Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
Eur J Pharmacol ; 966: 176375, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38307381

ABSTRACT

The role of the Wnt/ß-catenin signaling pathway in epilepsy and the effects of its modulators as efficacious treatment options, though postulated, has not been sufficiently investigated. We evaluated the involvement of ß-catenin and GSK-3ß, the significant proteins in this pathway, in the lithium chloride-pilocarpine-induced status epilepticus model in rodents to study acute phase of temporal lobe epilepsy (TLE). The modulators studied were 6-BIO, a GSK-3ß inhibitor and Sulindac, a Dvl protein inhibitor. The disease group exhibited increased seizure score and seizure frequency, and the assessment of neurobehavioral parameters indicated notable alterations. Furthermore, histopathological examination of hippocampal brain tissues revealed significant neurodegeneration. Immunohistochemical study of hippocampus revealed neurogenesis in 6-BIO and sulindac groups. The gene and protein expression by RT-qPCR and western blotting studies indicated Wnt/ß-catenin pathway downregulation and increased apoptosis in the acute phase of TLE. 6-BIO was very efficient in upregulating the Wnt pathway, decreasing neuronal damage, increasing neurogenesis in hippocampus and decreasing seizure score and frequency in comparison to sulindac. This suggests that both GSK-3ß and ß-catenin are potential and novel drug targets for acute phase of TLE, and treatment options targeting these proteins could be beneficial in successfully managing acute epilepsy. Further evaluation of 6-BIO to explore its therapeutic potential in other models of epilepsy should be conducted.


Subject(s)
Epilepsy, Temporal Lobe , Status Epilepticus , Rats , Animals , Pilocarpine , Wnt Signaling Pathway/physiology , Lithium/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , beta Catenin/metabolism , Sulindac/adverse effects , Sulindac/metabolism , Hippocampus/metabolism , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy , Status Epilepticus/metabolism , Seizures/chemically induced , Seizures/drug therapy , Seizures/metabolism , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/drug therapy
2.
Chem Biol Interact ; 382: 110644, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37499995

ABSTRACT

Cytochrome P450 4A11 (CYP4A11) has many endogenous and exogenous compounds containing a carboxyl group in their structure as substrates. If drugs with this characteristic potently attenuate the catalytic function of CYP4A11, drug-drug interactions may occur. Acidic non-steroidal anti-inflammatory drugs (NSAIDs) possess a carboxylic acid in their structure. However, it remains unclear whether these drugs inhibit CYP4A11 activity. The present study examined the inhibitory effects of acidic NSAIDs on CYP4A11 activity using human liver microsomes (HLMs) and recombinant CYP4A11. Sulindac sulfide, ibuprofen, and flurbiprofen effectively decreased the luciferin-4A O-demethylase activity of HLMs and recombinant CYP4A11 (inhibition rates of 30-96% at an inhibitor concentration of 100 µM), while salicylic acid, aspirin, diclofenac, mefenamic acid, indomethacin, etodolac, ketoprofen, loxoprofen, S-naproxen, pranoprofen, zaltoprofen, and oxaprozin exhibited weaker inhibitory activity (inhibition rates up to 23%). Among the drugs tested, sulindac sulfide was the most potent inhibitor of CYP4A11 activity. A kinetic analysis of the inhibition of CYP4A11 by sulindac sulfide revealed mixed-type inhibition for HLMs (Ki = 3.38 µM) and recombinant CYP4A11 (Ki = 4.19 µM). Sulindac sulfide is a pharmacologically active metabolite of sulindac (sulfoxide form), which is also oxidized to sulindac sulfone. To elucidate the role of a sulfur atom of sulindac sulfide in the inhibition of CYP4A11, the inhibitory effects of sulindac sulfide and its oxidized forms on CYP4A11 activity were examined. The potency of inhibition against HLMs was greater in the order of sulindac sulfide, sulindac, and sulindac sulfone; IC50 values were 6.16, 52.7, and 71.6 µM, respectively. The present results indicate that sulindac sulfide is a potent inhibitor of CYP4A11. These results and the molecular modeling of CYP4A11 with sulindac sulfide and its oxidized forms suggest that a sulfur atom of sulindac sulfide as well as its carboxylic acid play important roles in the inhibition of CYP4A11.


Subject(s)
Carboxylic Acids , Sulindac , Humans , Sulindac/pharmacology , Sulindac/metabolism , Kinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology
3.
Mol Pharm ; 19(7): 2542-2548, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35729720

ABSTRACT

The first aim of this study was to evaluate the usefulness of optimized human fecal material in simulating sulforeductase activity in the lower intestine by assessing bacterial degradation of sulindac and sulfinpyrazone, two sulforeductase substrates. The second aim was to evaluate the usefulness of drug degradation half-life generated in simulated colonic bacteria (SCoB) in informing PBPK models. Degradation experiments of sulfinpyrazone and of sulindac in SCoB were performed under anaerobic conditions using recently described methods. For sulfinpyrazone, the abundance of clinical data allowed for construction of a physiologically based pharmacokinetic (PBPK) model and evaluation of luminal degradation clearance determined from SCoB data. For sulindac, the availability of sulindac sulfide and sulindac sulfone standards allowed for evaluating the formation of the main metabolite, sulindac sulfide, during the experiments in SCoB. Both model compounds degraded substantially in SCoB. The PBPK model was able to adequately capture exposure of sulfinpyrazone and its sulfide metabolite in healthy subjects, in ileostomy and/or colectomy subjects, and in healthy subjects pretreated with metoclopramide by implementing degradation half-lives in SCoB to calculate intrinsic colon clearance. Degradation rates of sulindac and formation rates of sulindac sulfide in SCoB were almost identical, in line with in vivo data suggesting the sulindac sulfide is the primary metabolite in the lower intestine. Experiments in SCoB were useful in simulating sulforeductase related bacterial degradation activity in the lower intestine. Degradation half-life calculated from experiments in SCoB is proven useful for informing a predictive PBPK model for sulfinpyrazone.


Subject(s)
Sulfinpyrazone , Sulindac , Bacteria , Humans , Intestines , Kinetics , Sulfinpyrazone/metabolism , Sulindac/metabolism
4.
Cardiovasc Drugs Ther ; 36(6): 1061-1073, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34410548

ABSTRACT

PURPOSE: Macrophage apoptosis coupled with a defective phagocytic clearance of the apoptotic cells promotes plaque necrosis in advanced atherosclerosis, which causes acute atherothrombotic vascular disease. Nonsteroidal anti-inflammatory drug sulindac derivative K-80003 treatment was previously reported to dramatically attenuate atherosclerotic plaque progression and destabilization. However, the underlying mechanisms are not fully understood. This study aimed to determine the role of K-80003 on macrophage apoptosis and elucidate the underlying mechanism. METHODS: The mouse model of vulnerable carotid plaque in ApoE-/- mice was developed in vivo. Consequently, mice were randomly grouped into two study groups: the control group and the K-80003 group (30 mg/kg/day). Samples of carotid arteries were collected to determine atherosclerotic necrotic core area, cellular apoptosis, and oxidative stress. The effects of K-80003 on RAW264.7 macrophage apoptosis, oxidative stress, and autophagic flux were also examined in vitro. RESULTS: K-80003 significantly suppressed necrotic core formation and inhibited cellular apoptosis of vulnerable plaques. K-80003 can also inhibit 7-ketocholesterol-induced macrophage apoptosis in vitro. Furthermore, K-80003 inhibited intraplaque cellular apoptosis mainly through the suppression of oxidative stress, which is a key cause of advanced lesional macrophage apoptosis. Mechanistically, K-80003 prevented 7-ketocholesterol-induced impairment of autophagic flux in macrophages, evidenced by the decreased LC3II and SQSTM1/p62 expression, GFP-RFP-LC3 cancellation upon K-80003 treatment. CONCLUSION: Inhibition of macrophage apoptosis and necrotic core formation by autophagy-mediated reduction of oxidative stress is one mechanism of the suppression of plaque progression and destabilization by K-80003.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Animals , Mice , Apoptosis , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Necrosis/metabolism , Plaque, Atherosclerotic/metabolism , Sulindac/metabolism , Sulindac/pharmacology
5.
Pharm Res ; 37(3): 44, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31993760

ABSTRACT

PURPOSE: This prospective study aimed to evaluate the effects of genetic polymorphisms in sulindac-related metabolizing enzyme genes including FMO3 and AOX1 on the population pharmacokinetics of sulindac in 58 pregnant women with preterm labor. METHODS: Plasma samples were collected at 1.5, 4, and 10 h after first oral administration of sulindac. Plasma concentrations of sulindac and its active metabolite (sulindac sulfide) were determined, and pharmacokinetic analysis was performed with NONMEM 7.3. RESULTS: The mean maternal and gestational ages at the time of dosing were 32.5 ± 4.4 (range, 20-41) years and 27.4 ± 4.4 (range, 16.4-33.4) weeks, respectively. In the population pharmacokinetic analysis, one depot compartment model of sulindac with absorption lag time best described the data. The metabolism of sulindac and sulindac sulfide was described using Michaelis-Menten kinetics. In stepwise modeling, gestational age impacted volume of distribution (Vc), and FMO3 rs2266782 was shown by the Michaelis constant to affect conversion of sulindac sulfide to sulindac (KM32); these were retained in the final model. CONCLUSIONS: Genetic polymorphisms of FMO3 and AOX1 could affect the pharmacokinetics of sulindac in women who undergo preterm labor. The results of this study could help clinicians develop individualized treatment plans for administering sulindac.


Subject(s)
Aldehyde Oxidase/genetics , Anti-Inflammatory Agents/pharmacokinetics , Obstetric Labor, Premature/metabolism , Oxygenases/genetics , Polymorphism, Genetic/physiology , Sulindac/pharmacokinetics , Adult , Aldehyde Oxidase/metabolism , Female , Genotype , Gestational Age , Humans , Models, Biological , Oxygenases/metabolism , Pregnancy , Prospective Studies , Signal Transduction , Sulindac/analogs & derivatives , Sulindac/metabolism
6.
Bioorg Chem ; 85: 413-419, 2019 04.
Article in English | MEDLINE | ID: mdl-30665035

ABSTRACT

Retinoid X receptor alpha (RXRα), a central member of the nuclear receptor superfamily and a key regulator of many signal transduction pathways, has been an attractive drug target. We previously discovered that an N-terminally truncated form of RXRα can be induced by specific ligands to form homotetramers, which, as a result of conformational selection, forms the basis for inhibiting the nongenomic activation of RXRα. Here, we report the identification and characterization of atorvastatin as a new RXRα tetramer stabilizer by using structure-based virtual screening and demonstrate that virtual library screening can be used to aid in identifying RXRα ligands that can induce its tetramerization. In this study, docking was applied to screen the FDA-approved small molecule drugs in the DrugBank 4.0 collection. Two compounds were selected and purchased for testing. We showed that the selected atorvastatin could bind to RXRα to promote RXRα-LBD tetramerization. We also showed that atorvastatin possessed RXRα-dependent apoptotic effects. In addition, we used a chemical approach to aid in the studies of the binding mode of atorvastatin.


Subject(s)
Atorvastatin/pharmacology , Protein Multimerization/drug effects , Retinoid X Receptor alpha/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Atorvastatin/chemistry , Atorvastatin/metabolism , Binding Sites , Drug Evaluation, Preclinical , Humans , Ligands , MCF-7 Cells , Protein Binding/drug effects , Protein Domains , Protein Stability/drug effects , Sulindac/analogs & derivatives , Sulindac/metabolism
7.
Biochem Biophys Res Commun ; 505(4): 1203-1210, 2018 11 10.
Article in English | MEDLINE | ID: mdl-30327144

ABSTRACT

Sulindac sulfone is a metabolite of sulindac, a non-steroidal anti-inflammatory drug (NSAID), without anti-inflammatory ability. However, sulindac sulfone has been reported to significantly reduce polyps in patients with colorectal adenomatous polyposis in clinical trials. Thus, sulindac sulfone is expected to be useful for the chemoprevention of neoplasia with few side effects related to anti-inflammatory ability. To date, the molecular targets of sulindac sulfone have not yet fully investigated. Therefore, in order to newly identify sulindac sulfone-binding proteins, we generated sulindac sulfone-fixed FG beads and purified sulindac sulfone-binding proteins from human colon cancer HT-29 cells. we identified mitochondrial outer membrane proteins voltage-dependent anion channel (VDAC) 1 and VDAC2 as novel molecular targets of sulindac sulfone, and sulindac sulfone directly bound to both VDAC1 and VDAC2. Double knockdown of VDAC1 and VDAC2 by siRNA inhibited growth and arrested the cell cycle at G1 phase in HT-29 cells. Depletion of VDAC1 and VDAC2 also inhibited the mTORC1 pathway with a reduction in cyclin D1. Interestingly, these effects were consistent with those of sulindac sulfone against human colon cancer cells, suggesting that sulindac sulfone negatively regulates the function of VDAC1 and VDAC2. In the present study, our data suggested that VDAC1 and VDAC2 are direct targets of sulindac sulfone which suppresses the mTORC1 pathway and induces G1 arrest.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/pharmacology , Colonic Neoplasms/metabolism , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Sulindac/analogs & derivatives , Voltage-Dependent Anion Channel 1/antagonists & inhibitors , Voltage-Dependent Anion Channel 2/antagonists & inhibitors , Adenosine Triphosphate/biosynthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Cell Cycle Checkpoints , Colonic Neoplasms/pathology , HT29 Cells , Humans , Sulindac/chemistry , Sulindac/metabolism , Sulindac/pharmacology , Voltage-Dependent Anion Channel 1/metabolism , Voltage-Dependent Anion Channel 2/metabolism
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt B: 265-82, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25448930

ABSTRACT

Oxygen metabolism has an important role in the pathogenesis of rheumatoid arthritis (RA). Reactive oxygen species (ROS) are produced in the course of cellular oxidative phosphorylation and by activated phagocytic cells during oxidative bursts, exceed the physiological buffering capacity and result in oxidative stress. ROS result in oxidation of serum albumin, which causes a number of structural changes in the spatial structure, may influence the binding and cause significant drug interactions, particularly in polytherapy. During the oxidation modification of amino acid residues, particularly cysteine and methionine may occur. The aim of the study was to investigate the influence of oxidative stress on human serum albumin (HSA) structure and evaluate of possible alterations in the binding of the drug to oxidized human serum albumin (oHSA). HSA was oxidized by a chloramine-T (CT). CT reacts rapidly with sulfhydryl groups and at pH 7.4 the reaction was monitored by spectroscopic techniques. Modification of free thiol group in the Cys residue in HSA was quantitatively determined by the use of Ellman's reagent. Changes of albumin conformation were examined by comparison of modified (oHSA) and nonmodified human serum albumin (HSA) absorption spectra, emission spectra, red-edge shift (REES) and synchronous spectroscopy. Studies of absorption spectra indicated that changes in the value of absorbance associated with spectral changes in the region of 200-250 nm involve structural alterations in peptide backbone conformation. Synchronous fluorescence spectroscopy technique confirmed changes of position of tryptophanyl and tyrosyl residues fluorescent band caused by CT. Moreover analysis of REES effect allowed to observe structural changes caused by CT in the region of the hydrophobic pocket containing the tryptophanyl residue. Effect of oxidative stress on binding of anti-rheumatic drugs, sulfasalazine (SSZ) and sulindac (SLD) in the high and low affinity binding sites was investigated by spectrofluorescence, ITC and (1)H NMR spectroscopy, respectively. SSZ and SLD change the affinity of each other to the binding site in non- and modified human serum albumin. The presence of SLD causes the increase of association constant (Ka) of SSZ-oHSA system and the strength of binding and the stability of the complexes has been observed while in the presence of SSZ a displacement of SLD from the SLD-HSA has been recorded. The analysis of (1)H NMR spectral parameters i.e. changes of chemical shifts of the drug indicate that the presence of SSZ and SLD have a mutual influence on changes in the affinity of human serum albumin binding site and this competition takes place not only due to the additional drug but also to the oxidation of HSA.


Subject(s)
Oxidative Stress , Serum Albumin/chemistry , Serum Albumin/metabolism , Calorimetry , Humans , Kinetics , Protein Binding , Proton Magnetic Resonance Spectroscopy , Spectrometry, Fluorescence , Sulfasalazine/chemistry , Sulfasalazine/metabolism , Sulindac/chemistry , Sulindac/metabolism , Temperature
9.
Pharm Res ; 32(5): 1663-75, 2015 May.
Article in English | MEDLINE | ID: mdl-25392229

ABSTRACT

PURPOSE: The purpose of the study was to evaluate the metabolism, pharmacokinetics and efficacy of phospho-NSAIDs in Ces1c-knockout mice. METHODS: Hydrolysis of phospho-NSAIDs by Ces1c was investigated using Ces1c-overexpressing cells. The rate of phospho-NSAID hydrolysis was compared between wild-type, Ces1c+/- and Ces1c-/- mouse plasma in vitro, and the effect of plasma Ces1c on the cytotoxicity of phospho-NSAIDs was evaluated. Pharmacokinetics of phospho-sulindac was examined in wild-type and Ces1c-/- mice. The impact of Ces1c on the efficacy of phospho-sulindac was investigated using lung and pancreatic cancer models in vivo. RESULTS: Phospho-NSAIDs were extensively hydrolyzed in Ces1c-overexpressing cells. Phospho-NSAID hydrolysis in wild-type mouse plasma was 6-530-fold higher than that in the plasma of Ces1c-/- mice. Ces1c-expressing wild-type mouse serum attenuated the in vitro cytotoxicity of phospho-NSAIDs towards cancer cells. Pharmacokinetic studies of phospho-sulindac using wild-type and Ces1c-/- mice demonstrated 2-fold less inactivation of phospho-sulindac in the latter. Phospho-sulindac was 2-fold more efficacious in inhibiting the growth of lung and pancreatic carcinoma in Ces1c -/- mice, as compared to wild-type mice. CONCLUSIONS: Our results indicate that intact phospho-NSAIDs are the pharmacologically active entities and phospho-NSAIDs are expected to be more efficacious in humans than in rodents due to their differential expression of carboxylesterases.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antineoplastic Agents/therapeutic use , Aspirin/analogs & derivatives , Carboxylic Ester Hydrolases/genetics , Carcinoma, Lewis Lung/drug therapy , Ibuprofen/analogs & derivatives , Organophosphates/therapeutic use , Organophosphorus Compounds/therapeutic use , Sulindac/analogs & derivatives , Animals , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacokinetics , Aspirin/metabolism , Aspirin/pharmacokinetics , Aspirin/therapeutic use , Carboxylic Ester Hydrolases/blood , Carcinoma, Lewis Lung/genetics , Carcinoma, Lewis Lung/metabolism , Ibuprofen/metabolism , Ibuprofen/pharmacokinetics , Ibuprofen/therapeutic use , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Organophosphates/metabolism , Organophosphates/pharmacokinetics , Organophosphorus Compounds/metabolism , Organophosphorus Compounds/pharmacokinetics , Sulindac/metabolism , Sulindac/pharmacokinetics , Sulindac/therapeutic use
10.
Anal Chim Acta ; 855: 51-9, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25542089

ABSTRACT

We determine the association constants for ligand-protein complex formation using the flow injection method. We carry out the measurements at high flow rates (F=1 mL min(-1)) of a carrier phase. Therefore, determination of the association constant takes only a few minutes. Injection of 1 nM of the ligand (10 µL of 1 µM concentration of the ligand solution) is sufficient for a single measurement. This method is tested and verified for a number of complexes of selected drugs (cefaclor, etodolac, sulindac) with albumin (BSA). We obtain K=4.45×10(3) M(-1) for cefaclor, K=1.00×10(5) M(-1) for etodolac and K=1.03×10(5) M(-1) for sulindac in agreement with the literature data. We also determine the association constants of 20 newly synthesized 3ß- and 3α-aminotropane derivatives with potential antipsychotic activity--ligands of 5-HT1A, 5-HT2A and D2 receptors with the albumin. Results of the studies reported here indicate that potential antipsychotic drugs bind weakly to the transporter protein (BSA) with K≈10(2)-10(3) M(-1). Our method allows measuring K in a wide range of values (10(2)-10(9) M(-1)). This range depends only on the solubility of the ligand and sensitivity of the detector.


Subject(s)
Pharmaceutical Preparations/metabolism , Serum Albumin, Bovine/metabolism , Animals , Antipsychotic Agents/metabolism , Cattle , Cefaclor/metabolism , Etodolac/metabolism , Ligands , Protein Binding , Sulindac/metabolism , Time Factors , Tropanes/metabolism
11.
Biochem Pharmacol ; 91(2): 249-55, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25044307

ABSTRACT

Phospho-sulindac amide (PSA) is a novel potential anti-cancer and anti-inflammatory agent. Here we report the metabolism of PSA in vitro. PSA was rapidly hydroxylated at its butane-phosphate moiety to form two di-hydroxyl-PSA and four mono-hydroxyl-PSA metabolites in mouse and human liver microsomes. PSA also can be oxidized or reduced at its sulindac moiety to form PSA sulfone and PSA sulfide, respectively. PSA was mono-hydroxylated and cleared more rapidly in mouse liver microsomes than in human liver microsomes. Of eight major human cytochrome P450s (CYPs), CYP3A4 and CYP2D6 exclusively catalyzed the hydroxylation and sulfoxidation reactions of PSA, respectively. We also examined the metabolism of PSA by three major human flavin monooxygenases (FMOs). FMO1, FMO3 and FMO5 were all capable of catalyzing the sulfoxidation (but not hydroxylation) of PSA, with FMO1 being by far the most active isoform. PSA was predominantly sulfoxidized in human kidney microsomes because FMO1 is the dominant isoform in human kidney. PSA (versus sulindac) is a preferred substrate of both CYPs and FMOs, likely because of its greater lipophilicity and masked-COOH group. Ketoconazole (a CYP3A4 inhibitor) and alkaline pH strongly inhibited the hydroxylation of PSA, but moderately suppressed its sulfoxidation in liver microsomes. Together, our results establish the metabolic pathways of PSA, identify the major enzymes mediating its biotransformations and reveal significant inter-species and inter-tissue differences in its metabolism.


Subject(s)
Antineoplastic Agents/metabolism , Organophosphates/metabolism , Sulindac/metabolism , Animals , Antifungal Agents/pharmacokinetics , Antineoplastic Agents/chemistry , Cells, Cultured , Drug Interactions , Enzyme Inhibitors/pharmacokinetics , Hepatocytes/metabolism , Humans , Hydrogen-Ion Concentration , Ketoconazole/pharmacokinetics , Mice , Microsomes, Liver/metabolism , Molecular Structure , Organophosphates/chemistry , Quinidine/pharmacokinetics , Rats , Sulindac/chemistry
12.
Biochem Pharmacol ; 90(2): 159-65, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24821112

ABSTRACT

Liver microsomal flavin-containing monooxygenases (FMO, EC 1.14.13.8) 1 and 3 were functionally characterized in terms of expression levels and molecular catalytic capacities in human, cynomolgus monkey, rat, and minipig livers. Liver microsomal FMO3 in humans and monkeys and FMO1 and FMO3 in rats and minipigs could be determined immunochemically with commercially available anti-human FMO3 peptide antibodies or rat FMO1 peptide antibodies. With respect to FMO-dependent N-oxygenation of benzydamine and tozasertib and S-oxygenation of methimazole and sulindac sulfide activities, rat and minipig liver microsomes had high maximum velocity values (Vmax) and high catalytic efficiency (Vmax/Km, Michaelis constant) compared with those for human or monkey liver microsomes. Apparent Km values for recombinantly expressed rat FMO3-mediated N- and S-oxygenations were approximately 10-100-fold those of rat FMO1, although these enzymes had similar Vmax values. The mean catalytic efficiencies (Vmax/Km, 1.4 and 0.4 min(-1)µM(-1), respectively) of recombinant human and monkey FMO3 were higher than those of FMO1, whereas Vmax/Km values for rat and minipig FMO3 were low compared with those of FMO1. Minipig liver microsomal FMO1 efficiently catalyzed N- and S-oxygenation reactions; in addition, the minipig liver microsomal FMO1 concentration was higher than the levels in rats, humans, and monkeys. These results suggest that liver microsomal FMO1 could contribute to the relatively high FMO-mediated drug N- and S-oxygenation activities in rat and minipig liver microsomes and that lower expression of FMO1 in human and monkey livers could be a determinant factor for species differences in liver drug N- and S-oxygenation activities between experimental animals and humans.


Subject(s)
Benzydamine/metabolism , Methimazole/metabolism , Microsomes, Liver/enzymology , Oxygenases/metabolism , Piperazines/metabolism , Sulindac/analogs & derivatives , Amino Acid Sequence , Animals , Humans , Inactivation, Metabolic , Kinetics , Liver/enzymology , Macaca fascicularis , Male , Molecular Sequence Data , Oxygenases/classification , Oxygenases/genetics , Phylogeny , Rats , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Species Specificity , Sulindac/metabolism , Swine , Swine, Miniature
13.
Cell Biochem Biophys ; 68(2): 301-19, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23857431

ABSTRACT

In the present study we have elaborated the putative mechanisms could be followed by the non-steroidal anti-inflammatory drugs (NSAIDs) viz. Sulindac and Celecoxib in the regulation of cell cycle checkpoints along with tumor suppressor proteins to achieve their chemopreventive effects in the initial stages of experimental colorectal cancer. Male Sprague-Dawley rats were administered with 1,2-dimethylhydrazine dihydrochloride (DMH) to produce early stages of colorectal carcinogenesis. The mRNA expression profiles of various target genes were analyzed by RT-PCR and validated by quantitative real-time PCR, whereas protein expression was analyzed by Western blotting. Nuclear localization of transcription factors or other nuclear proteins was analyzed by electrophoretic mobility shift assay and immunofluorescence. Flowcytometry was performed to analyze the differential apoptotic events and cell cycle regulation. Molecular docking studies with different target proteins were also performed to deduce the various putative mechanisms of action followed by Sulindac and Celecoxib. We observed that DMH administration has abruptly increased the proliferation of colonic cells which is macroscopically visible in the form of multiple plaque lesions and co-relates with the disturbed molecular mechanisms of cell cycle regulation. However, co-administration of NSAIDs has shown regulatory effects on cell cycle checkpoints via induction of various tumor suppressor proteins. We may conclude that Sulindac and Celecoxib could possibly follow p53/p21 mediated regulation of cell proliferation, where down regulation of NF-κB signaling and activation of PPARγ might serve as important additional events in vivo.


Subject(s)
Apoptosis/drug effects , Colorectal Neoplasms/physiopathology , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Pyrazoles/pharmacology , Sulfonamides/pharmacology , Sulindac/pharmacology , Tumor Suppressor Protein p53/metabolism , Up-Regulation/drug effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Binding Sites , Celecoxib , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cyclooxygenase 1/chemistry , Cyclooxygenase 1/metabolism , Drug Administration Schedule , Male , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Molecular Docking Simulation , NF-kappa B/chemistry , NF-kappa B/metabolism , Protein Structure, Tertiary , Pyrazoles/chemistry , Pyrazoles/metabolism , Rats , Rats, Sprague-Dawley , Sulfonamides/chemistry , Sulfonamides/metabolism , Sulindac/chemistry , Sulindac/metabolism
14.
Biochim Biophys Acta ; 1834(11): 2293-307, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23899461

ABSTRACT

Colorectal cancer (CRC) is a major cause of mortality in Western populations. Growing evidence from human and rodent studies indicate that nonsteroidal anti-inflammatory drugs (NSAIDs) cause regression of existing colon tumors and act as effective chemopreventive agents in sporadic colon tumor formation. Although much is known about the action of the NSAID sulindac, especially its role in inducing apoptosis, mechanisms underlying these effects is poorly understood. In previous secretome-based proteomic studies using 2D-DIGE/MS and cytokine arrays we identified over 150 proteins released from the CRC cell line LIM1215 whose expression levels were dysregulated by treatment with 1mM sulindac over 16h; many of these proteins are implicated in molecular and cellular functions such as cell proliferation, differentiation, adhesion, angiogenesis and apoptosis (Ji et al., Proteomics Clin. Appl. 2009, 3, 433-451). We have extended these studies and describe here an improved protein/peptide separation strategy that facilitated the identification of 987 proteins and peptides released from LIM1215 cells following 1mM sulindac treatment for 8h preceding the onset of apoptosis. This peptidome separation strategy involved fractional centrifugal ultrafiltration of concentrated cell culture media (CM) using nominal molecular weight membrane filters (NMWL 30K, 3K and 1K). Proteins isolated in the >30K and 3-30K fractions were electrophoretically separated by SDS-PAGE and endogenous peptides in the 1-3K membrane filter were fractioned by RP-HPLC; isolated proteins and peptides were identified by nanoLC-MS-MS. Collectively, our data show that LIM1215 cells treated with 1mM sulindac for 8h secrete decreased levels of proteins associated with extracellular matrix remodeling (e.g., collagens, perlecan, syndecans, filamins, dyneins, metalloproteinases and endopeptidases), cell adhesion (e.g., cadherins, integrins, laminins) and mucosal maintenance (e.g., glycoprotein 340 and mucins 5AC, 6, and 13). A salient finding of this study was the increased proteolysis of cell surface proteins following treatment with sulindac for 8h (40% higher than from untreated LIM1215 cells); several of these endogenous peptides contained C-terminal amino acids from transmembrane domains indicative of regulated intramembrane proteolysis (RIP). Taken together these results indicate that during the early-stage onset of sulindac-induced apoptosis (evidenced by increased annexin V binding, dephosphorylation of focal adhesion kinase (FAK), and cleavage of caspase-3), 1mM sulindac treatment of LIM1215 cells results in decreased expression of secreted proteins implicated in ECM remodeling, mucosal maintenance and cell-cell-adhesion. This article is part of a Special Issue entitled: An Updated Secretome.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carcinoma/drug therapy , Colonic Neoplasms/drug therapy , Proteome/metabolism , Sulindac/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/metabolism , Carcinoma/genetics , Carcinoma/metabolism , Cell Line, Tumor , Colon/drug effects , Colon/metabolism , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Proteolysis/drug effects , Proteome/genetics , Proteomics/methods , Secretory Pathway , Sulindac/metabolism
15.
Biochim Biophys Acta ; 1820(12): 2072-8, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23036595

ABSTRACT

BACKGROUND: Nanosized particles of gold are widely used as advanced materials for enzyme catalysis investigations. In some bioanalytical methods these nanoparticles can be exploited to increase the sensitivity by enhancing electron transfer to the biological component i.e. redox enzymes such as drug metabolizing enzymes. METHODS: In this work, we describe the characterization of human flavin-containing monooxygenase 3 (hFMO3) in a nanoelectrode system based on AuNPs stabilized with didodecyldimethylammonium bromide (DDAB) on glassy carbon electrodes. Once confirmed by FTIR spectroscopy that in the presence of DDAB-AuNPs the structural integrity of hFMO3 is preserved, the influence of AuNPs on the electrochemistry of the enzyme was studied by cyclic voltammetry and square wave voltammetry. RESULTS: Our results show that AuNPs improve the electrochemical performance of hFMO3 on glassy carbon electrodes by enhancing the electron transfer rate and the current signal-to-noise ratio. Moreover, the electrocatalytic activity of hFMO3-DDAB-AuNP electrodes which was investigated in the presence of two well known substrates, benzydamine and sulindac sulfide, resulted in K(M) values of 52µM and 27µM, with V(max) of 8nmolmin(-1)mg(-1) and 4nmolmin(-1)mg(-1), respectively, which are in agreement with data obtained with the microsomal enzyme. CONCLUSIONS: The immobilization of hFMO3 protein in DDAB stabilized AuNP electrodes improves the bioelectrochemical performance of this important phase I drug metabolizing enzyme. GENERAL SIGNIFICANCE: This bio-analytical method can be considered as a promising advance in the development of new techniques suitable for the screening of novel hFMO3 metabolized pharmaceuticals.


Subject(s)
Electrochemistry , Gold/chemistry , Metal Nanoparticles , Microscopy, Electron, Transmission , Oxygenases/metabolism , Spectroscopy, Fourier Transform Infrared , Anti-Inflammatory Agents/metabolism , Benzydamine/metabolism , Catalysis , Chromatography, High Pressure Liquid , Electrodes , Humans , Immobilization , Substrate Specificity , Sulindac/analogs & derivatives , Sulindac/metabolism
16.
PLoS One ; 7(8): e43965, 2012.
Article in English | MEDLINE | ID: mdl-22937138

ABSTRACT

Aldo-keto reductase 1C3 (AKR1C3) catalyses the NADPH dependent reduction of carbonyl groups in a number of important steroid and prostanoid molecules. The enzyme is also over-expressed in prostate and breast cancer and its expression is correlated with the aggressiveness of the disease. The steroid products of AKR1C3 catalysis are important in proliferative signalling of hormone-responsive cells, while the prostanoid products promote prostaglandin-dependent proliferative pathways. In these ways, AKR1C3 contributes to tumour development and maintenance, and suggest that inhibition of AKR1C3 activity is an attractive target for the development of new anti-cancer therapies. Non-steroidal anti-inflammatory drugs (NSAIDs) are one well-known class of compounds that inhibits AKR1C3, yet crystal structures have only been determined for this enzyme with flufenamic acid, indomethacin, and closely related analogues bound. While the flufenamic acid and indomethacin structures have been used to design novel inhibitors, they provide only limited coverage of the NSAIDs that inhibit AKR1C3 and that may be used for the development of new AKR1C3 targeted drugs. To understand how other NSAIDs bind to AKR1C3, we have determined ten crystal structures of AKR1C3 complexes that cover three different classes of NSAID, N-phenylanthranilic acids (meclofenamic acid, mefenamic acid), arylpropionic acids (flurbiprofen, ibuprofen, naproxen), and indomethacin analogues (indomethacin, sulindac, zomepirac). The N-phenylanthranilic and arylpropionic acids bind to common sites including the enzyme catalytic centre and a constitutive active site pocket, with the arylpropionic acids probing the constitutive pocket more effectively. By contrast, indomethacin and the indomethacin analogues sulindac and zomepirac, display three distinctly different binding modes that explain their relative inhibition of the AKR1C family members. This new data from ten crystal structures greatly broadens the base of structures available for future structure-guided drug discovery efforts.


Subject(s)
3-Hydroxysteroid Dehydrogenases/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Hydroxyprostaglandin Dehydrogenases/chemistry , 3-Hydroxysteroid Dehydrogenases/metabolism , Aldo-Keto Reductase Family 1 Member C3 , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Flufenamic Acid/chemistry , Flufenamic Acid/metabolism , Flurbiprofen/chemistry , Flurbiprofen/metabolism , Hydroxyprostaglandin Dehydrogenases/metabolism , Ibuprofen/chemistry , Ibuprofen/metabolism , Indomethacin/chemistry , Indomethacin/metabolism , Meclofenamic Acid/chemistry , Meclofenamic Acid/metabolism , Mefenamic Acid/chemistry , Mefenamic Acid/metabolism , Naproxen/chemistry , Naproxen/metabolism , Sulindac/chemistry , Sulindac/metabolism , Tolmetin/analogs & derivatives , Tolmetin/chemistry , Tolmetin/metabolism
17.
Br J Pharmacol ; 167(1): 222-32, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22489789

ABSTRACT

BACKGROUND AND PURPOSE: Phospho-ibuprofen (MDC-917) and phospho-sulindac (OXT-328) are highly effective in cancer and arthritis treatment in preclinical models. Here, we investigated their metabolism by major human cytochrome P450s (CYPs) and flavin monooxygenases (FMOs). EXPERIMENTAL APPROACH: The CYP/FMO-catalysed metabolism of phospho-ibuprofen and phospho-sulindac was studied by using in silico prediction modelling and a direct experimental approach. KEY RESULTS: The CYP isoforms catalyse the oxidation of non-steroidal anti-inflammatory drugs (NSAIDs) and phospho-NSAIDs, with distinct activity and regioselectivity. CYP1A2, 2C19, 2D6 and 3A4 oxidize phospho-ibuprofen, but not ibuprofen; whereas CYP2C9 oxidizes ibuprofen, but not phospho-ibuprofen. All CYPs tested oxidize phospho-sulindac, but not sulindac. Among the five CYPs evaluated, CYP3A4 and 2D6 are the most active in the oxidation of phospho-ibuprofen and phospho-sulindac respectively. FMOs oxidized phospho-sulindac and sulindac, but not phospho-ibuprofen or ibuprofen. FMOs were more active towards phospho-sulindac than sulindac, indicating that phospho-sulindac is a preferred substrate of FMOs. The susceptibility of phospho-NSAIDs to CYP/FMO-mediated metabolism was also reflected in their rapid oxidation by human and mouse liver microsomes, which contain a full complement of CYPs and FMOs. Compared with conventional NSAIDs, the higher activity of CYPs towards phospho-ibuprofen and phospho-sulindac may be due to their greater lipophilicity, a key parameter for CYP binding. CONCLUSIONS AND IMPLICATIONS: CYPs and FMOs play an important role in the metabolism of phospho-NSAIDs, resulting in differential pharmacokinetic profiles between phospho-NSAIDs and NSAIDs in vivo. The consequently more rapid detoxification of phospho-NSAIDs is likely to contribute to their greater safety.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/metabolism , Ibuprofen/analogs & derivatives , Organophosphates/metabolism , Oxygenases/metabolism , Sulindac/metabolism , Cytochrome P-450 Enzyme System/metabolism , Humans , Ibuprofen/metabolism , Microsomes, Liver/metabolism , Models, Biological , Oxidation-Reduction , Recombinant Proteins/metabolism
18.
Br J Pharmacol ; 165(7): 2152-66, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21955327

ABSTRACT

BACKGROUND AND PURPOSE: Phospho-sulindac (PS; OXT-328) prevents colon cancer in mice, especially when combined with difluoromethylornithine (DFMO). Here, we explored its metabolism and pharmacokinetics. EXPERIMENTAL APPROACH: PS metabolism was studied in cultured cells, liver microsomes and cytosol, intestinal microsomes and in mice. Pharmacokinetics and biodistribution of PS were studied in mice. KEY RESULTS: PS undergoes reduction and oxidation yielding PS sulphide and PS sulphone; is hydrolysed releasing sulindac, which generates sulindac sulphide (SSide) and sulindac sulphone (SSone), all of which are glucuronidated. Liver and intestinal microsomes metabolized PS extensively but cultured cells converted only 10% of it to PS sulphide and PS sulphone. In mice, oral PS is rapidly absorbed, metabolized and distributed to the blood and other tissues. PS survives only partially intact in blood; of its three major metabolites (sulindac, SSide and SSone), sulindac has the highest C(max) and SSone the highest t(1/2) ; their AUC(0-24h) are similar. Compared with conventional sulindac, PS generated more SSone but less SSide, which may contribute to the safety of PS. In the gastroduodenal wall of mice, 71% of PS was intact; sulindac, SSide and SSone together accounted for <30% of the total. This finding may explain the lack of gastrointestinal toxicity by PS. DFMO had no effect on PS metabolism but significantly reduced drug level in mouse plasma and other tissues. CONCLUSIONS AND IMPLICATIONS: Our findings establish the metabolism of PS define its pharmacokinetics and biodistribution, describe its interactions with DFMO and largely explain its gastrointestinal safety.


Subject(s)
Eflornithine/pharmacology , Organophosphorus Compounds/metabolism , Organophosphorus Compounds/pharmacokinetics , Sulindac/analogs & derivatives , Animals , Cell Line, Tumor , Colonic Neoplasms/prevention & control , Cytosol/metabolism , Eflornithine/administration & dosage , Female , Humans , In Vitro Techniques , Intestinal Mucosa/metabolism , Mice , Mice, Inbred BALB C , Microsomes/metabolism , Microsomes, Liver/metabolism , Organophosphorus Compounds/administration & dosage , Rats , Sulindac/administration & dosage , Sulindac/metabolism , Sulindac/pharmacokinetics , Tissue Distribution
19.
FEBS Lett ; 586(1): 55-9, 2012 Jan 02.
Article in English | MEDLINE | ID: mdl-22155003

ABSTRACT

Sulindac (SLD) exhibits both the highest inhibitory activity towards human aldose reductase (AR) among popular non-steroidal anti-inflammatory drugs and clear beneficial clinical effects on Type 2 diabetes. However, the molecular basis for these properties is unclear. Here, we report that SLD and its pharmacologically active/inactive metabolites, SLD sulfide and SLD sulfone, are equally effective as un-competitive inhibitors of AR in vitro. Crystallographic analysis reveals that π-π stacking favored by the distinct scaffold of SLDs is pivotal to their high AR inhibitory activities. These results also suggest that SLD sulfone could be a potent lead compound for AR inhibition in vivo.


Subject(s)
Aldehyde Reductase/antagonists & inhibitors , Aldehyde Reductase/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Enzyme Inhibitors/pharmacology , Sulindac/pharmacology , Aldehyde Reductase/metabolism , Crystallography, X-Ray , Humans , Protein Conformation , Sulindac/analogs & derivatives , Sulindac/chemistry , Sulindac/metabolism
20.
J Pharmacol Exp Ther ; 340(2): 422-32, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22085648

ABSTRACT

Phospho-nonsteroidal anti-inflammatory drugs (phospho-NSAIDs) are novel NSAID derivatives with improved anticancer activity and reduced side effects in preclinical models. Here, we studied the metabolism of phospho-NSAIDs by carboxylesterases and assessed the impact of carboxylesterases on the anticancer activity of phospho-NSAIDs in vitro and in vivo. The expression of human liver carboxylesterase (CES1) and intestinal carboxylesterase (CES2) in human embryonic kidney 293 cells resulted in the rapid intracellular hydrolysis of phospho-NSAIDs. Kinetic analysis revealed that CES1 is more active in the hydrolysis of phospho-sulindac, phospho-ibuprofen, phospho-naproxen, phospho-indomethacin, and phospho-tyrosol-indomethacin that possessed a bulky acyl moiety, whereas the phospho-aspirins are preferentially hydrolyzed by CES2. Carboxylesterase expression leads to a significant attenuation of the in vitro cytotoxicity of phospho-NSAIDs, suggesting that the integrity of the drug is critical for anticancer activity. Benzil and bis-p-nitrophenyl phosphate (BNPP), two carboxylesterase inhibitors, abrogated the effect of carboxylesterases and resensitized carboxylesterase-expressing cells to the potent cytotoxic effects of phospho-NSAIDs. In mice, coadministration of phospho-sulindac and BNPP partially protected the former from esterase-mediated hydrolysis, and this combination more effectively inhibited the growth of AGS human gastric xenografts in nude mice (57%) compared with phospho-sulindac alone (28%) (p = 0.037). Our results show that carboxylesterase mediates that metabolic inactivation of phospho-NSAIDs, and the inhibition of carboxylesterases improves the efficacy of phospho-NSAIDs in vitro and in vivo.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Carboxylesterase/metabolism , Carboxylic Ester Hydrolases/metabolism , Organophosphates/metabolism , Organophosphates/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/blood , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Aspirin/analogs & derivatives , Aspirin/metabolism , Aspirin/pharmacology , Carboxylesterase/antagonists & inhibitors , Carboxylesterase/genetics , Carboxylic Ester Hydrolases/antagonists & inhibitors , Carboxylic Ester Hydrolases/genetics , Cell Line, Tumor , Cell Survival/drug effects , Drug Interactions/physiology , Drug Therapy, Combination/methods , Enzyme Inhibitors/pharmacology , Female , HEK293 Cells , Humans , Hydrolysis , Ibuprofen/analogs & derivatives , Ibuprofen/metabolism , Ibuprofen/pharmacology , Indomethacin/analogs & derivatives , Indomethacin/metabolism , Indomethacin/pharmacology , Inhibitory Concentration 50 , Kinetics , Mice , Mice, Inbred BALB C , Mice, Nude , Naproxen/analogs & derivatives , Naproxen/metabolism , Naproxen/pharmacology , Nitrophenols/pharmacology , Nitrophenols/therapeutic use , Organophosphates/blood , Organophosphates/therapeutic use , Organophosphorus Compounds/blood , Organophosphorus Compounds/metabolism , Organophosphorus Compounds/pharmacology , Organophosphorus Compounds/therapeutic use , Phenylglyoxal/analogs & derivatives , Phenylglyoxal/pharmacology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Sulindac/analogs & derivatives , Sulindac/blood , Sulindac/metabolism , Sulindac/pharmacology , Sulindac/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...