture content of the treated sludge were decreased to 1.99 ± 0.24 (s·L/g TSS), 1.33 ± 0.05 (1012 m/kg), and 72.01 ± 0.94%, respectively. The results were superior to those achieved with sludge treated solely by H2SO4 acidification or [C4mim][CF3SO3] alone. The biomacromolecules within the sludge flocs were dissolved by [C4mim][CF3SO3], while simultaneously, the microorganisms were inactivated. Consequently, the colloidal-like structures of the sludge flocs were destroyed. Additionally, the ionizable functional groups of the biomacromolecules were instantly protonated by the introduced H+ ions, and their negative charges were neutralized during the H2SO4 acidification process. The presence of H+ ions promoted the weakening of electrostatic repulsion between the sludge flocs. As a result, an enhancement of sludge dewaterability was obtained after treatment with [C4mim][CF3SO3] and H2SO4 acidification. The finding of the intensification mechanism of sludge dewaterability brought by hybrid treatment of acidification and [C4mim][CF3SO3] provides novel insights into the field of sludge disposal.


Subject(s)
Ionic Liquids , Sewage , Waste Disposal, Fluid , Sewage/chemistry , Ionic Liquids/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Sulfuric Acids/chemistry , Filtration
9.
Environ Sci Pollut Res Int ; 31(22): 32168-32182, 2024 May.
Article in English | MEDLINE | ID: mdl-38649599

ABSTRACT

Although calcined clay-blended cement offers higher performance and durability compared to neat Portland cement (PC), its extensive use of natural clay leads to the depletion of natural non-renewable resources. To address this concern, this study focuses on the utilization of supplementary cementitious materials-based waste products as a substitute for PC. The blended cement was optimized with a low replacement level of 10 wt.% calcined Fanja clay (FNJ) as a low-grade metakaolin (MK) and 90 wt.% PC. Various types of industrial solid wastes (ISWs) were incorporated into the PC-FNJ blend in place of PC. The ISWs utilized included silicate-rich wastes, such as silica fume (SF) and glass waste (GW) powder, as well as silicate-less waste, such as marble dust (MD). The results revealed that incorporating 10 wt.% SF into the PC-FNJ mixture resulted in a considerable decrease in the flow rate while improving its early mechanical strength. GW, as another silicate waste, also enhanced early mechanical properties but not as much as SF. However, the composite of PC-FNJ-GW exhibited higher workability than the neat PC, PC-FNJ, and PC-FNJ-SF. The mixtures of PC-FNJ-MD demonstrated the same trend. Embedding SF into PC-FNJ-GW and PC-FNJ-MD substantially decreased both their flowability and mechanical properties. Nonetheless, all composites containing ISWs showed higher flexural strength, higher resistivity to chloride diffusivity, and higher or comparable acid and salt resistivity.


Subject(s)
Construction Materials , Industrial Waste , Silicates , Solid Waste , Solid Waste/analysis , Industrial Waste/analysis , Silicates/chemistry , Construction Materials/analysis , Construction Materials/standards , Compressive Strength , Flexural Strength , Ultrasonics , Mechanical Phenomena , Sulfuric Acids/chemistry , Salts/chemistry , Permeability
10.
Sci Rep ; 14(1): 5542, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38448468

ABSTRACT

There are several industrial uses for carbon black (CB), an extremely fine powdered form of elemental carbon that is made up of coalesced particle aggregates and almost spherical colloidal particles. Most carbon black is produced from petroleum-derived feedstock, so there is a need to find an alternative method to produce CB, which relies on renewable resources such as algae and agricultural waste. A process involving hydrolysis, carbonization, and pyrolysis of green algae and sugarcane bagasse was developed, as the optimal hydrolysis conditions (16N sulfuric acid, 70 °C, 1 h, 1:30 g/ml GA or SC to sulfuric acid ratio), a hydrolysis ratio of 62% for SC and 85% for GA were achieved. The acidic solution was carbonized using a water bath, and the solid carbon was then further pyrolyzed at 900 °C. The obtained carbon black has a high carbon content of about 90% which is confirmed by EDX, XRD, and XPS analysis. By comparison carbon black from sugar cane bagasse (CBB) and carbon black from green algae Ulva lactuca (CBG) with commercial carbon black (CCB) it showed the same morphology which was confirmed by SEM analysis. The BET data, showed the high specific surface area of prepared CB, which was 605 (m2/g) for CBB and 424 (m2/g) for CBG compared with commercial carbon black (CBB) was 50 (m2/g), also the mean pore diameter of CBB, CBG and CCB indicated that CBB and CBG were rich in micropores, but CCB was rich in mesoporous according to IUPAC classification. This study might have created a technique that can be used to make carbon black from different kinds of biomass.


Subject(s)
Chlorophyta , Edible Seaweeds , Nanoparticles , Saccharum , Sulfuric Acids , Ulva , Cellulose , Soot , Carbon
11.
Waste Manag ; 179: 110-119, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38471249

ABSTRACT

Toxic substances, like fluoride salts present in spent cathode carbon (SCC), have been a great risk to the environment and public health. Our approach involves alkali leaching to eliminate soluble fluoride, followed by microwave hydrothermal acid leaching to efficiently remove insoluble CaF2 from SCC. The optimized conditions, including a temperature of 353 K, a solid-liquid ratio of 1:20, and a 60-minute reaction time, resulted in an impressive 95.6 % removal of fluoride from SCC. Various characterization techniques were employed to analyze the composition, micro-morphology, and elemental content of the materials before and after the leaching process. Furthermore, critical process parameters on the leaching separation of insoluble CaF2 during microwave hydrothermal acid leaching were systematically investigated. The study removal mechanism revealed the transformation of insoluble CaF2 in the process of microwave oxidation insertion-hydrothermal acid leaching for SCC. The kinetic characteristics of the two-stage leaching process of CaF2 at different temperatures were analyzed according to the shrinkage kernel model. The results indicate that the two-stage leaching process of CaF2 is affected by mixing control and by diffusion control, severally. The expansion of the graphite flake layer of SCC through oxidative intercalation was identified as a critical process for the thorough removal of CaF2. Microwave hydrothermal acid leaching demonstrated a 17 % improvement over traditional hydrothermal acid leaching within the same reaction time, showcasing a noteworthy enhancement in fluoride removal. Consequently, the microwave oxidizing intercalation-hydrothermal acid leaching treatment of SCC, as explored in this study, offers an effective approach for achieving deep defluoridation of SCC.


Subject(s)
Aluminum , Calcium Fluoride , Sulfuric Acids , Carbon , Fluorides , Microwaves
12.
Waste Manag ; 178: 311-320, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38428381

ABSTRACT

Animal slurry storage is an important ammonia (NH3) emission source. Sulfuric acid (H2SO4)-modified vermiculite coverage is a new promising technology for controlling NH3 emission from slurry storage. However, the underlying mechanisms in controlling the mitigation effect remain unclear. Here, a series of experiments to determine the effect of H2SO4 on the modified vermiculite properties, floating persistence, and NH3 mitigation effect was conducted. Results showed that abundant H2SO4 and sulfate remained on the outer surface and in the extended inner pores of the vermiculite with acidifying H+ concentrations higher than 5 M. An initial strong instantaneous acidification of surface slurry released rich carbon dioxide bubbles, strengthening cover floating performance. An acidification in the vermiculite cover layer and a good coverage inhibition interacted, being the two leading mechanisms for mitigating NH3 during initial 40-50 days of storage. The bacterial-amoA gene dominated the conversion of NH3 to nitrous oxide after 50 days of storage. Vermiculite with 5 M H+ modification reduced the NH3 emissions by 90 % within the first month of slurry storage and achieved a 64 % mitigation efficiency throughout the 84 days period. With the development of the aerial spraying equipment such as agricultural drones, acidifying vermiculite coverage hold promise as an effective method for reducing NH3 emission while absorbing nutrients from liquid slurry storage tank or lagoon. This design should now be tested under field conditions.


Subject(s)
Aluminum Silicates , Ammonia , Sulfuric Acids , Animals , Ammonia/analysis , Agriculture , Manure , Nitrous Oxide/analysis
13.
Astrobiology ; 24(4): 386-396, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38498680

ABSTRACT

Scientists have long speculated about the potential habitability of Venus, not at the 700K surface, but in the cloud layers located at 48-60 km altitudes, where temperatures match those found on Earth's surface. However, the prevailing belief has been that Venus' clouds cannot support life due to the cloud chemical composition of concentrated sulfuric acid-a highly aggressive solvent. In this work, we study 20 biogenic amino acids at the range of Venus' cloud sulfuric acid concentrations (81% and 98% w/w, the rest water) and temperatures. We find 19 of the biogenic amino acids we tested are either unreactive (13 in 98% w/w and 12 in 81% w/w) or chemically modified in the side chain only, after 4 weeks. Our major finding, therefore, is that the amino acid backbone remains intact in concentrated sulfuric acid. These findings significantly broaden the range of biologically relevant molecules that could be components of a biochemistry based on a concentrated sulfuric acid solvent.


Subject(s)
Venus , Amino Acids , Atmosphere/chemistry , Solvents , Sulfuric Acids/chemistry
14.
J Food Sci ; 89(5): 2933-2942, 2024 May.
Article in English | MEDLINE | ID: mdl-38534201

ABSTRACT

This study aimed at evaluating the efficacy of a blend of citric acid and hydrochloric acid (CP), peroxyacetic acid (PAA), and sulfuric acid (SA) against Salmonella and mesophilic aerobic plate counts (APC) on chicken hearts and livers. Samples were inoculated with a five-serovar cocktail of Salmonella at ca. 4.8 log CFU/g and treated by immersion with a water control (90 s), CP (5% v/v, 30 s), PAA (0.05% v/v or 500 ppm, 90 s), or SA (2% v/v, 30 s), all at 4°C and with mechanical agitation. Samples were vacuum packed and stored for up to 3 days at 4°C. Three independent replications were performed for each product, treatment, and time combination. The average Salmonella reductions in chicken hearts after 3 days were 1.33 ± 0.25, 1.40 ± 0.04, and 1.32 ± 0.12 log CFU/g for PAA, SA, and CP, respectively. For chicken livers, the values were 1.10 ± 0.12, 1.09 ± 0.19, and 0.96 ± 0.27 for PAA, SA, and CP, respectively. All antimicrobials reduced Salmonella counts in both chicken hearts and livers by more than one log, in contrast to the water control. All treatments effectively minimized the growth of APC for up to 3 days of refrigerated storage, and no differences in objective color values (L, a, or b) were observed. The poultry industry may use these antimicrobials as components of a multifaceted approach to mitigate Salmonella in nonconventional chicken parts.


Subject(s)
Chickens , Citric Acid , Heart , Liver , Peracetic Acid , Salmonella , Sulfuric Acids , Animals , Chickens/microbiology , Peracetic Acid/pharmacology , Liver/microbiology , Liver/drug effects , Citric Acid/pharmacology , Salmonella/drug effects , Salmonella/growth & development , Heart/drug effects , Heart/microbiology , Sulfuric Acids/pharmacology , Colony Count, Microbial , Food Microbiology , Food Preservation/methods , Anti-Bacterial Agents/pharmacology
15.
Environ Sci Pollut Res Int ; 31(13): 20651-20664, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383930

ABSTRACT

Traditional pyrolysis biochar has been widely employed to treat dye wastewater. However, there are some problems in the pyrolysis process, such as the generation of harmful gases and the low content of silico-oxygen functional groups to promote adsorption. Straw biochar (Ac-BCbm) was prepared by sulfuric acid co-ball milling method. The adsorption performance and adsorption mechanism of rhodamine B (RhB) under different preparation conditions and factors were investigated. The results showed that the adsorption rate of Ac-BCbm on RhB was up to 94.9%, which was 60.5% and 55.8% higher than that of ball-milling straw (STbm) and biochar prepared by pyrolysis (STBC600), respectively. The Ac-BCbm had better adaptability under different pH and common interfering ions for remove RhB. Characterization and DFT simulation analysis revealed that the sulfuric acid co-ball milling process promoted the formation of Si-OH and Si-O-CH3 oxygen-containing functional groups of Si component in straw, which enhanced the hydrogen bonding interactions and effectively improved the adsorption efficiency. This study investigated a new strategy for biochar preparation by sulfuric acid co-ball milling, which provides an additional development direction for the efficient resource utilization of straw.


Subject(s)
Rhodamines , Sulfuric Acids , Water Pollutants, Chemical , Adsorption , Water Pollutants, Chemical/analysis , Charcoal/chemistry , Oxygen
16.
Int J Biol Macromol ; 263(Pt 1): 130111, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38346614

ABSTRACT

Sugarcane bagasse was pretreated with dilute phosphoric acid or sulfuric acid to facilitate cellulose hydrolysis and lignin extraction. With phosphoric acid, only 8 % of the initial cellulose was lost after delignification, whereas pretreatment with sulfuric acid resulted in the solubilization of 38 % of the initial cellulose. After enzymatic hydrolysis, the process using phosphoric acid produced approximately 35 % more glucose than that using sulfuric acid. In general, the lignins showed 95-97 % purity (total lignin, w/w), an average molar mass of 9500-10,200 g mol-1, a glass transition temperature of 140-160 °C, and a calorific value of 25 MJ kg-1. Phosphoric acid lignin (PAL) was slightly more polar than sulfuric acid lignin (SAL). PAL had 13 % more oxidized units and 20 % more OH groups than SAL. Regardless of the acid used, the lignins shared similar properties, but differed slightly in the characteristics of their functional groups and chemical bonds. These findings show that pretreatment catalyzed with either of the two acids resulted in lignin with sufficiently good characteristics for use in industrial processes.


Subject(s)
Cellulose , Saccharum , Cellulose/chemistry , Lignin/chemistry , Saccharum/chemistry , Hydrolysis , Phosphoric Acids , Sulfuric Acids
17.
Waste Manag ; 177: 135-145, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38325014

ABSTRACT

The surging affluent in society, concomitant with increasing global demand for electrical and electronic devices, has led to a sharp rise in e-waste generation. E-wastes contain significant amounts of precious metals, such as gold, which can be recovered and reused, thus reducing the environmental impact of mining new metals. Selective recovery using sustainable and cost-effective materials and methods is therefore vital. This study undertook a detailed evaluation of low-cost biomass-derived activated carbon (AC) for selective recovery of Au from simulated e-waste streams. Utilizing high-performance synthesized H2SO4-AC, the adsorption mechanisms were explicated through a combination of characterization techniques, i.e., FE-SEM, BET, TGA, XRD, FTIR, XPS, and DFT simulations to conceptualize the atomic and molecular level interactions. Optimization of coordination geometries between model H2SO4-AC and anionic complexes revealed the most stable coordination for AuCl4- (binding energy, Eb = -4064.15 eV). The Au selectivity was further enhanced by reduction of Au(III) to Au(0), as determined by XRD and XPS. The adsorption reaction was relatively fast (∼5h), and maximum Au uptake reached 1679.74 ± 37.66 mg/g (among highest), achieved through adsorption isotherm experiments. Furthermore, a mixture of 0.5 M thiourea/1 M HCl could effectively elute the loaded Au and regenerate the spent AC. This study presents radical attempts to examine in detail, the synergistic effects of H2SO4 activation on biomass-derived ACs for selective recovery of Au from complex mixtures. The paper therefore describes a novel approach for the selective recovery of Au from e-wastes using multifunctional biomass-derived H2SO4-AC.


Subject(s)
Charcoal , Gold , Biomass , Sulfuric Acids
18.
BMC Infect Dis ; 24(1): 212, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365598

ABSTRACT

AIMS: We investigated the antibacterial efficacy of Umonium38 and Virkon® against Burkholderia pseudomallei, Escherichia coli, Pseudomonas aeruginosa and Methicillin-Resistant Staphylococcus aureus (MRSA) up to 14 days following treatment. METHODS AND RESULTS: Umonium38 was diluted to 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3%, tested against the bacterial strains at various contact times (15 min to 24 h), and incubated for up to 14 days. A minimum concentration of 0.5% Umonium38 with a contact time of 15 min effectively killed approximately 108 CFU/ml of all four bacterial species. No growth was observed on agar plates from day 0 until day 14 for all six concentrations. The bacteria were also inactivated by a 30-minute treatment time using Virkon® 1% solution. CONCLUSIONS: Umonium38 effectively inactivates B. pseudomallei, E. coli, P. aeruginosa and MRSA at a concentration of ≥ 0.5% with a contact time of at least 15 min. The antimicrobial effect of Umonium38 remained for 14 days.


Subject(s)
Burkholderia pseudomallei , Methicillin-Resistant Staphylococcus aureus , Peroxides , Sulfuric Acids , Humans , Escherichia coli , Pseudomonas aeruginosa , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Bacteria
19.
Environ Res ; 248: 118286, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38280524

ABSTRACT

This study assesses the environmental impact of pine chip-based biorefinery processes, focusing on bioethanol, xylonic acid, and lignin production. A cradle-to-gate Life Cycle Assessment (LCA) is employed, comparing a novel biphasic pretreatment method (p-toluenesulfonic acid (TsOH)/pentanol, Sc-1) with conventional sulfuric acid pretreatment (H2SO4, Sc-2). The analysis spans biomass handling, pretreatment, enzymatic hydrolysis, yeast fermentation, and distillation. Sc-1 yielded an environmental impact of 1.45E+01 kPt, predominantly affecting human health (96.55%), followed by ecosystems (3.07%) and resources (0.38%). Bioethanol, xylonic acid, and lignin contributed 32.61%, 29.28%, and 38.11% to the total environmental burdens, respectively. Sc-2 resulted in an environmental burden of 1.64E+01 kPt, with a primary impact on human health (96.56%) and smaller roles for ecosystems (3.07%) and resources (0.38%). Bioethanol, xylonic acid, and lignin contributed differently at 22.59%, 12.5%, and 64.91%, respectively. Electricity generation was predominant in both scenarios, accounting for 99.05% of the environmental impact, primarily driven by its extensive usage in biomass handling and pretreatment processes. Sc-1 demonstrated a 13.05% lower environmental impact than Sc-2 due to decreased electricity consumption and increased bioethanol and xylonic acid outputs. This study highlights the pivotal role of pretreatment methods in wood-based biorefineries and underscores the urgency of sustainable alternatives like TsOH/pentanol. Additionally, adopting greener electricity generation, advanced technologies, and process optimization are crucial for reducing the environmental footprint of waste-based biorefineries while preserving valuable bioproduct production.


Subject(s)
Ecosystem , Lignin , Sulfuric Acids , Humans , Pentanols , Biotechnology/methods , Biomass , Saccharomyces cerevisiae , Hydrolysis , Biofuels
20.
Chem Pharm Bull (Tokyo) ; 72(1): 75-79, 2024.
Article in English | MEDLINE | ID: mdl-38233134

ABSTRACT

The oxidative cleavage reaction of pyrrolidine-2-methanols to γ-lactams has been described. In this reaction, [4-iodo-3-(isopropylcarbamoyl)phenoxy]acetic acid and powdered Oxone (2KHSO5·KHSO4·K2SO4) were employed as the catalyst and co-oxidant, respectively. The reaction is efficient and environmentally benign because it produces various lactams from readily available substrates in moderate to excellent yields using organocatalyst and inorganic non-toxic co-oxidant.


Subject(s)
Methanol , Sulfuric Acids , Oxidation-Reduction , Oxidants
SELECTION OF CITATIONS
SEARCH DETAIL
...