ABSTRACT
Electrical stimulation of the dorsal periaqueductal grey matter (DPAG) and deep layers of the superior colliculus (DLSC) of the rat elicits anxiety-like reactions such as freezing and flight. The temporal course of the effects of the aversive electrical stimulation of the DPAG (5, 15 and 30 min afterward) and DLSC (5, 10 and 15 min afterward) on the defensive response of rats exposed to elevated T-maze were determined. The elevated T-maze generates two defensive behaviors, inhibitory avoidance and one-way escape, which have been related, respectively, to generalized anxiety and panic disorders. Prior electrical stimulation of the DPAG (15 min) and DLSC (5 min) enhanced inhibitory avoidance when compared to no-operated and sham animals, although not affecting escape. Therefore, stimulation of the DPAG and DLSC causes a heightened responsivity to anxiogenic stimulus, but not to panicogenic stimulus, inherent to elevated T-maze. These findings support the participation of the DPAG and DLSC in the elaboration of adaptive responses to stressful situations. Besides, the data supports the view that prior electrical stimulation of DPAG and DLSC is selective in sensitizing rats to anxiety-like behaviors, but not to panic-like behaviors in the elevated T-maze test.
Subject(s)
Anxiety/etiology , Electric Stimulation , Maze Learning/radiation effects , Periaqueductal Gray/radiation effects , Superior Colliculi/radiation effects , Animals , Anxiety/physiopathology , Avoidance Learning/radiation effects , Behavior, Animal/radiation effects , Escape Reaction/radiation effects , Inhibition, Psychological , Male , Rats , Rats, Wistar , Reaction Time/radiation effects , Time FactorsABSTRACT
In this work, we studied the visually driven expression of the plasticity-related transcription factor NFGI-A in the superficial layers of the rat superior colliculus (sSC) using immunohistochemistry. After dark adaptation, NGFI-A expression was completely down-regulated, indicating this protein is not constitutively expressed in the sSC. Light stimulation for 10 min after dark adaptation was insufficient to induce detectable levels of this protein. But after 30 min of light stimulation, few NGFI-A+ cells were observed in the superficial layers, indicating that the minimal time of stimulation that is sufficient to induce this protein is sometime between 10 and 30 min. The number of NGFI-A+ cells increased progressively, reaching a peak after 90 min. This peak is not reached if animals are returned to darkness after 30 min of stimulation, when a presumable peak in NGFI-A mRNA is reached. Light stimulation of animals in which the retinocollicular or corticocollicular projections were removed revealed that NGFI-A expression is mainly driven by retinal contralateral projections. Removal of corticocollicular projections did not cause any change in the NGFI-A expression in the ipsilateral sSC, in relation to the contralateral (control) sSC, suggesting that this pathway has a minor influence. Our results showed that NGFI-A protein expression in the sSC is entirely dependent on visual stimulation and suggests that the sSC visual circuitry is an interesting model for studies about the involvement of this transcription factor in synaptic plasticity.