Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.266
Filter
1.
J Pineal Res ; 76(4): e12956, 2024 May.
Article in English | MEDLINE | ID: mdl-38695262

ABSTRACT

The circadian timing system controls glucose metabolism in a time-of-day dependent manner. In mammals, the circadian timing system consists of the main central clock in the bilateral suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks in peripheral tissues. The oscillations produced by these different clocks with a period of approximately 24-h are generated by the transcriptional-translational feedback loops of a set of core clock genes. Glucose homeostasis is one of the daily rhythms controlled by this circadian timing system. The central pacemaker in the SCN controls glucose homeostasis through its neural projections to hypothalamic hubs that are in control of feeding behavior and energy metabolism. Using hormones such as adrenal glucocorticoids and melatonin and the autonomic nervous system, the SCN modulates critical processes such as glucose production and insulin sensitivity. Peripheral clocks in tissues, such as the liver, muscle, and adipose tissue serve to enhance and sustain these SCN signals. In the optimal situation all these clocks are synchronized and aligned with behavior and the environmental light/dark cycle. A negative impact on glucose metabolism becomes apparent when the internal timing system becomes disturbed, also known as circadian desynchrony or circadian misalignment. Circadian desynchrony may occur at several levels, as the mistiming of light exposure or sleep will especially affect the central clock, whereas mistiming of food intake or physical activity will especially involve the peripheral clocks. In this review, we will summarize the literature investigating the impact of circadian desynchrony on glucose metabolism and how it may result in the development of insulin resistance. In addition, we will discuss potential strategies aimed at reinstating circadian synchrony to improve insulin sensitivity and contribute to the prevention of type 2 diabetes.


Subject(s)
Circadian Rhythm , Glucose , Humans , Animals , Circadian Rhythm/physiology , Glucose/metabolism , Circadian Clocks/physiology , Suprachiasmatic Nucleus/metabolism , Suprachiasmatic Nucleus/physiology
2.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732079

ABSTRACT

Long-term spaceflight is known to induce disruptions in circadian rhythms, which are driven by a central pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus, but the underlying molecular mechanisms remain unclear. Here, we developed a rat model that simulated microgravity and isolation environments through tail suspension and isolation (TSI). We found that the TSI environment imposed circadian disruptions to the core body temperature, heart rate, and locomotor-activity rhythms of rats, especially in the amplitude of these rhythms. In TSI model rats' SCNs, the core circadian gene NR1D1 showed higher protein but not mRNA levels along with decreased BMAL1 levels, which indicated that NR1D1 could be regulated through post-translational regulation. The autophagosome marker LC3 could directly bind to NR1D1 via the LC3-interacting region (LIR) motifs and induce the degradation of NR1D1 in a mitophagy-dependent manner. Defects in mitophagy led to the reversal of NR1D1 degradation, thereby suppressing the expression of BMAL1. Mitophagy deficiency and subsequent mitochondrial dysfunction were observed in the SCN of TSI models. Urolithin A (UA), a mitophagy activator, demonstrated an ability to enhance the amplitude of core body temperature, heart rate, and locomotor-activity rhythms by prompting mitophagy induction to degrade NR1D1. Cumulatively, our results demonstrate that mitophagy exerts circadian control by regulating NR1D1 degradation, revealing mitophagy as a potential target for long-term spaceflight as well as diseases with SCN circadian disruption.


Subject(s)
ARNTL Transcription Factors , Circadian Rhythm , Mitophagy , Nuclear Receptor Subfamily 1, Group D, Member 1 , Animals , Rats , Circadian Rhythm/physiology , Male , ARNTL Transcription Factors/metabolism , ARNTL Transcription Factors/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Weightlessness Simulation , Suprachiasmatic Nucleus/metabolism , Suprachiasmatic Nucleus/physiology , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Body Temperature , Heart Rate , Rats, Sprague-Dawley , Proteolysis
3.
Front Neural Circuits ; 18: 1385908, 2024.
Article in English | MEDLINE | ID: mdl-38590628

ABSTRACT

Animals need sleep, and the suprachiasmatic nucleus, the center of the circadian rhythm, plays an important role in determining the timing of sleep. The main input to the suprachiasmatic nucleus is the retinohypothalamic tract, with additional inputs from the intergeniculate leaflet pathway, the serotonergic afferent from the raphe, and other hypothalamic regions. Within the suprachiasmatic nucleus, two of the major subtypes are vasoactive intestinal polypeptide (VIP)-positive neurons and arginine-vasopressin (AVP)-positive neurons. VIP neurons are important for light entrainment and synchronization of suprachiasmatic nucleus neurons, whereas AVP neurons are important for circadian period determination. Output targets of the suprachiasmatic nucleus include the hypothalamus (subparaventricular zone, paraventricular hypothalamic nucleus, preoptic area, and medial hypothalamus), the thalamus (paraventricular thalamic nuclei), and lateral septum. The suprachiasmatic nucleus also sends information through several brain regions to the pineal gland. The olfactory bulb is thought to be able to generate a circadian rhythm without the suprachiasmatic nucleus. Some reports indicate that circadian rhythms of the olfactory bulb and olfactory cortex exist in the absence of the suprachiasmatic nucleus, but another report claims the influence of the suprachiasmatic nucleus. The regulation of circadian rhythms by sensory inputs other than light stimuli, including olfaction, has not been well studied and further progress is expected.


Subject(s)
Hypothalamus , Suprachiasmatic Nucleus , Animals , Suprachiasmatic Nucleus/metabolism , Hypothalamus/metabolism , Circadian Rhythm/physiology , Vasoactive Intestinal Peptide/metabolism , Sleep , Arginine Vasopressin/metabolism
4.
Proc Natl Acad Sci U S A ; 121(17): e2316646121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38625943

ABSTRACT

Circadian regulation and temperature dependency are important orchestrators of molecular pathways. How the integration between these two drivers is achieved, is not understood. We monitored circadian- and temperature-dependent effects on transcription dynamics of cold-response protein RNA Binding Motif 3 (Rbm3). Temperature changes in the mammalian master circadian pacemaker, the suprachiasmatic nucleus (SCN), induced Rbm3 transcription and regulated its circadian periodicity, whereas the core clock gene Per2 was unaffected. Rbm3 induction depended on a full Brain And Muscle ARNT-Like Protein 1 (Bmal1) complement: reduced Bmal1 erased Rbm3 responses and weakened SCN circuit resilience to temperature changes. By focusing on circadian and temperature dependency, we highlight weakened transmission between core clock and downstream pathways as a potential route for reduced circadian resilience.


Subject(s)
Circadian Rhythm , Period Circadian Proteins , Animals , Circadian Rhythm/physiology , Temperature , Period Circadian Proteins/metabolism , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , RNA/metabolism , Suprachiasmatic Nucleus/metabolism , Mammals/genetics
5.
J Neurosci Res ; 102(4): e25331, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38651314

ABSTRACT

Circadian rhythms synchronize to light through the retinohypothalamic tract (RHT), which is a bundle of axons coming from melanopsin retinal ganglion cells, whose synaptic terminals release glutamate to the ventral suprachiasmatic nucleus (SCN). Activation of AMPA-kainate and NMDA postsynaptic receptors elicits the increase in intracellular calcium required for triggering the signaling cascade that ends in phase shifts. During aging, there is a decline in the synchronization of circadian rhythms to light. With electrophysiological (whole-cell patch-clamp) and immunohistochemical assays, in this work, we studied pre- and postsynaptic properties between the RHT and ventral SCN neurons in young adult (P90-120) and old (P540-650) C57BL/6J mice. Incremental stimulation intensities (applied on the optic chiasm) induced much lesser AMPA-kainate postsynaptic responses in old animals, implying a lower recruitment of RHT fibers. Conversely, a higher proportion of old SCN neurons exhibited synaptic facilitation, and variance-mean analysis indicated an increase in the probability of release in RHT terminals. Moreover, both spontaneous and miniature postsynaptic events displayed larger amplitudes in neurons from aged mice, whereas analysis of the NMDA and AMPA-kainate components (evoked by RHT electrical stimulation) disclosed no difference between the two ages studied. Immunohistochemistry revealed a bigger size in the puncta of vGluT2, GluN2B, and GluN2A of elderly animals, and the number of immunopositive particles was increased, but that of PSD-95 was reduced. All these synaptic adaptations could be part of compensatory mechanisms in the glutamatergic signaling to ameliorate the loss of RHT terminals in old animals.


Subject(s)
Aging , Glutamic Acid , Mice, Inbred C57BL , Suprachiasmatic Nucleus , Synaptic Transmission , Animals , Mice , Suprachiasmatic Nucleus/physiology , Suprachiasmatic Nucleus/metabolism , Synaptic Transmission/physiology , Aging/physiology , Glutamic Acid/metabolism , Male , Excitatory Postsynaptic Potentials/physiology , Visual Pathways/physiology , Vesicular Glutamate Transport Protein 2/metabolism , Patch-Clamp Techniques , Receptors, N-Methyl-D-Aspartate/metabolism , Disks Large Homolog 4 Protein/metabolism
6.
Physiol Behav ; 279: 114523, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38492912

ABSTRACT

Melatonin is a neurohormone synthesized by the pineal gland to regulate the circadian rhythms and has proven to be effective in treating drug addiction and dependence. However, the effects of melatonin to modulate the drug-seeking behavior of fentanyl and its underlying molecular mechanism is elusive. This study was designed to investigate the effects of melatonin on fentanyl - induced behavioral sensitization and circadian rhythm disorders in mice. The accompanying changes in the expression of Brain and Muscle Arnt-Like (BMAL1), tyrosine hydroxylase (TH), and monoamine oxidase A (MAO-A) in relevant brain regions including the suprachiasmatic nucleus (SCN), nucleus accumbens (NAc), prefrontal cortex (PFC), and hippocampus (Hip) were investigated by western blot assays to dissect the mechanism by which melatonin modulates fentanyl - induced behavioral sensitization and circadian rhythm disorders. The present study suggest that fentanyl (0.05, 0.1 and 0.2 mg/kg) could induce behavioral sensitization and melatonin (30.0 mg/kg) could attenuate the behavioral sensitization and circadian rhythm disorders in mice. Fentanyl treatment reduced the expression of BMAL1 and MAO-A and increased that of TH in relevant brain regions. Furthermore, melatonin treatment could reverse the expression levels of BMAL1, MAO-A, and TH. In conclusion, our study demonstrate for the first time that melatonin has therapeutic potential for fentanyl addiction.


Subject(s)
Chronobiology Disorders , Melatonin , Mice , Animals , Melatonin/pharmacology , Melatonin/therapeutic use , Melatonin/metabolism , ARNTL Transcription Factors , Fentanyl/pharmacology , Fentanyl/therapeutic use , Fentanyl/metabolism , Suprachiasmatic Nucleus/metabolism , Circadian Rhythm/physiology , Chronobiology Disorders/metabolism , Monoamine Oxidase/metabolism , Monoamine Oxidase/pharmacology
7.
Cell Rep ; 43(3): 113951, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38508192

ABSTRACT

Plasticity in daily timing of activity has been observed in many species, yet the underlying mechanisms driving nocturnality and diurnality are unknown. By regulating how much wheel-running activity will be rewarded with a food pellet, we can manipulate energy balance and switch mice to be nocturnal or diurnal. Here, we present the rhythmic transcriptome of 21 tissues, including 17 brain regions, sampled every 4 h over a 24-h period from nocturnal and diurnal male CBA/CaJ mice. Rhythmic gene expression across tissues comprised different sets of genes with minimal overlap between nocturnal and diurnal mice. We show that non-clock genes in the suprachiasmatic nucleus (SCN) change, and the habenula was most affected. Our results indicate that adaptive flexibility in daily timing of behavior is supported by gene expression dynamics in many tissues and brain regions, especially in the habenula, which suggests a crucial role for the observed nocturnal-diurnal switch.


Subject(s)
Circadian Rhythm , Transcriptome , Mice , Male , Animals , Circadian Rhythm/genetics , Transcriptome/genetics , Mice, Inbred CBA , Brain , Suprachiasmatic Nucleus/metabolism
8.
Proc Natl Acad Sci U S A ; 121(13): e2316841121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38502706

ABSTRACT

We show that nocturnal aversive stimuli presented to mice while they are eating and drinking outside of their safe nest can entrain circadian behaviors, leading to a shift toward daytime activity. We also show that the canonical molecular circadian clock is necessary for fear entrainment and that an intact molecular clockwork in the suprachiasmatic nucleus, the site of the central circadian pacemaker, is necessary but not sufficient to sustain fear entrainment of circadian rhythms. Our results demonstrate that entrainment of a circadian clock by cyclic fearful stimuli can lead to severely mistimed circadian behavior that persists even after the aversive stimulus is removed. Together, our findings support the interpretation that circadian and sleep symptoms associated with fear and anxiety disorders are, in part, the output of a fear-entrained clock, and provide a mechanistic insight into this clock.


Subject(s)
Circadian Clocks , Mice , Animals , Circadian Clocks/genetics , Suprachiasmatic Nucleus , Circadian Rhythm , Fear
9.
J Neurosci ; 44(18)2024 May 01.
Article in English | MEDLINE | ID: mdl-38485259

ABSTRACT

Sleep is regulated by homeostatic sleep drive and the circadian clock. While tremendous progress has been made in elucidating the molecular components of the core circadian oscillator, the output mechanisms by which this robust oscillator generates rhythmic sleep behavior remain poorly understood. At the cellular level, growing evidence suggests that subcircuits in the master circadian pacemaker suprachiasmatic nucleus (SCN) in mammals and in the clock network in Drosophila regulate distinct aspects of sleep. Thus, to identify novel molecules regulating the circadian timing of sleep, we conducted a large-scale screen of mouse SCN-enriched genes in Drosophila Here, we show that Tob (Transducer of ERB-B2) regulates the timing of sleep onset at night in female fruit flies. Knockdown of Tob pan-neuronally, either constitutively or conditionally, advances sleep onset at night. We show that Tob is specifically required in "evening neurons" (the LNds and the fifth s-LNv) of the clock network for proper timing of sleep onset. Tob levels cycle in a clock-dependent manner in these neurons. Silencing of these "evening" clock neurons results in an advanced sleep onset at night, similar to that seen with Tob knockdown. Finally, sharp intracellular recordings demonstrate that the amplitude and kinetics of LNd postsynaptic potentials (PSPs) cycle between day and night, and this cycling is attenuated with Tob knockdown in these cells. Our data suggest that Tob acts as a clock output molecule in a subset of clock neurons to potentiate their activity in the evening and enable the proper timing of sleep onset at night.


Subject(s)
Circadian Rhythm , Drosophila Proteins , Drosophila , Sleep , Animals , Female , Animals, Genetically Modified , Circadian Rhythm/physiology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Neurons/physiology , Sleep/physiology , Suprachiasmatic Nucleus/physiology
10.
Eur J Neurosci ; 59(7): 1723-1742, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38326974

ABSTRACT

The circadian clock orchestrates many physiological and behavioural rhythms in mammals with 24-h periodicity, through a hierarchical organisation, with the central clock located in the suprachiasmatic nucleus (SCN) in the hypothalamus. The circuits of the SCN generate circadian rhythms with precision, relying on intrinsic coupling mechanisms, for example, neurotransmitters like arginine vasopressin (AVP), vasoactive intestinal peptide (VIP), neuronal gamma-aminobutyric acid (GABA) signalling and astrocytes connected by gap junctions composed of connexins (Cx). In female rodents, the presence of estrogen receptors (ERs) in the dorsal SCN suggests an influence of estrogen (E2) on the circuit timekeeping that could regulate circadian rhythm and coupling. To investigate this, we used SCN explants together with hypothalamic neurons and astrocytes. First, we showed that E2 stabilised the circadian amplitude in the SCN when rAVPs (receptor-associated vasopressin peptides) were inhibited. However, the phase delay induced by VIPAC2 (VIP receptors) inhibition remained unaffected by E2. We then showed that E2 exerted its effects in the SCN via ERß (estrogen receptor beta), resulting in increased expression of Cx36 and Cx43. Notably, specific inhibition of both connexins resulted in a significant reduction in circadian amplitude within the SCN. Remarkably, E2 restored the period with inhibited Cx36 but not with Cx43 inhibition. This implies that the network between astrocytes and neurons, responsible for coupling in the SCN, can be reinforced through E2. In conclusion, these findings provide new insights into how E2 regulates circadian rhythms ex vivo in an ERß-dependent manner, underscoring its crucial role in fortifying the SCN's rhythm.


Subject(s)
Connexin 43 , Estrogen Receptor beta , Animals , Female , Connexin 43/metabolism , Estrogen Receptor beta/metabolism , Suprachiasmatic Nucleus/physiology , Circadian Rhythm/physiology , Gap Junctions/metabolism , Connexins/metabolism , Vasoactive Intestinal Peptide/pharmacology , Vasoactive Intestinal Peptide/metabolism , Estrogens/pharmacology , Mammals/metabolism
11.
Int J Mol Sci ; 25(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38339119

ABSTRACT

Prostaglandins are bioactive compounds, and the activation of their receptors affects the expression of clock genes. However, the prostaglandin F receptor (Ptgfr) has no known relationship with biological rhythms. Here, we first measured the locomotor period lengths of Ptgfr-KO (B6.129-Ptgfrtm1Sna) mice and found that they were longer under constant dark conditions (DD) than those of wild-type (C57BL/6J) mice. We then investigated the clock gene patterns within the suprachiasmatic nucleus in Ptgfr-KO mice under DD and observed a decrease in the expression of the clock gene cryptochrome 1 (Cry1), which is related to the circadian cycle. Moreover, the expression of Cry1, Cry2, and Period2 (Per2) mRNA were significantly altered in the mouse liver in Ptgfr-KO mice under DD. In the wild-type mouse, the plasma prostaglandin F2α (PGF2α) levels showed a circadian rhythm under a 12 h cycle of light-dark conditions. In addition, in vitro experiments showed that the addition of PTGFR agonists altered the amplitude of Per2::luc activity, and this alteration differed with the timing of the agonist addition. These results lead us to hypothesize that the plasma rhythm of PGF2α is important for driving clock genes, thus suggesting the involvement of PGF2α- and Ptgfr-targeting drugs in the biological clock cycle.


Subject(s)
Circadian Rhythm , Dinoprost , Mice , Animals , Dinoprost/metabolism , Mice, Inbred C57BL , Circadian Rhythm/genetics , Biological Clocks , Suprachiasmatic Nucleus/metabolism , Gene Expression , Cryptochromes/genetics , Cryptochromes/metabolism
12.
J Biol Rhythms ; 39(2): 135-165, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38366616

ABSTRACT

It has been 50 years since the suprachiasmatic nucleus (SCN) was first identified as the central circadian clock and 25 years since the last overview of developments in the field was published in the Journal of Biological Rhythms. Here, we explore new mechanisms and concepts that have emerged in the subsequent 25 years. Since 1997, methodological developments, such as luminescent and fluorescent reporter techniques, have revealed intricate relationships between cellular and network-level mechanisms. In particular, specific neuropeptides such as arginine vasopressin, vasoactive intestinal peptide, and gastrin-releasing peptide have been identified as key players in the synchronization of cellular circadian rhythms within the SCN. The discovery of multiple oscillators governing behavioral and physiological rhythms has significantly advanced our understanding of the circadian clock. The interaction between neurons and glial cells has been found to play a crucial role in regulating these circadian rhythms within the SCN. Furthermore, the properties of the SCN network vary across ontogenetic stages. The application of cell type-specific genetic manipulations has revealed components of the functional input-output system of the SCN and their correlation with physiological functions. This review concludes with the high-risk effort of identifying open questions and challenges that lie ahead.


Subject(s)
Circadian Rhythm , Neuropeptides , Circadian Rhythm/physiology , Neuropeptides/metabolism , Suprachiasmatic Nucleus/physiology , Vasoactive Intestinal Peptide/metabolism , Gastrin-Releasing Peptide/metabolism
13.
Cephalalgia ; 44(2): 3331024231209317, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38415635

ABSTRACT

BACKGROUND: Despite advances in neuroimaging and electrophysiology, cluster headache's pathogenesis remains unclear. This review will examine clinical neurophysiology studies, including electrophysiological and functional neuroimaging, to determine if they might help us construct a neurophysiological model of cluster headache. RESULTS: Clinical, biochemical, and electrophysiological research have implicated the trigeminal-parasympathetic system in cluster headache pain generation, although the order in which these two systems are activated, which may be somewhat independent, is unknown. Electrophysiology and neuroimaging have found one or more central factors that may cause seasonal and circadian attacks. The well-known posterior hypothalamus, with its primary circadian pacemaker suprachiasmatic nucleus, the brainstem monoaminergic systems, the midbrain, with an emphasis on the dopaminergic system, especially when cluster headache is chronic, and the descending pain control systems appear to be involved. Functional connection investigations have verified electrophysiological evidence of functional changes in distant brain regions connecting to wide cerebral networks other than pain. CONCLUSION: We propose that under the impact of external time, an inherited misalignment between the primary circadian pacemaker suprachiasmatic nucleus and other secondary extra- suprachiasmatic nucleus clocks may promote disturbance of the body's internal physiological clock, lowering the threshold for bout recurrence.


Subject(s)
Cluster Headache , Humans , Suprachiasmatic Nucleus , Pain , Brain , Brain Stem
14.
J Neurosci ; 44(8)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38238074

ABSTRACT

The suprachiasmatic nucleus (SCN) is the central clock for circadian rhythms. Animal studies have revealed daily rhythms in the neuronal activity in the SCN. However, the circadian activity of the human SCN has remained elusive. In this study, to reveal the diurnal variation of the SCN activity in humans, we localized the SCN by employing an areal boundary mapping technique to resting-state functional images and investigated the SCN activity using perfusion imaging. In the first experiment (n = 27, including both sexes), we scanned each participant four times a day, every 6 h. Higher activity was observed at noon, while lower activity was recorded in the early morning. In the second experiment (n = 20, including both sexes), the SCN activity was measured every 30 min for 6 h from midnight to dawn. The results showed that the SCN activity gradually decreased and was not associated with the electroencephalography. Furthermore, the SCN activity was compatible with the rodent SCN activity after switching off the lights. These results suggest that the diurnal variation of the human SCN follows the zeitgeber cycles of nocturnal and diurnal mammals and is modulated by physical lights rather than the local time.


Subject(s)
Circadian Rhythm , Suprachiasmatic Nucleus , Male , Animals , Female , Humans , Circadian Rhythm/physiology , Suprachiasmatic Nucleus/physiology , Rodentia , Mammals , Neurons
15.
Neuroreport ; 35(4): 233-241, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38251445

ABSTRACT

Major depressive disorder (MDD) ranks among the top 10 leading causes of death. However, exercise is known to improve depressive symptoms but the mechanism responsible is still unknown. To date, numerous studies have shown that molecular rhythms and exercise are associated with MDD. Thus, we hypothesized that exercise could affect the expression of central nervous system clock genes to improve depressive symptoms. Ninety adult male Sprague-Dawley rats (250 g) were divided into a control Normal Group, an unpredictable chronic mild stress (CMS) treated CMS Group and an Exercise Group, which was intervened by a moderate-intensity exercise training on a treadmill at 2 p.m. every day for 4 weeks after CMS treatment. The open field test, elevated plus maze and forced swim test were employed to test mood-related behaviors. The telemetry recording method recorded voluntary locomotor activity and core body temperature. Expression of core clock genes in the suprachiasmatic nucleus (SCN) was tested by qRT-PCR. Compared with the CMS Group, depressive symptoms were improved in the Exercise Group ( P  < 0.05). Moreover, the periodic changes of molecular rhythms in the Exercise Group were close to those of rats in Normal Group. Next, exercise increased oscillations of expression of core clock genes in SCN after CMS treatment, and the amplitudes of core clock gene expression oscillations were negatively correlated with depressive-like behavior. Our findings suggested that exercise could change the expressions of central clock genes in MDD animals, and this effect was positively correlated with the improvement of depressive symptoms by exercise.


Subject(s)
Depression , Depressive Disorder, Major , Rats , Male , Animals , Depression/metabolism , Rats, Sprague-Dawley , Suprachiasmatic Nucleus/metabolism , Exercise , Disease Models, Animal
16.
Mol Neurodegener ; 19(1): 4, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38195580

ABSTRACT

Tauopathies, a group of neurodegenerative diseases that includes Alzheimer's disease, commonly lead to disturbances in sleep-wake patterns and circadian rhythm disorders. The circadian rhythm, a recurring 24-hour cycle governing human biological activity, is regulated by the hypothalamic suprachiasmatic nucleus (SCN) and endogenous transcriptional-translational feedback loops. Surprisingly, little attention has been given to investigating tauopathy-driven neuropathology in the SCN and the repercussions of SCN and circadian gene dysfunction in the human brain affected by tauopathies. This review aims to provide an overview of the current literature on the vulnerability of the SCN in tauopathies in humans. Emphasis is placed on elucidating the neuronal and glial changes contributing to the widespread disruption of the molecular circadian clock. Furthermore, this review identifies areas of knowledge requiring further investigation.


Subject(s)
Alzheimer Disease , Tauopathies , Animals , Humans , Neuroglia , Suprachiasmatic Nucleus , Models, Animal
17.
Int J Biol Sci ; 20(2): 403-413, 2024.
Article in English | MEDLINE | ID: mdl-38169640

ABSTRACT

Rhythmicity of the circadian system is a 24-hour period, driven by transcription-translation feedback loops of circadian clock genes. The central circadian pacemaker in mammals is located in the hypothalamic suprachiasmatic nucleus (SCN), which controls peripheral circadian clocks. In general, most physiological processes are regulated by the circadian system, which is modulated by environmental cues such as exposure to light and/or dark, temperature, and the timing of sleep/wake and food intake. The chronic circadian disruption caused by shift work, jetlag, and/or irregular sleep-wake cycles has long-term health consequences. Its dysregulation contributes to the risk of psychiatric disorders, sleep abnormalities, hypothyroidism and hyperthyroidism, cancer, and obesity. A number of neurological conditions may be worsened by changes in the circadian clock via the SCN pacemaker. For stroke, different physiological activities such as sleep/wake cycles are disrupted due to alterations in circadian rhythms. Moreover, the immunological processes that affect the evolution and recovery processes of stroke are regulated by the circadian clock or core-clock genes. Thus, disrupted circadian rhythms may increase the severity and consequences of stroke, while readjustment of circadian clock machinery may accelerate recovery from stroke. In this manuscript, we discuss the relationship between stroke and circadian rhythms, particularly on stroke development and its recovery process. We focus on immunological and/or molecular processes linking stroke and the circadian system and suggest the circadian rhythm as a target for designing effective therapeutic strategies in stroke.


Subject(s)
Circadian Clocks , Stroke , Animals , Humans , Circadian Clocks/genetics , Circadian Rhythm/genetics , Suprachiasmatic Nucleus , Sleep , Mammals
18.
Trends Neurosci ; 47(1): 36-46, 2024 01.
Article in English | MEDLINE | ID: mdl-38071123

ABSTRACT

The 24 h (circadian) timing system develops in mammals during the perinatal period. It carries out the essential task of anticipating daily recurring environmental changes to identify the best time of day for each molecular, cellular, and systemic process. Although significant knowledge has been acquired about the organization and function of the adult circadian system, relatively little is known about its ontogeny. During the perinatal period, the circadian system progressively gains functionality under the influence of the early environment. This review explores current evidence on the development of the circadian clock in mammals, highlighting the multilevel complexity of the process and the importance of gaining a better understanding of its underlying biology.


Subject(s)
Circadian Clocks , Circadian Rhythm , Humans , Animals , Pregnancy , Female , Suprachiasmatic Nucleus , Mammals
19.
Sci China Life Sci ; 67(3): 518-528, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38057622

ABSTRACT

The circadian clock coordinates rhythms in numerous physiological processes to maintain organismal homeostasis. Since the suprachiasmatic nucleus (SCN) is widely accepted as the circadian pacemaker, it is critical to understand the neural mechanisms by which rhythmic information is transferred from the SCN to peripheral clocks. Here, we present the first comprehensive map of SCN efferent connections and suggest a molecular logic underlying these projections. The SCN projects broadly to most major regions of the brain, rather than solely to the hypothalamus and thalamus. The efferent projections from different subtypes of SCN neurons vary in distance and intensity, and blocking synaptic transmission of these circuits affects circadian rhythms in locomotion and feeding to different extents. We also developed a barcoding system to integrate retrograde tracing with in-situ sequencing, allowing us to link circuit anatomy and spatial patterns of gene expression. Analyses using this system revealed that brain regions functioning downstream of the SCN receive input from multiple neuropeptidergic cell types within the SCN, and that individual SCN neurons generally project to a single downstream brain region. This map of SCN efferent connections provides a critical foundation for future investigations into the neural circuits underlying SCN-mediated rhythms in physiology. Further, our new barcoded tracing method provides a tool for revealing the molecular logic of neuronal circuits within heterogeneous brain regions.


Subject(s)
Circadian Rhythm , Suprachiasmatic Nucleus , Suprachiasmatic Nucleus/metabolism , Circadian Rhythm/genetics , Hypothalamus , Neurons/physiology , Synaptic Transmission
20.
Nat Neurosci ; 27(1): 102-115, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37957320

ABSTRACT

Food intake follows a predictable daily pattern and synchronizes metabolic rhythms. Neurons expressing agouti-related protein (AgRP) read out physiological energetic state and elicit feeding, but the regulation of these neurons across daily timescales is poorly understood. Using a combination of neuron dynamics measurements and timed optogenetic activation in mice, we show that daily AgRP-neuron activity was not fully consistent with existing models of homeostatic regulation. Instead of operating as a 'deprivation counter', AgRP-neuron activity primarily followed the circadian rest-activity cycle through a process that required an intact suprachiasmatic nucleus and synchronization by light. Imposing novel feeding patterns through time-restricted food access or periodic AgRP-neuron stimulation was sufficient to resynchronize the daily AgRP-neuron activity rhythm and drive anticipatory-like behavior through a process that required DMHPDYN neurons. These results indicate that AgRP neurons integrate time-of-day information of past feeding experience with current metabolic needs to predict circadian feeding time.


Subject(s)
Neurons , Suprachiasmatic Nucleus , Animals , Mice , Agouti-Related Protein , Feeding Behavior/physiology , Neurons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...