Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.510
Filter
1.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731414

ABSTRACT

Consumers are concerned about employing green processing technologies and natural ingredients in different manufacturing sectors to achieve a "clean label" standard for products and minimize the hazardous impact of chemical ingredients on human health and the environment. In this study, we investigated the effects of gelatinized starch dispersions (GSDs) prepared from six plant sources (indica and japonica rice, wheat, corn, potatoes, and sweet potatoes) on the formulation and stability of oil-in-water (O/W) emulsions. The effect of gelatinization temperature and time conditions of 85-90 °C for 20 min on the interfacial tension of the two phases was observed. Emulsification was performed using a primary homogenization condition of 10,000 rpm for 5 min, followed by high-pressure homogenization at 100 MPa for five cycles. The effects of higher oil weight fractions (15-25% w/w) and storage stability at different temperatures for four weeks were also evaluated. The interfacial tension of all starch GSDs with soybean oil decreased compared with the interfacial tension between soybean oil and water as a control. The largest interfacial tension reduction was observed for the GSD from indica rice. Microstructural analysis indicated that the GSDs stabilized the O/W emulsion by coating oil droplets. Emulsions formulated using a GSD from indica rice were stable during four weeks of storage with a volume mean diameter (d4,3) of ~1 µm, minimal viscosity change, and a negative ζ-potential.


Subject(s)
Emulsions , Soybean Oil , Starch , Water , Emulsions/chemistry , Starch/chemistry , Water/chemistry , Soybean Oil/chemistry , Oryza/chemistry , Gelatin/chemistry , Temperature , Surface Tension , Particle Size
2.
Nat Commun ; 15(1): 3919, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724503

ABSTRACT

Biological macromolecules can condense into liquid domains. In cells, these condensates form membraneless organelles that can organize chemical reactions. However, little is known about the physical consequences of chemical activity in and around condensates. Working with model bovine serum albumin (BSA) condensates, we show that droplets swim along chemical gradients. Active BSA droplets loaded with urease swim toward each other. Passive BSA droplets show diverse responses to externally applied gradients of the enzyme's substrate and products. In all these cases, droplets swim toward solvent conditions that favor their dissolution. We call this behavior "dialytaxis", and expect it to be generic, as conditions which favor dissolution typically reduce interfacial tension, whose gradients are well-known to drive droplet motion through the Marangoni effect. These results could potentially suggest alternative physical mechanisms for active transport in living cells, and may enable the design of fluid micro-robots.


Subject(s)
Serum Albumin, Bovine , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Animals , Urease/metabolism , Urease/chemistry , Solubility , Cattle , Solvents/chemistry , Surface Tension
3.
Sci Rep ; 14(1): 11408, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762671

ABSTRACT

In the enhanced oil recovery (EOR) process, interfacial tension (IFT) has become a crucial factor because of its impact on the recovery of residual oil. The use of surfactants and biosurfactants can reduce IFT and enhance oil recovery by decreasing it. Asphaltene in crude oil has the structural ability to act as a surface-active material. In microbial-enhanced oil recovery (MEOR), biosurfactant production, even in small amounts, is a significant mechanism that reduces IFT. This study aimed to investigate fluid/fluid interaction by combining low biosurfactant values and low-salinity water using NaCl, MgCl2, and CaCl2 salts at concentrations of 0, 1000, and 5000 ppm, along with Geobacillus stearothermophilus. By evaluating the IFT, this study investigated different percentages of 0, 1, and 5 wt.% of varying asphaltene with aqueous bulk containing low-salinity water and its combination with bacteria. The results indicated G. Stearothermophilus led to the formation of biosurfactants, resulting in a reduction in IFT for both acidic and basic asphaltene. Moreover, the interaction between asphaltene and G. Stearothermophilus with higher asphaltene percentages showed a decrease in IFT under both acidic and basic conditions. Additionally, the study found that the interaction between acidic asphaltene and G. stearothermophilus, in the presence of CaCl2, NaCl, and MgCl2 salts, resulted in a higher formation of biosurfactants and intrinsic surfactants at the interface of the two phases, in contrast to the interaction involving basic asphaltene. These findings emphasize the dependence of the interactions between asphaltene and G. Stearothermophilus, salt, and bacteria on the specific type and concentration of asphaltene.


Subject(s)
Salinity , Surface Tension , Surface-Active Agents , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Water/chemistry , Geobacillus stearothermophilus , Sodium Chloride/chemistry , Petroleum , Calcium Chloride/chemistry
4.
Nat Commun ; 15(1): 3812, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760380

ABSTRACT

The molecular system regulating cellular mechanical properties remains unexplored at single-cell resolution mainly due to a limited ability to combine mechanophenotyping with unbiased transcriptional screening. Here, we describe an electroporation-based lipid-bilayer assay for cell surface tension and transcriptomics (ELASTomics), a method in which oligonucleotide-labelled macromolecules are imported into cells via nanopore electroporation to assess the mechanical state of the cell surface and are enumerated by sequencing. ELASTomics can be readily integrated with existing single-cell sequencing approaches and enables the joint study of cell surface mechanics and underlying transcriptional regulation at an unprecedented resolution. We validate ELASTomics via analysis of cancer cell lines from various malignancies and show that the method can accurately identify cell types and assess cell surface tension. ELASTomics enables exploration of the relationships between cell surface tension, surface proteins, and transcripts along cell lineages differentiating from the haematopoietic progenitor cells of mice. We study the surface mechanics of cellular senescence and demonstrate that RRAD regulates cell surface tension in senescent TIG-1 cells. ELASTomics provides a unique opportunity to profile the mechanical and molecular phenotypes of single cells and can dissect the interplay among these in a range of biological contexts.


Subject(s)
Single-Cell Analysis , Transcriptome , Single-Cell Analysis/methods , Animals , Mice , Humans , Cell Line, Tumor , Phenotype , Gene Expression Profiling/methods , Cellular Senescence/genetics , Surface Tension , Electroporation/methods , Cell Membrane/metabolism
5.
Sci Rep ; 14(1): 10270, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704438

ABSTRACT

Biosurfactants, as microbial bioproducts, have significant potential in the field of microbial enhanced oil recovery (MEOR). Biosurfactants are microbial bioproducts with the potential to reduce the interfacial tension (IFT) between crude oil and water, thus enhancing oil recovery. This study aims to investigate the production and characterization of biosurfactants and evaluate their effectiveness in increasing oil recovery. Pseudoxanthomonas taiwanensis was cultured on SMSS medium to produce biosurfactants. Crude oil was found to be the most effective carbon source for biosurfactant production. The biosurfactants exhibited comparable activity to sodium dodecyl sulfate (SDS) at a concentration of 400 ppm in reducing IFT. It was characterized as glycolipids, showing stability in emulsions at high temperatures (up to 120 °C), pH levels ranging from 3 to 9, and NaCl concentrations up to 10% (w/v). Response surface methodology revealed the optimized conditions for the most stable biosurfactants (pH 7, temperature of 40 °C, and salinity of 2%), resulting in an EI24 value of 64.45%. Experimental evaluations included sand pack column and core flooding studies, which demonstrated additional oil recovery of 36.04% and 12.92%, respectively. These results indicate the potential application of P. taiwanensis biosurfactants as sustainable and environmentally friendly approaches to enhance oil recovery in MEOR processes.


Subject(s)
Petroleum , Surface-Active Agents , Surface-Active Agents/metabolism , Surface-Active Agents/chemistry , Petroleum/metabolism , Xanthomonadaceae/metabolism , Hydrogen-Ion Concentration , Surface Tension , Temperature , Green Chemistry Technology/methods , Sodium Dodecyl Sulfate/chemistry , Emulsions
6.
Nature ; 629(8012): 646-651, 2024 May.
Article in English | MEDLINE | ID: mdl-38693259

ABSTRACT

The shaping of human embryos begins with compaction, during which cells come into close contact1,2. Assisted reproductive technology studies indicate that human embryos fail compaction primarily because of defective adhesion3,4. On the basis of our current understanding of animal morphogenesis5,6, other morphogenetic engines, such as cell contractility, could be involved in shaping human embryos. However, the molecular, cellular and physical mechanisms driving human embryo morphogenesis remain uncharacterized. Using micropipette aspiration on human embryos donated to research, we have mapped cell surface tensions during compaction. This shows a fourfold increase of tension at the cell-medium interface whereas cell-cell contacts keep a steady tension. Therefore, increased tension at the cell-medium interface drives human embryo compaction, which is qualitatively similar to compaction in mouse embryos7. Further comparison between human and mouse shows qualitatively similar but quantitively different mechanical strategies, with human embryos being mechanically least efficient. Inhibition of cell contractility and cell-cell adhesion in human embryos shows that, whereas both cellular processes are required for compaction, only contractility controls the surface tensions responsible for compaction. Cell contractility and cell-cell adhesion exhibit distinct mechanical signatures when faulty. Analysing the mechanical signature of naturally failing embryos, we find evidence that non-compacting or partially compacting embryos containing excluded cells have defective contractility. Together, our study shows that an evolutionarily conserved increase in cell contractility is required to generate the forces driving the first morphogenetic movement shaping the human body.


Subject(s)
Cell Adhesion , Embryo, Mammalian , Humans , Animals , Mice , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Female , Surface Tension , Embryonic Development , Morphogenesis , Biomechanical Phenomena , Male
7.
J Chem Phys ; 160(14)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38591689

ABSTRACT

Phase separation of biomolecules can facilitate their spatiotemporally regulated self-assembly within living cells. Due to the selective yet dynamic exchange of biomolecules across condensate interfaces, condensates can function as reactive hubs by concentrating enzymatic components for faster kinetics. The principles governing this dynamic exchange between condensate phases, however, are poorly understood. In this work, we systematically investigate the influence of client-sticker interactions on the exchange dynamics of protein molecules across condensate interfaces. We show that increasing affinity between a model protein scaffold and its client molecules causes the exchange of protein chains between the dilute and dense phases to slow down and that beyond a threshold interaction strength, this slowdown in exchange becomes substantial. Investigating the impact of interaction symmetry, we found that chain exchange dynamics are also considerably slower when client molecules interact equally with different sticky residues in the protein. The slowdown of exchange is due to a sequestration effect, by which there are fewer unbound stickers available at the interface to which dilute phase chains may attach. These findings highlight the fundamental connection between client-scaffold interaction networks and condensate exchange dynamics.


Subject(s)
Biomolecular Condensates , Phase Separation , Humans , Kinetics , Surface Tension
8.
Bioresour Technol ; 400: 130690, 2024 May.
Article in English | MEDLINE | ID: mdl-38614150

ABSTRACT

Microbial enhanced oil recovery (EOR) has become the focus of oilfield research due to its low cost, environmental friendliness and sustainability. The degradation and EOR capacity of A. borkumensis through the production of bio-enzyme and bio-surfactant were first investigated in this study. The total protein concentration, acetylcholinesterase, esterase, lipase, alkane hydroxylase activity, surface tension, and emulsification index (EI) were determined at different culture times. The bio-surfactant was identified as glycolipid compound, and the yield was 2.6 ± 0.2 g/L. The nC12 and nC13 of crude oil were completely degraded, and more than 40.0 % of nC14-nC24 was degraded by by A. borkumensis. The results of the microscopic etching model displacement and core flooding experiments showed that emulsification was the main mechanism of EOR. A. borkumensis enhanced the recovery rate by 20.2 %. This study offers novel insights for the development of environmentally friendly and efficient oil fields.


Subject(s)
Alcanivoraceae , Biodegradation, Environmental , Petroleum , Surface-Active Agents , Surface-Active Agents/pharmacology , Surface-Active Agents/chemistry , Alcanivoraceae/metabolism , Petroleum/metabolism , Acetylcholinesterase/metabolism , Lipase/metabolism , Surface Tension , Emulsions
9.
J Oleo Sci ; 73(4): 619-623, 2024.
Article in English | MEDLINE | ID: mdl-38556295

ABSTRACT

The distribution of electrolytes near the air/water surface plays an essential role in many processes. While the general distribution is governed by classic Poisson-Boltzmann statistics, the analytical solution is only available for symmetric electrolytes. From the recent studies in the literature, it is evident that surface adsorption is dependent on specific ions as well as the H-bond structure at the surface. Experimental data can capture the macro properties of the surface, such as surface tension and surface potential. Yet, the underpinning mechanisms behind this experimental macro-observation remain unclear. To address the challenge, we developed a framework combining experimental studies and numerical calculations. The model was developed for electrolytes with unequal cationic and anionic charges. The asymmetric model was successfully applied to describe the surface charge of MgCl 2 aqueous solution. The results can be explained by the role of cationic size and charge on the surface layer.


Subject(s)
Electrolytes , Water , Water/chemistry , Electrolytes/chemistry , Ions , Surface Tension , Adsorption
10.
J Oleo Sci ; 73(4): 625-636, 2024.
Article in English | MEDLINE | ID: mdl-38556296

ABSTRACT

The direct incorporation of low viscosity organic liquids (OL) such as dodecane and tributylphosphate (TBP) into fresh geopolymers (GP) is difficult and generally leads to variable amounts of un-incorporated OL remaining outside the hardened geopolymer. Experimentally, it is observed that a regular torque increase during OL incorporation corresponds to a suitable dispersion of the OL in the form of fine micrometric droplets. This can be obtained for TBP and dodecane by adding a small quantity of quaternary ammoniums salts (QAs) such as cetyltrimethylammonium bromide (CTAB). Shorter alkyl chains QAs, such as hexamethyltrimethylammonium (HMTA) can also be used but with a reduced efficiency. The positive impact of CTAB is then confirmed by the Washburn capillary rise method, showing that the interactions between TBP and CTAB-modified metakaolin are weaker compared to untreated powder. Finally, it is observed that the incorporation of TBP into geopolymer slurries is much easier than the incorporation of dodecane. The low interfacial tension measured between TBP and the activating solution (around 8 mN·m -1 ), contrasting with dodecane (29 mN·m -1 ), explains that the dispersion of TBP droplets in fresh metakaolin suspensions is more efficient.


Subject(s)
Alkanes , Quaternary Ammonium Compounds , Cetrimonium , Surface Tension
11.
Int J Pharm ; 656: 124037, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38522489

ABSTRACT

Interest in 3D printing has been growing rapidly especially in pharmaceutical industry due to its multiple advantages such as manufacturing versatility, personalization of medicine, scalability, and cost effectiveness. Inkjet based 3D printing gained special attention after FDA's approval of Spritam® manufactured by Aprecia pharmaceuticals in 2015. The precision and printing efficiency of 3D printing is strongly influenced by the dynamics of ink/binder jetting, which further depends on the ink's fluid properties. In this study, Computational Fluid Dynamics (CFD) has been utilized to study the drop formation process during inkjet-based 3D printing for piezoelectric and thermal printhead geometries using Volume of Fluid (VOF) method. To develop the CFD model commercial software ANSYS-Fluent was used. The developed CFD model was experimentally validated using drop watcher setup to record drop progression and drop velocity. During the study, water, Fujifilm model fluid, and Amitriptyline drug solutions were evaluated as the ink solutions. The drop properties such as drop volume, drop diameter, and drop velocity were examined in detail in response to change ink solution properties such as surface tension, viscosity, and density. A good agreement was observed between the experimental and simulation data for drop properties such as drop volume and drop velocity.


Subject(s)
Hydrodynamics , Ink , Printing, Three-Dimensional , Tablets , Technology, Pharmaceutical , Viscosity , Technology, Pharmaceutical/methods , Amitriptyline/chemistry , Computer Simulation , Surface Tension
12.
Toxicology ; 504: 153785, 2024 May.
Article in English | MEDLINE | ID: mdl-38518839

ABSTRACT

As environmental air quality worsens and respiratory health injuries and diseases increase, it is essential to enhance our ability to develop better methods to identify potential hazards. One promising approach in emerging toxicology involves the utilization of lung surfactant as a model that addresses the limitations of conventional in vitro toxicology methods by incorporating the biophysical aspect of inhalation. This study employed a constrained drop surfactometer to assess 20 chemicals for potential surfactant inhibition. Of these, eight were identified as inhibiting lung surfactant function: 1-aminoethanol, bovine serum albumin, maleic anhydride, propylene glycol, sodium glycocholate, sodium taurocholate, sodium taurodeoxycholate, and Triton X-100. These results are consistent with previously reported chemical-induced acute lung dysfunction in vivo. The study provides information on each chemical's minimum and maximum surface tension conditions and corresponding relative area and contact angle values. Isotherms and box plots are reported for selected chemicals across doses, and vector plots are used to summarize and compare the results concisely. This lung surfactant bioassay is a promising non-animal model for hazard identification, with broader implications for developing predictive modeling and decision-making tools.


Subject(s)
High-Throughput Screening Assays , Pulmonary Surfactants , High-Throughput Screening Assays/methods , Surface Tension/drug effects , Animals , Benchmarking , Humans , Dose-Response Relationship, Drug
13.
Int J Pharm ; 655: 123848, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38316317

ABSTRACT

Surface tension is a crucial functional indicator for various classes of pharmaceutical excipients, as highlighted in both the Pharmacopoeia of the People's Republic of China (ChP) < 9601 Guidelines for Functionality-related Characteristics of Pharmaceutical Excipients > and the United States Pharmacopoeia (USP) < 1059 Excipient Performance >. However, there are few systematic studies on surface tension measurement of pharmaceutical excipients, resulting in a lack of stable parameter support in practical applications. In this study, we aim to fill this gap by exploring three different methods for measuring surface tension. These methods were carefully developed taking into account the actual measurement process and statistical theory, thus ensuring their applicability and reliability. Through comparative analyses, we have identified the most suitable measurement methods for different classes of pharmaceutical excipients. In addition, this paper describes the surface adsorption behavior of various excipients. Therefore, this study provides valuable guidance for the determination of surface tension and the study of surface adsorption behavior, which lays the foundation for further comprehensive research in the field of surface tension of pharmaceutical excipients and the improvement of general pharmacopoeia specification.


Subject(s)
Chemistry, Pharmaceutical , Excipients , Humans , Surface Tension , Reproducibility of Results
14.
Biosens Bioelectron ; 250: 116051, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38301544

ABSTRACT

Agroathelia rolfsii (A. rolfsii) is a fungal infection and poses a significant threat to over 500 plant species worldwide. It can reduce crop yields drastically resulting in substantial economic losses. While conventional detection methods like PCR offer high sensitivity and specificity, they require specialized and expensive equipment, limiting their applicability in resource-limited settings and in the field. Herein, we present an integrated workflow with nucleic acid extraction and isothermal amplification in a lab-on-a-chip cartridge based on immiscible filtration assisted by surface tension (IFAST) to detect A. rolfsii fungi in soil for point-of-need application. Our approach enabled both DNA extraction of A. rolfsii from soil and subsequent colorimetric loop-mediated isothermal amplification (LAMP) to be completed on a single chip, termed IFAST-LAMP. LAMP primers targeting ITS region of A. rolfsii were newly designed and tested. Two DNA extraction methods based on silica paramagnetic particles (PMPs) and three LAMP assays were compared. The best-performing assay was selected for on-chip extraction and detection of A. rolfsii from soil samples inoculated with concentrations of 3.75, 0.375 and 0.0375 mg fresh weight per 100-g soil (%FW). The full on-chip workflow was achieved within a 1-h turnaround time. The platform was capable of detecting as low as 3.75 %FW at 2 days after inoculation and down to 0.0375 %FW at 3 days after inoculation. The IFAST-LAMP could be suitable for field-applicability for A. rolfsii detection in low-resource settings.


Subject(s)
Biosensing Techniques , Nucleic Acids , Surface Tension , Nucleic Acid Amplification Techniques/methods , DNA , DNA Primers , Sensitivity and Specificity
15.
Food Chem ; 445: 138723, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38350201

ABSTRACT

Oil-in-water-in-oil (O/W/O) double emulsions are considered an advanced oil-structuring technology that can accomplish multi-functions to improve food quality and nutrition. However, this special structure is thermodynamically unstable. This study formulated a model O/W/O double emulsion with standard surfactants, Tween 80 (4 %) and polyglycerol polyricinoleate (PGPR, 5 %), using a traditional two-step method with different homogenization parameters. Cryo-SEM and GC-FID results show that O/W/O emulsions were successfully formulated, and the release rate (RR) of medium-chain triglycerides (MCT) oil from the inner oil to the outer oil phase increased significantly with 2nd homogenization speed increasing, respectively. Interestingly, the RR of all samples reached about 75 % after 2 months of storage, suggesting that O/W/O emulsions were highly unstable. To explain the observed instability, dynamic interfacial tension and interfacial rheology were performed using a drop shape tensiometer. Results demonstrated that unadsorbed Tween 80 in the intermediate aqueous phase was a key factor in markedly decreasing the interfacial properties of the outer PGPR-assembled film by affecting the interfacial rearrangement. Additionally, it was found that the MCT release showed a positive correlation with the Tween 80 concentration, demonstrating that the formed Tween 80 micelles could transport oil molecules to strengthen the emulsion instability. Taken together, this study reveals the destabilization mechanism of model O/W/O surfactants-stabilized emulsions from bulk to interface, providing highly relevant insights for the design of stable O/W/O double emulsions.


Subject(s)
Polysorbates , Surface-Active Agents , Emulsions/chemistry , Polysorbates/chemistry , Surface-Active Agents/chemistry , Water/chemistry , Surface Tension
16.
Molecules ; 29(2)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38257213

ABSTRACT

Enhanced oil recovery (EOR) processes are technologies used in the oil and gas industry to maximize the extraction of residual oil from reservoirs after primary and secondary recovery methods have been carried out. The injection into the reservoir of surface-active substances capable of reducing the surface tension between oil and the rock surface should favor its extraction with significant economic repercussions. However, the most commonly used surfactants in EOR are derived from petroleum, and their use can have negative environmental impacts, such as toxicity and persistence in the environment. Biosurfactants on the other hand, are derived from renewable resources and are biodegradable, making them potentially more sustainable and environmentally friendly. The present review intends to offer an updated overview of the most significant results available in scientific literature on the potential application of biosurfactants in the context of EOR processes. Aspects such as production strategies, techniques for characterizing the mechanisms of action and the pros and cons of the application of biosurfactants as a principal method for EOR will be illustrated and discussed in detail. Optimized concepts such as the HLD in biosurfactant choice and design for EOR are also discussed. The scientific findings that are illustrated and reviewed in this paper show why general emphasis needs to be placed on the development and adoption of biosurfactants in EOR as a substantial contribution to a more sustainable and environmentally friendly oil and gas industry.


Subject(s)
Anthracenes , Petroleum , Industry , Surface Tension
17.
Environ Sci Pollut Res Int ; 31(5): 8099-8117, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177646

ABSTRACT

In this sustainability-oriented research, the properties of plant-based inks were evaluated denoting the viscosity range of 8.5 to 10 cP, the relative density of 1.06, conductivity value of 2.51 mS/cm, and the surface tension of 60 mN/m and pH of 4.9 to be most effective for inkjet printing. The changes in these properties to the one-month storage phase are detailed as determined with attenuated total reflectance - Fourier transform infrared spectroscopy, viscometer, and tensiometer. The varied colours of plant-based inks were stable to storage time except for the blue colour ink made from bio indigo herb that displayed agal-like sediments. After the storage phase, the plant-based inks exhibited anti-thixotropic viscosity except for yellow colour plant-based ink demonstrating thixotropic behaviour. High conductivity values of 18.5 and 15.6 mS/Cm were noted for blue and black colour plant-based inks, indicating their potential for constituting conducting inks; however, the conductivity values dropped to 7.5 and 9.5, respectively, after 1 month. The pH and surface tension were found steady during the storage period. The study of the life cycle analysis of plant-based inks is suggested for future work. The significance of this work in developing plant-based inks for inkjet printing of textiles lies in the convergence of sustainability and innovation. Plant-based inks can offer an eco-friendly alternative to traditional synthetic inks that are used currently, which provides a knowledge base for good practises meeting the environmentally conscious in the digital printing of the textile industry. These developed inks from this study can not only reduce the environmental impact but also promote a healthier ecosystem.


Subject(s)
Ecosystem , Ink , Surface Tension
18.
Soft Matter ; 20(6): 1173-1185, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38164656

ABSTRACT

Glycyrrhizic acid (GA), a naturally derived food-grade saponin molecule, is a promising alternative to synthetic surfactants for stabilizing multiphase systems including emulsions and foams, due to its biological activity and surface-active properties. Understanding the interfacial behavior of GA, particularly in relation to its complex self-assembly behaviors in water induced by multiple environmental stimuli, is crucial to its application in multiphase systems. In this study, we comprehensively investigate the interfacial structure and rheological properties of GA systems, as a function of pH and temperature, through Langmuir-Blodgett films combined with atomic force microscopy, interfacial particle tracking, adsorption kinetics, stress-relaxation behavior and interfacial dilatational rheology. The variation of solution pH provokes pronounced changes in the interfacial properties of GA. At pH 2 and 4, GA fibril aggregates/fibrils adsorb rapidly, followed by rearrangement into large lamellar and rod-like structures, forming a loose and heterogeneous fibrous network at the interface, which exhibit a stretchable gel-like behavior. In contrast, GA at pH 6 and 8, featuring micelles or monomers in solutions, adsorb slowly to the interface and re-assemble partially into small micelle-like or irregular structures, which lead to a dense and homogeneous interfacial layer with stiffer glassy-like responses. With successively elevated temperature, the GA structures (pH 4) at the interface break into smaller fragments and further adsorption is promoted. Upon cooling, the interfacial tension of GA further decreases and a highly elastic interfacial layer may be formed. The diverse GA assemblies in bulk solution impart them with rich and intriguing interfacial behaviors, which may provide valuable mechanistic insights for the development of novel edible soft matter stabilized by GA.


Subject(s)
Glycyrrhizic Acid , Water , Surface Tension , Surface Properties , Rheology , Emulsions , Water/chemistry , Adsorption
19.
Biophys J ; 123(2): 210-220, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38087780

ABSTRACT

Quantifying the mechanical properties of cells is important to better understand how mechanics constrain cellular processes. Furthermore, because pathologies are usually paralleled by altered cell mechanical properties, mechanical parameters can be used as a novel way to characterize the pathological state of cells. Key features used in models are cell tension, cell viscoelasticity (representing the average of the cell bulk), or a combination of both. It is unclear which of these features is the most relevant or whether both should be included. To clarify this, we performed microindentation experiments on cells with microindenters of various tip radii, including micrometer-sized microneedles. We obtained different cell-indenter contact radii and measured the corresponding contact stiffness. We derived a model predicting that this contact stiffness should be an affine function of the contact radius and that, at vanishing contact radius, the cell stiffness should be equal to the cell tension multiplied by a constant. When microindenting leukocytes and both adherent and trypsinized adherent cells, the contact stiffness was indeed an affine function of the contact radius. For leukocytes, the deduced surface tension was consistent with that measured using micropipette aspiration. For detached endothelial cells, agreement between microindentation and micropipette aspiration was better when considering these as only viscoelastic when analyzing micropipette aspiration experiments. This work suggests that indenting cells with sharp tips but neglecting the presence of surface tension leads to an effective elastic modulus whose origin is in fact surface tension. Accordingly, using sharp tips when microindenting a cell is a good way to directly measure its surface tension without the need to let the viscoelastic modulus relax.


Subject(s)
Endothelial Cells , Surface Tension , Elastic Modulus
20.
Chem Phys Lipids ; 258: 105365, 2024 01.
Article in English | MEDLINE | ID: mdl-38092233

ABSTRACT

Layers of pulmonary lipids on an aqueous substrate at non-equilibrium conditions can decrease the surface tension of water to quite low values. This is connected with different relaxation processes occurring at the interface and the associated changes in the surface layer structure. Results of measurements by the combination of methods like surface rheology, ellipsometry, Brewster angle microscopy, and IRRAS for spread layers of lipid mixtures open a possibility to specify the dynamics of structural changes at conditions close to the physiological state. At sufficiently low surface tension values (below 5 mN/m) significant changes in the ellipsometric signal were observed for pure DPPC layers, which can be related to a transition from 2D to 3D structures caused by the layer folding. The addition of other lipids can accelerate the relaxation processes connected with squeezing-out of molecules or multilayer stacks formation hampering thereby a decrease of surface tension down to low values corresponding to the folding of the monolayer.


Subject(s)
Lung , Microscopy , Surface Tension , Lung/chemistry , Lipids/chemistry , Surface Properties , Water/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...