Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 816
Filter
1.
Cells ; 13(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891045

ABSTRACT

Porcine astrovirus (PAstV) has a potential zoonotic risk, with a high proportion of co-infection occurring with porcine epidemic diarrhea virus (PEDV) and other diarrheal pathogens. Despite its high prevalence, the cellular mechanism of PAstV pathogenesis is ill-defined. Previous proteomics analyses have revealed that the differentially expressed protein NOD-like receptor X1 (NLRX1) located in the mitochondria participates in several important antiviral signaling pathways in PAstV-4 infection, which are closely related to mitophagy. In this study, we confirmed that PAstV-4 infection significantly up-regulated NLRX1 and mitophagy in Caco-2 cells, while the silencing of NLRX1 or the treatment of mitophagy inhibitor 3-MA inhibited PAstV-4 replication. Additionally, PAstV-4 infection triggered the activation of the extracellular regulated protein kinases/ myosin light-chain kinase (ERK/MLCK) pathway, followed by the down-regulation of tight-junction proteins (occludin and ZO-1) as well as MUC-2 expression. The silencing of NLRX1 or the treatment of 3-MA inhibited myosin light-chain (MLC) phosphorylation and up-regulated occludin and ZO-1 proteins. Treatment of the ERK inhibitor PD98059 also inhibited MLC phosphorylation, while MLCK inhibitor ML-7 mitigated the down-regulation of mucosa-related protein expression induced by PAstV-4 infection. Yet, adding PD98059 or ML-7 did not affect NLRX1 expression. In summary, this study preliminarily explains that NLRX1 plays an important role in the disruption of intestinal mucosal function triggered by PAstV-4 infection via the ERK/MLC pathway. It will be helpful for further antiviral drug target screening and disease therapy.


Subject(s)
Intestinal Mucosa , Myosin-Light-Chain Kinase , Animals , Intestinal Mucosa/metabolism , Intestinal Mucosa/virology , Intestinal Mucosa/pathology , Caco-2 Cells , Humans , Swine , Myosin-Light-Chain Kinase/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Astroviridae Infections/virology , Mamastrovirus/physiology , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , MAP Kinase Signaling System/drug effects , Swine Diseases/virology , Swine Diseases/metabolism , Signal Transduction/drug effects
2.
Microbiol Spectr ; 12(6): e0391423, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38742903

ABSTRACT

Porcine parvovirus (PPV) is one of the most important pathogens that cause reproductive failure in pigs. However, the pathogenesis of PPV infection remains unclear. Proteomics is a powerful tool to understand the interaction between virus and host cells. In the present study, we analyzed the proteomics of PPV-infected PK-15 cells. A total of 32 and 345 proteins were differentially expressed at the early and replication stages, respectively. Subsequent gene ontology annotation and Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed these differentially expressed proteins were significantly enriched in pathways including toll-like receptor signaling pathway, tumor necrosis factor signaling pathway, and viral carcinogenesis. The expression of poly (rC) binding protein 1 (PCBP1) was observed to decrease after PPV infection. Overexpressed or silenced PCBP1 expression inhibited or promoted PPV infection. Our studies established a foundation for further exploration of the multiplication mechanism of PPV. IMPORTANCE: Porcine parvovirus (PPV) is a cause of reproductive failure in the swine industry. Our knowledge of PPV remains limited, and there is no effective treatment for PPV infection. Proteomics of PPV-infected PK-15 cells was conducted to identify differentially expressed proteins at 6 hours post-infection (hpi) and 36 hpi. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that various pathways participate in PPV infection. Poly (rC) binding protein 1 was confirmed to inhibit PPV replication, which provided potential targets for anti-PPV infection. Our findings improve the understanding of PPV infection and pave the way for future research in this area.


Subject(s)
Parvoviridae Infections , Parvovirus, Porcine , Proteomics , RNA-Binding Proteins , Swine Diseases , Virus Replication , Parvovirus, Porcine/genetics , Parvovirus, Porcine/physiology , Animals , Swine , Cell Line , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Parvoviridae Infections/virology , Parvoviridae Infections/metabolism , Parvoviridae Infections/veterinary , Swine Diseases/virology , Swine Diseases/metabolism , Swine Diseases/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
3.
J Virol ; 98(5): e0031724, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38624231

ABSTRACT

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered swine coronavirus with potential cross-species transmission risk. Although SADS-CoV-induced host cell apoptosis and innate immunity antagonization has been revealed, underlying signaling pathways remain obscure. Here, we demonstrated that infection of SADS-CoV induced apoptosis in vivo and in vitro, and that viral protein NS7a is mainly responsible for SADS-CoV-induced apoptosis in host cells. Furthermore, we found that NS7a interacted with apoptosis-inducing factor mitochondria associated 1 (AIFM1) to activate caspase-3 via caspase-6 in SADS-CoV-infected cells, and enhanced SADS-CoV replication. Importantly, NS7a suppressed poly(I:C)-induced expression of type III interferon (IFN-λ) via activating caspase-3 to cleave interferon regulatory factor 3 (IRF3), and caspase-3 inhibitor protects piglets against SADS-CoV infection in vivo. These findings reveal how SADS-CoV induced apoptosis to inhibit innate immunity and provide a valuable clue to the development of effective drugs for the clinical control of SADS-CoV infection.IMPORTANCEOver the last 20 years, multiple animal-originated coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), middle east respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2, have caused millions of deaths, seriously jeopardized human health, and hindered social development, indicating that the study of animal-originated coronaviruses with potential for cross-species transmission is particularly important. Bat-originated swine acute diarrhea syndrome coronavirus (SADS-CoV), discovered in 2017, can not only cause fatal diarrhea in piglets, but also infect multiple human cells, with a potential risk of cross-species transmission, but its pathogenesis is unclear. In this study, we demonstrated that NS7a of SADS-CoV suppresses IFN-λ production via apoptosis-inducing factor mitochondria associated 1 (AIFM1)-caspase-6-caspase-3-interferon regulatory factor 3 (IRF3) pathway, and caspase-3 inhibitor (Z-DEVD-FMK) can effectively inhibit SADS-CoV replication and protect infected piglets. Our findings in this study contribute to a better understanding of SADS-CoV-host interactions as a part of the coronaviruses pathogenesis and using apoptosis-inhibitor as a drug as potential therapeutic approaches for prevention and control of SADS-CoV infection.


Subject(s)
Apoptosis , Immunity, Innate , Interferon Regulatory Factor-3 , Interferons , Viral Nonstructural Proteins , Animals , Swine , Humans , Interferons/metabolism , Interferon Regulatory Factor-3/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication , Interferon Lambda , Coronavirus Infections/virology , Coronavirus Infections/metabolism , Alphacoronavirus/metabolism , Caspase 3/metabolism , Swine Diseases/virology , Swine Diseases/metabolism , Vero Cells , Signal Transduction , Chlorocebus aethiops , HEK293 Cells
4.
Viruses ; 16(4)2024 04 22.
Article in English | MEDLINE | ID: mdl-38675986

ABSTRACT

Porcine circovirus type 2 (PCV2) infection can cause immunosuppressive diseases in pigs. Vascular endothelial cells (VECs), as the target cells for PCV2, play an important role in the immune response and inflammatory regulation. Endothelial IL-8, which is produced by porcine hip artery endothelial cells (PIECs) infected with PCV2, can inhibit the maturation of monocyte-derived dendritic cells (MoDCs). Here, we established a co-culture system of MoDCs and different groups of PIECs to further investigate the PCV2-induced endothelial IL-8 signaling pathway that drives the inhibition of MoDC maturation. The differentially expressed genes related to MoDC maturation were mainly enriched in the NF-κB and JAK2-STAT3 signaling pathways. Both the NF-κB related factor RELA and JAK2-STAT3 signaling pathway related factors (IL2RA, JAK, STAT2, STAT5, IL23A, IL7, etc.) decreased significantly in the IL-8 up-regulated group, and increased significantly in the down-regulated group. The expression of NF-κB p65 in the IL-8 up-regulated group was reduced significantly, and the expression of IκBα was increased significantly. Nuclear translocation of NF-κB p65 was inhibited, while the nuclear translocation of p-STAT3 was increased in MoDCs in the PCV2-induced endothelial IL-8 group. The results of treatment with NF-κB signaling pathway inhibitors showed that the maturation of MoDCs was inhibited and the expression of IL-12 and GM-CSF at mRNA level were lower. Inhibition of the JAK2-STAT3 signaling pathway had no significant effect on maturation, and the expression of IL-12 and GM-CSF at mRNA level produced no significant change. In summary, the NF-κB signaling pathway is the main signaling pathway of MoDC maturation, and is inhibited by the PCV2-induced up-regulation of endothelial-derived IL-8.


Subject(s)
Circovirus , Interleukin-8 , Signal Transduction , Swine Diseases , Animals , Cell Differentiation , Cells, Cultured , Circoviridae Infections/virology , Circoviridae Infections/immunology , Circoviridae Infections/veterinary , Circovirus/physiology , Circovirus/immunology , Coculture Techniques , Dendritic Cells/immunology , Dendritic Cells/metabolism , Endothelial Cells/virology , Endothelial Cells/metabolism , Interleukin-8/metabolism , Interleukin-8/genetics , NF-kappa B/metabolism , Swine , Swine Diseases/virology , Swine Diseases/immunology , Swine Diseases/metabolism
5.
Zool Res ; 45(2): 275-283, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38485497

ABSTRACT

Huntington's disease (HD) is a hereditary neurodegenerative disorder for which there is currently no effective treatment available. Consequently, the development of appropriate disease models is critical to thoroughly investigate disease progression. The genetic basis of HD involves the abnormal expansion of CAG repeats in the huntingtin ( HTT) gene, leading to the expansion of a polyglutamine repeat in the HTT protein. Mutant HTT carrying the expanded polyglutamine repeat undergoes misfolding and forms aggregates in the brain, which precipitate selective neuronal loss in specific brain regions. Animal models play an important role in elucidating the pathogenesis of neurodegenerative disorders such as HD and in identifying potential therapeutic targets. Due to the marked species differences between rodents and larger animals, substantial efforts have been directed toward establishing large animal models for HD research. These models are pivotal for advancing the discovery of novel therapeutic targets, enhancing effective drug delivery methods, and improving treatment outcomes. We have explored the advantages of utilizing large animal models, particularly pigs, in previous reviews. Since then, however, significant progress has been made in developing more sophisticated animal models that faithfully replicate the typical pathology of HD. In the current review, we provide a comprehensive overview of large animal models of HD, incorporating recent findings regarding the establishment of HD knock-in (KI) pigs and their genetic therapy. We also explore the utilization of large animal models in HD research, with a focus on sheep, non-human primates (NHPs), and pigs. Our objective is to provide valuable insights into the application of these large animal models for the investigation and treatment of neurodegenerative disorders.


Subject(s)
Huntington Disease , Sheep Diseases , Swine Diseases , Animals , Sheep , Swine , Huntington Disease/genetics , Huntington Disease/therapy , Huntington Disease/metabolism , Huntington Disease/veterinary , Disease Models, Animal , Primates/genetics , Brain/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Sheep Diseases/metabolism , Sheep Diseases/pathology , Swine Diseases/metabolism , Swine Diseases/pathology
6.
Redox Biol ; 71: 103112, 2024 May.
Article in English | MEDLINE | ID: mdl-38461791

ABSTRACT

The Warburg effect, also referred as aerobic glycolysis, is a common metabolic program during viral infection. Through targeted metabolomics combined with biochemical experiments and various cell models, we investigated the central carbon metabolism (CCM) profiles of cells infected with porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with zoonotic potential. We found that PDCoV infection required glycolysis but decreased glycolytic flux, exhibiting a non-Warburg effect characterized by pyruvic acid accumulation. Mechanistically, PDCoV enhanced pyruvate kinase activity to promote pyruvic acid anabolism, a process that generates pyruvic acid with concomitant ATP production. PDCoV also hijacked pyruvic acid catabolism to increase biosynthesis of non-essential amino acids (NEAAs), suggesting that pyruvic acid is an essential hub for PDCoV to scavenge host energy and metabolites. Furthermore, PDCoV facilitated glutaminolysis to promote the synthesis of NEAA and pyrimidines for optimal proliferation. Our work supports a novel CCM model after viral infection and provides potential anti-PDCoV drug targets.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Swine , Animals , Coronavirus/metabolism , Pyruvic Acid/metabolism , Swine Diseases/metabolism , Swine Diseases/pathology , Coronavirus Infections/pathology
7.
Vet Microbiol ; 292: 110036, 2024 May.
Article in English | MEDLINE | ID: mdl-38458048

ABSTRACT

Group A Rotavirus (RVA) is a major cause of diarrhea in infants and piglets. ß2-microglobulin (ß2 M), encoded by the B2M gene, serves as a crucial subunit of the major histocompatibility complex class I (MHC-I) molecules. ß2 M is indispensable for the transport of MHC-I to the cell membrane. MHC-I, also known as swine leukocyte antigen class I (SLA-I) in pigs, presents viral antigens to the cell surface. In this study, RVA infection down-regulated ß2 M expression in both porcine intestinal epithelial cells-J2 (IPEC-J2) and MA-104 cells. RVA infection did not down-regulate the mRNA level of the B2M gene, indicating that the down-regulation of ß2 M occurred on the protein level. Mechanismly, RVA infection triggered ß2 M aggregation in the endoplasmic reticulum (ER) and enhanced the Lys48 (K48)-linked ubiquitination of ß2 M, leading to the degradation of ß2 M through ERAD-proteasome pathway. Furthermore, we found that RVA infection significantly impeded the level of SLA-I on the surface, and the overexpression of ß2 M could recover its expression. In this study, our study demonstrated that RVA infection degrades ß2 M via ERAD-proteasome pathway, consequently hampering SLA-I expression on the cell surface. This study would enhance the understanding of the mechanism of how RVA infection induces immune escape.


Subject(s)
Rotavirus Infections , Swine Diseases , Animals , beta 2-Microglobulin/genetics , beta 2-Microglobulin/metabolism , Cell Membrane , Endoplasmic Reticulum-Associated Degradation , Histocompatibility Antigens Class I/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Rotavirus Infections/veterinary , Swine , Swine Diseases/metabolism
8.
J Sci Food Agric ; 104(10): 6262-6275, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38466088

ABSTRACT

BACKGROUND: Early weaning is prone to damage intestinal barrier function, resulting in diarrhea, whereas rutin, as a natural flavonoid with multiple biological functions, shows potential in piglets. Therefore, the effects of dietary rutin on growth, antidiarrheal, barrier function, antioxidant status and cecal microbiota of weaned piglets were investigated with the control group (CON) (basal diet) and Rutin (basal diet+500 mg kg-1 rutin) groups fed for 14 days. RESULTS: The results showed that dietary 500 mg kg-1 rutin significantly decreased diarrhea index, serum diamine oxidase activity and total aerobic bacterial population in mesenteric lymph nodes, whereas it significantly increased the gain-to-feed ratio (G:F) and serum growth hormone content, jejunal villus height and villus height to crypt depth ratio, and also enhanced jejunal claudin-1 and zonula occludens-1 mRNA and protein expression. Meanwhile, dietary rutin significantly decreased inflammation-associated mRNA expression, malondialdehyde (MDA) content, swollen mitochondrial number and mitochondrial area in the jejunum, whereas it increased the total superoxide dismutase (T-SOD) and glutathione peroxidase activities and activated the Nrf2 signaling pathway. Moreover, dietary rutin significantly increased Firmicutes abundance and decreased Campylobacterota abundance, which were closely associated with the decreased diarrhea index and MDA content or increased Claudin-1 expression and T-SOD activity. CONCLUSION: Dietary 500 mg kg-1 rutin increased G:F by improving intestinal morphology, and alleviated diarrhea by enhancing intestinal barrier, which might be associated with the enhanced antioxidant capacity via activating the Nrf2/Keap1 signaling pathway and the improved cecal microbial composition in weaned piglets. © 2024 Society of Chemical Industry.


Subject(s)
Antidiarrheals , Antioxidants , Cecum , Diarrhea , Gastrointestinal Microbiome , Intestinal Mucosa , Rutin , Weaning , Animals , Swine/metabolism , Swine/growth & development , Gastrointestinal Microbiome/drug effects , Antioxidants/metabolism , Cecum/microbiology , Cecum/metabolism , Intestinal Mucosa/metabolism , Diarrhea/microbiology , Diarrhea/diet therapy , Diarrhea/veterinary , Antidiarrheals/administration & dosage , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Bacteria/metabolism , Swine Diseases/microbiology , Swine Diseases/metabolism , Claudin-1/metabolism , Claudin-1/genetics , Animal Feed/analysis , Jejunum/metabolism , Jejunum/microbiology , Dietary Supplements/analysis , Male , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism , Intestinal Barrier Function
9.
Vet Microbiol ; 291: 110013, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364468

ABSTRACT

Potassium diformate (KDF) is a kind of formate, which possesses the advantages of antimicrobial activity, growth promotion and preventing diarrhea in weaned piglets. However, the researches of KDF in animal production mostly focused on apparent indexes such as growth performance and the mechanisms of KDF on intestinal health have not been reported. Thus, porcine small intestinal epithelial cells (IPEC-J2) infected with Enterohemorrhagic Escherichia coli (EHEC) was used to investigate the role of KDF on alleviating intestinal inflammation in this study. The 0.125 mg/mL KDF treated IPEC-J2 cells for 6 h and IPEC-J2 cells challenged with 5 × 107 CFU/mL EHEC for 4 h were confirmed as the optimum concentration and time for the following experiment. The subsequent experiment was divided into four groups: control group (CON), EHEC group, KDF group, KDF+EHEC group. The results showed that KDF increased the cell viability and the gene expression levels of SGLT3 and TGF-ß, while decreased the content of IL-1ß compared with the CON group. The cell viability and the gene expressions of SGLT1, SGLT3, GLUT2, Claudin-1, Occludin and TGF-ß, and the protein expression of ZO-1 in EHEC group were lower than those in CON group, whereas the gene expressions of IL-1ß, TNF, IL-8 and TLR4, and the level of phosphorylation NF-кB protein were increased. Pretreatment with KDF reduced the content of IgM and IL-1ß, the gene expressions of IL-1ß, TNF, IL-8 and TLR4 and the level of phosphorylation NF-кB protein, and increased the gene expression of TGF-ß and the protein expression of Occludin in IPEC-J2 cells infected EHEC. In conclusion, 0.125 mg/mL KDF on IPEC-J2 cells for 6 h had the beneficial effects on ameliorating the intestinal inflammation because of reduced pro-inflammatory cytokines and enhanced anti-inflammatory cytokines through regulating NF-кB signaling pathway under the EHEC challenge.


Subject(s)
Enterohemorrhagic Escherichia coli , Swine Diseases , Animals , Swine , Occludin/genetics , Occludin/metabolism , Enterohemorrhagic Escherichia coli/metabolism , Interleukin-8/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 4 , Cell Line , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/veterinary , Cytokines/genetics , Cytokines/metabolism , Epithelial Cells/metabolism , Transforming Growth Factor beta/metabolism , Intestinal Mucosa , Swine Diseases/drug therapy , Swine Diseases/metabolism
10.
J Virol ; 98(3): e0018224, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38411947

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) results in PED, which is an infectious intestinal disease with the representative features of diarrhea, vomiting, and dehydration. PEDV infects neonatal piglets, causing high mortality rates. Therefore, elucidating the interaction between the virus and host in preventing and controlling PEDV infection is of immense significance. We found a new antiviral function of the host protein, RNA-binding motif protein 14 (RBM14), which can inhibit PEDV replication via the activation of autophagy and interferon (IFN) signal pathways. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV nucleocapsid (N) protein through the RBM14-p62-autophagosome pathway. Furthermore, RBM14 can also improve the antiviral ability of the hosts through interacting with mitochondrial antiviral signaling protein to induce IFN expression. These results highlight the novel mechanism underlying RBM14-induced viral restriction. This mechanism leads to the degradation of viral N protein via the autophagy pathway and upregulates IFN for inhibiting PEDV replication; thus, offering new ways for preventing and controlling PED.IMPORTANCEPorcine epidemic diarrhea virus (PEDV) is a vital reason for diarrhea in neonatal piglets, which causes high morbidity and mortality rates. There is currently no effective vaccine or drug to treat and prevent infection with the PEDV. During virus infection, the host inhibits virus replication through various antiviral factors, and at the same time, the virus antagonizes the host's antiviral reaction through its own encoded protein, thus completing the process of virus replication. Our study has revealed that the expression of RNA-binding motif protein 14 (RBM14) was downregulated in PEDV infection. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV N protein via the RBM14-p62-autophagosome pathway and interacted with mitochondrial antiviral signaling protein and TRAF3 to activate the interferon signal pathway, resulting in the inhibition of PEDV replication.


Subject(s)
Coronavirus Infections , Interferons , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Autophagy , Cell Line , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Coronavirus Infections/veterinary , Diarrhea/veterinary , Interferons/metabolism , Nucleocapsid Proteins/metabolism , Porcine epidemic diarrhea virus/physiology , Swine , Swine Diseases/immunology , Swine Diseases/metabolism , Virus Replication
11.
J Biol Chem ; 300(3): 105779, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395305

ABSTRACT

The newly discovered zoonotic coronavirus swine acute diarrhea syndrome coronavirus (SADS-CoV) causes acute diarrhea, vomiting, dehydration, and high mortality rates in newborn piglets. Although SADS-CoV uses different strategies to evade the host's innate immune system, the specific mechanism(s) by which it blocks the interferon (IFN) response remains unidentified. In this study, the potential of SADS-CoV nonstructural proteins (nsp) to inhibit the IFN response was detected. The results determined that nsp1 was a potent antagonist of IFN response. SADS-CoV nsp1 efficiently inhibited signal transducer and activator of transcription 1 (STAT1) phosphorylation by inducing Janus kinase 1 (JAK1) degradation. Subsequent research revealed that nsp1 induced JAK1 polyubiquitination through K11 and K48 linkages, leading to JAK1 degradation via the ubiquitin-proteasome pathway. Furthermore, SADS-CoV nsp1 induced CREB-binding protein degradation to inhibit IFN-stimulated gene production and STAT1 acetylation, thereby inhibiting STAT1 dephosphorylation and blocking STAT1 transport out of the nucleus to receive antiviral signaling. In summary, the results revealed the novel mechanisms by which SADS-CoV nsp1 blocks the JAK-STAT signaling pathway via the ubiquitin-proteasome pathway. This study yielded valuable findings on the specific mechanism of coronavirus nsp1 in inhibiting the JAK-STAT signaling pathway and the strategies of SADS-CoV in evading the host's innate immune system.


Subject(s)
Alphacoronavirus , Coronavirus Infections , Proteasome Endopeptidase Complex , Swine Diseases , Viral Nonstructural Proteins , Animals , Acetylation , Alphacoronavirus/physiology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Janus Kinase 1/genetics , Janus Kinase 1/metabolism , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Swine , Ubiquitins/metabolism , Swine Diseases/metabolism , Swine Diseases/virology , HEK293 Cells , Vero Cells , Humans , Chlorocebus aethiops , Viral Nonstructural Proteins/metabolism
12.
Vet J ; 303: 106062, 2024 02.
Article in English | MEDLINE | ID: mdl-38215874

ABSTRACT

The S100A12 protein was validated as a biomarker of health status in porcine saliva samples using a semi-quantitative approach based on Western blotting in four healthy and sixteen diseased animals, and in four animals with severe respiratory disease during three days of antibiotic therapy. Afterwards, a non-competitive sandwich immunoassay was then developed, validated, and used to quantify S100A12 in clinical porcine samples, using 14 healthy and 25 diseased pigs. Finally, the S100A12 concentrations in the saliva of ten pigs with respiratory disease were monitored during antibiotic therapy. Diseased animals showed higher concentrations of S100A12 than healthy animals, and the high concentrations of S100A12 in pigs with respiratory distress were reduced after antimicrobial therapy. The assay developed showed good precision and accuracy, as well as a low limit of detection of 3.19 ng/mL. It was possible to store saliva samples at -20 °C, or even at 4 °C, for two weeks before analysis without losing the validity of the results. The concentrations of S100A12 observed in serum and saliva samples showed a moderately positive association with a correlation coefficient of 0.48. The concentrations of the new validated biomarker S100A12 are highly associated with the novel salivary biomarker of inflammation, adenosine deaminase, and moderately to highly associated with the total oxidant status. The results reported in this study provide a new way of evaluating inflammatory diseases in pigs using saliva samples, which should be further explored for disease prevention and monitoring in the field.


Subject(s)
Respiratory Tract Diseases , Swine Diseases , Swine , Animals , S100A12 Protein/analysis , S100A12 Protein/metabolism , Saliva/chemistry , Biomarkers/analysis , Anti-Bacterial Agents/metabolism , Respiratory Tract Diseases/veterinary , Swine Diseases/diagnosis , Swine Diseases/metabolism
13.
J Virol ; 98(2): e0168223, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38289117

ABSTRACT

Porcine deltacoronavirus (PDCoV) has caused enormous economic losses to the global pig industry. However, the immune escape mechanism of PDCoV remains to be fully clarified. Transcriptomic analysis revealed a high abundance of interferon (IFN)-induced protein with tetratricopeptide repeats 3 (IFIT3) transcripts after PDCoV infection, which initially implied a correlation between IFIT3 and PDCoV. Further studies showed that PDCoV nsp5 could antagonize the host type I interferon signaling pathway by cleaving IFIT3. We demonstrated that PDCoV nsp5 cleaved porcine IFIT3 (pIFIT3) at Gln-406. Similar cleavage of endogenous IFIT3 has also been observed in PDCoV-infected cells. The pIFIT3-Q406A mutant was resistant to nsp5-mediated cleavage and exhibited a greater ability to inhibit PDCoV infection than wild-type pIFIT3. Furthermore, we found that cleavage of IFIT3 is a common characteristic of nsp5 proteins of human coronaviruses, albeit not alphacoronavirus. This finding suggests that the cleavage of IFIT3 is an important mechanism by which PDCoV nsp5 antagonizes IFN signaling. Our study provides new insights into the mechanisms by which PDCoV antagonizes the host innate immune response.IMPORTANCEPorcine deltacoronavirus (PDCoV) is a potential emerging zoonotic pathogen, and studies on the prevalence and pathogenesis of PDCoV are ongoing. The main protease (nsp5) of PDCoV provides an excellent target for antivirals due to its essential and conserved function in the viral replication cycle. Previous studies have revealed that nsp5 of PDCoV antagonizes type I interferon (IFN) production by targeting the interferon-stimulated genes. Here, we provide the first demonstration that nsp5 of PDCoV antagonizes IFN signaling by cleaving IFIT3, which affects the IFN response after PDCoV infection. Our findings reveal that PDCoV nsp5 is an important interferon antagonist and enhance the understanding of immune evasion by deltacoronaviruses.


Subject(s)
Coronavirus 3C Proteases , Coronavirus Infections , Deltacoronavirus , Interferon Type I , Intracellular Signaling Peptides and Proteins , Swine Diseases , Swine , Animals , Humans , Coronavirus 3C Proteases/metabolism , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Deltacoronavirus/enzymology , Deltacoronavirus/metabolism , Deltacoronavirus/pathogenicity , Immunity, Innate , Interferon Type I/antagonists & inhibitors , Interferon Type I/biosynthesis , Interferon Type I/immunology , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Proteolysis , Signal Transduction/immunology , Swine/immunology , Swine/virology , Swine Diseases/immunology , Swine Diseases/metabolism , Swine Diseases/virology , Transcription Factors/metabolism , Viral Zoonoses/immunology , Viral Zoonoses/virology , Virus Replication
14.
Theriogenology ; 216: 127-136, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38181538

ABSTRACT

Placental dysfunction is considered as one of the main etiologies of fetal intrauterine growth retardation (IUGR). MicroRNAs (miRNAs) have been demonstrated to be a vital epigenetic modification involved in regulating the placental function and pregnancy outcomes in mammals. However, the mechanisms underlying placenta-specific miRNAs involved in the occurrence and development of pig IUGR remain unclear. In this work, we compared the placental morphologies of piglets with IUGR and normal birth weight (NBW) by using histomorphological analysis and performed a miRNA-mRNA integrative analysis of the gene expression profiles of IUGR and NBW placentas through RNA sequencing. We also investigated the role of differentially expressed ssc-miR-339-5p/GRIK3 through an in vitro experiment on porcine trophoblast cells (PTr2). IUGR piglets had significantly lower birth weight, placental weight, placental efficiency, and placental villus and capillary densities compared with the NBW piglets (P < 0.05). A total of 81 differentially expressed miRNAs and 726 differentially expressed genes in the placentas were screened out between the IUGR and NBW groups. The miRNA-mRNA interaction networks revealed the key core miRNA (ssc-miR-339-5p) and its corresponding target genes. Subsequently, we found that upregulation of ssc-miR-339-5p significantly inhibited the migration and proliferation of PTr2 cells (P < 0.05). The dual-luciferase reporter system showed that GRIK3 was the target gene of ssc-miR-339-5p, and the transcription level of GRIK3 may be negatively regulated by ssc-miR-339-5p. Additionally, overexpression of ssc-miR-339-5p significantly increased (P < 0.05) the mRNA expression levels of genes involved in the cytokine-cytokine receptor interaction pathway. These results indicate that ssc-miR-339-5p may affect the migration and proliferation of trophoblast cells by regulating the expression of GRIK3 and altering the placental inflammatory response, resulting in a suboptimal morphology and function of the placenta and the development of pig IUGR.


Subject(s)
MicroRNAs , Swine Diseases , Animals , Female , Pregnancy , Swine , Fetal Growth Retardation/genetics , Fetal Growth Retardation/veterinary , Fetal Growth Retardation/metabolism , Transcriptome , Birth Weight , Placenta/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation , Trophoblasts/physiology , RNA, Messenger/metabolism , Mammals , Swine Diseases/metabolism
15.
J Sci Food Agric ; 104(9): 5186-5196, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38288747

ABSTRACT

BACKGROUND: Tannic acid (TA), a naturally occurring polyphenol, has shown diverse potential in preventing intestinal damage in piglet diarrhea induced by Enterotoxigenic Escherichia coli (ETEC) K88. However, the protective effect of TA on ETEC k88 infection-induced post-weaning diarrhea and its potential mechanism has not been well elucidated. Therefore, an animal trial was carried out to investigate the effects of dietary supplementation with TA on the intestinal diarrhea of weaned piglets challenged with ETEC K88. In addition, porcine intestinal epithelial cells were used as an in vitro model to explore the mechanism through which TA alleviates intestinal oxidative damage and inflammation. RESULTS: The results indicated that TA supplementation (2 and 4 g kg-1) reduced diarrhea rate, enzyme activity (diamine oxidase [DAO] and Malondialdehyde [MAD]) and serum inflammatory cytokines concentration (TNF-α and IL-1ß) (P < 0.05) compared to the Infection group (IG), group in vivo. In vitro, TA treatment effectively alleviated ETEC-induced cytotoxicity, increased the expression of ZO-1, occludin and claudin-1 at both mRNA and protein levels. Moreover, TA pre-treatment increased the activity of antioxidant enzymes (such as T-SOD) and decreased serum cytokine levels (TNF-α and IL-1ß). Furthermore, TA increased cellular antioxidant capacity by activating the Nrf2 signaling pathway and decreased inflammatory response by down-regulating the expression of TLR4, MyD88, NF-kB and NLRP3. CONCLUSION: The present study showed that TA reduced the diarrhea rate of weaned piglets by restoring the intestinal mucosal mechanical barrier function, alleviating oxidative stress and inflammation. The underlying mechanism was achieved by modulating the p62-keap1-Nrf2 and TLR4-NF-κB-NLRP3 pathway. © 2024 Society of Chemical Industry.


Subject(s)
Enterotoxigenic Escherichia coli , Escherichia coli Infections , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction , Tannins , Toll-Like Receptor 4 , Animals , Swine , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , NF-kappa B/metabolism , NF-kappa B/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Tannins/pharmacology , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Cell Line , Signal Transduction/drug effects , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Swine Diseases/microbiology , Swine Diseases/drug therapy , Swine Diseases/metabolism , Diarrhea/drug therapy , Diarrhea/microbiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Intestines/drug effects , Intestines/microbiology , Polyphenols
16.
Vet Res Commun ; 48(2): 705-724, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37875712

ABSTRACT

The aim of this study was to evaluate the immunomodulatory effect of EPS-L26 isolated from the probiotic strain Lactobacillus (Limosilactobacillus) reuteri L26 Biocenol™, in a model of infection with an enterotoxigenic E. coli (ETEC) by establishing monocultures consisting of the IPEC-J2 cell line or monocyte-derived dendritic cells (moDCs) and creating a 3D model of cell co-cultures established with IPEC-J2 cells and moDCs. The immunomodulatory and immunoprotective potential of used EPS-L26 was confirmed in monocultures in an experimental group of pretreated cells, where our study showed that pretreatment of cells with EPS-L26 and subsequent exposure to infection resulted in significantly down-regulated mRNA levels of genes encoding inflammatory cytokines compared to ETEC challenge in single cell cultures (in IPEC-J2, decreased mRNA levels for TNF-α, IL-6, IL-1ß, IL-12p35; in moDCs, decreased mRNA levels for IL-1ß). Similar to monocultures, we also demonstrated the immunostimulatory potential of the ETEC strain in the co-culture model on directly treated IPEC-J2 cells cultivated on insert chambers (apical compartment) and also on indirectly treated moDCs cultivated in the lower chamber (basolateral compartment), however in the co-culture model the expression of inflammatory cytokines was attenuated at the mRNA level compared to monocultures. Pretreatment of the cells on the insert chambers pointed to the immunoprotective properties of EPS-L26, manifested by decreased mRNA levels in both cell lines compared to ETEC challenge (in IPEC-J2 decreased mRNA levels for IL-12p35; in moDCs decreased mRNA levels for IL-1ß, IL-6). Our results suggest intercellular communication via humoral signals derived from IPEC-J2 cells by influencing the gene expression of indirectly treated moDC cells located in the basolateral compartment.


Subject(s)
Enterotoxigenic Escherichia coli , Escherichia coli Infections , Probiotics , Swine Diseases , Swine , Animals , Coculture Techniques/veterinary , Enterotoxigenic Escherichia coli/genetics , Enterotoxigenic Escherichia coli/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/pharmacology , Interleukin-12 Subunit p35/metabolism , Epithelial Cells , Escherichia coli Infections/veterinary , Probiotics/pharmacology , RNA, Messenger/genetics , Swine Diseases/metabolism
17.
Vet Microbiol ; 288: 109943, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38113574

ABSTRACT

O-acetyl-homoserine sulfhydrylase (OAHS) is a pyridoxal 5'-phosphate-dependent enzyme involved in microbial methionine biosynthesis, which catalyzes the conversion of o-acetyl-homoserine (OAH) to homocysteine. In our previous study, we found that OAHS of Streptococcus suis serotype 2 (SS2) can interact with the porcine blood-brain barrier (BBB) model, but whether OAHS regulates the penetration of BBB during SS2 infection is still unclear. To explore the role of OAHS in SS2 infection, OAHS-deficient SS2 mutant strain (SC19-ΔOAHS) and gene complemental strain (SC19-cΔOAHS) were constructed. Compared to the parent strain, with the loss of oahs, the chain length of SC19-ΔOAHS was shortened, the virulence was significantly reduced, the survival rate of mice infected with SC19-ΔOAHS was obviously increased accompanied by the relieved clinical symptoms. And the survival ability of SC19-ΔOAHS in whole blood was also remarkably decreased. Interestingly, the adhesion of SC19-ΔOAHS to endothelial cells was markedly increased, but the deficiency of OAHS significantly inhibited the strain penetrating BBB both in vivo and in vitro. Most of these phenomena can be reversed by the complemental strain (SC19-cΔOAHS). Further study showed that the deficiency of OAHS severely reduced SC19-induced endothelial cell apoptosis, tight junctions (TJs) protein impairment and the expression of SS2 virulence factor Enolase (Eno), involved in the destruction of BBB. Additionally, SC19-ΔOAHS immunized mice were able to resist SC19 or JZLQ022 infection. In conclusion, we confirmed that OAHS promoted the pathogenicity by enhancing host's BBB permeability and immune escape, and SC19- ΔOAHS is a potential live vaccine.


Subject(s)
Streptococcal Infections , Streptococcus suis , Swine Diseases , Animals , Mice , Endothelial Cells , Homoserine/genetics , Serogroup , Streptococcal Infections/veterinary , Swine , Swine Diseases/metabolism , Virulence
18.
Vet Microbiol ; 289: 109957, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160508

ABSTRACT

It is a common sense that porcine reproductive and respiratory syndrome virus (PRRSV) infection could cause immune failure of classical swine fever (CSF) vaccine, and porcine alveolar macrophages (PAMs) are the target cells of both. To elucidate the role of macrophage polarization in PRRSV infection induced CSF vaccine failure, an immortal porcine alveolar macrophage line PAM39 cell line was used to investigate the effect of PRRSV or/and CSFV C-strain (CSFV-C) infection on macrophage polarization in vitro. Interestingly, PRRSV single infection or PRRSV co-infection with CSFV-C promoted PAM39 cells to M1, while CSFV-C single infection induced PAM39 cells to M2. After the construction of M1 and M2 PAM39 cells polarization models, M1 polarized PAM39 cells were found to inhibit the replication of CSFV-C, and Chinese medicine such as matrine, ginsenosides and astragalus polysaccharides could alleviate the polarization of PAM39 cells and the replication of CSFV-C. Furthermore, interferon (IFN)-γ and lipopolysaccharide (LPS) co-stimulation induced NF-κB activation while matrine treatment blocked M1 polarization-induced NF-κB pathway activation. These findings provided a theoretical basis for designing a new strategy to improve the immune effect of CSFV-C based on porcine alveolar macrophage polarization subtypes.


Subject(s)
Classical Swine Fever , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Vaccines , Swine , Animals , NF-kappa B/metabolism , Matrines , Classical Swine Fever/prevention & control , Macrophages, Alveolar , Virus Replication , Porcine Reproductive and Respiratory Syndrome/metabolism , Swine Diseases/metabolism
19.
Parasit Vectors ; 16(1): 371, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37858158

ABSTRACT

BACKGROUND: Toxoplasmosis is a zoonosis with a worldwide presence that is caused by the intracellular parasite Toxoplasma gondii. Active regulation of apoptosis is an important immune mechanism by which host cells resist the growth of T. gondii or avoid excessive pathological damage induced by this parasite. Previous studies found that upregulated expression of microRNA-185 (miR-185) during T. gondii infection has a potential role in regulating the expression of the ARAF gene, which is reported to be associated with cell proliferation and apoptosis. METHODS: The expression levels of miR-185 and the ARAF gene were evaluated by qPCR and Western blot, respectively, in mice tissues, porcine kidney epithelial cells (PK-15) and porcine alveolar macrophages (3D4/21) following infection with the T. gondii ToxoDB#9 and RH strains. The dual luciferase reporter assay was then used to verify the relationship between miR-185 and ARAF targets in PK-15 cells. PK-15 and 3D4/21 cell lines with stable knockout of the ARAF gene were established by CRISPR, and then the apoptosis rates of the cells following T. gondii infection were detected using cell flow cytometry assays. Simultaneously, the activities of cleaved caspase-3, as a key apoptosis executive protein, were detected by Western blot to evaluate the apoptosis levels of cells. RESULTS: Infection with both the T. gondii ToxoDB#9 and RH strains induced an increased expression of miR-185 and a decreased expression of ARAF in mice tissues, PK-15 and 3D4/21 cells. MiR-185 mimic transfections showed a significantly negative correlation in expression levels between miR-185 and the ARAF gene. The dual luciferase reporter assay confirmed that ARAF was a target of miR-185. Functional investigation revealed that T. gondii infection induced the apoptosis of PK-15 and 3D4/21 cells, which could be inhibited by ARAF knockout or overexpression of miR-185. The expression levels of cleaved caspase-3 protein were significantly lower in cells with ARAF knockout than in normal cells, which were consistent with the results of the cell flow cytometry assays. CONCLUSIONS: Toxoplasma gondii infection could lead to the upregulation of miR-185 and the downregulation of ARAF, which was not related to the strain of T. gondii and the host cells. Toxoplasma gondii infection could regulate the apoptosis of host cells via the miR-185/ARAF axis, which represents an additional strategy used by T. gondii to counteract host-cell apoptosis in order to maintain survival and reproduce in the host cells.


Subject(s)
MicroRNAs , Proto-Oncogene Proteins A-raf , Swine Diseases , Toxoplasma , Toxoplasmosis , Animals , Mice , Apoptosis/genetics , Apoptosis/immunology , Caspase 3 , Cells, Cultured , Luciferases , MicroRNAs/genetics , MicroRNAs/metabolism , Swine/genetics , Swine/metabolism , Swine/parasitology , Swine Diseases/genetics , Swine Diseases/metabolism , Swine Diseases/parasitology , Toxoplasmosis/genetics , Toxoplasmosis/metabolism , Proto-Oncogene Proteins A-raf/genetics , Proto-Oncogene Proteins A-raf/metabolism
20.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37812936

ABSTRACT

The present experiment was conducted to study the effects of dietary epidermal growth factor (EGF) supplementation on the liver antioxidant capacity of piglets with intrauterine growth retardation (IUGR). The present study consists of two experiments. In experiment 1, six normal-birth-weight (NBW) and six IUGR newborn piglets were slaughtered within 2 to 4 h after birth to compare the effects of IUGR on the liver antioxidant capacity of newborn piglets. The results showed that compared with NBW piglets, IUGR piglets had a lower birth weight and liver relative weight; IUGR piglets had a higher serum malondialdehyde (MDA) level, liver MDA level and hydrogen peroxide (H2O2) level, and had a lower liver total antioxidant capacity (T-AOC) level and glutathione peroxidase (GSH-Px) activity; IUGR trended to increase serum alanine aminotransferase activity, aspartate aminotransferase activity, and H2O2 level, and trended to decrease liver total superoxide dismutase activity. In experiment 2, six NBW piglets, and 12 IUGR piglets weaned at 21 d of age were randomly divided into the NC group (NBW piglets fed with basal diet); IC group (IUGR piglets fed with basal diet), and IE group (IUGR piglets fed with basal diet plus 2 mg/kg EGF), and feeding for 14 d. Organ index, serum parameters, liver antioxidant capacity, and liver antioxidant-related genes expression were measured. The results showed that compared to the IC group, dietary EGF supplementation (IE group) significantly reduced serum malondialdehyde level and H2O2 level, and liver protein carbonyl (PC) level and 8-hydroxydeoxyguanosine level of piglets with IUGR; dietary EGF supplementation (IE group) significantly increased serum T-AOC level, liver T-AOC level and GSH-Px activity; dietary supplemented with EGF (IE group) enhanced liver Nrf2, NQO1, HO1, and GPX1 mRNA expression compared to IC group. Pearson's correlation analysis further showed that EGF can alleviate liver oxidative injury caused by IUGR and improve the performance of IUGR piglets. In conclusion, EGF exhibited potent protective effects on IUGR-induced liver oxidative injury, by activating the Nrf2 signaling pathway to mediate the expression of downstream antioxidant enzymes and phase II detoxification enzymes (NQO1 and HO1), thereby alleviating liver oxidative damage and promoting the growth performance of IUGR piglets.


The liver is an important metabolic and secretory organ in vertebrates, which plays an important role in the overall health of animals. Studies have shown that intrauterine growth retardation (IUGR) can cause liver injury in piglets, which is unfavorable to the growth and development of piglets. Epidermal growth factor (EGF) has antioxidant properties, but its effect on liver oxidative damage caused by IUGR remains uncertain. In the present study, we chose newborn piglets with low birth weight as the IUGR models to investigate whether IUGR could cause oxidative damage in the liver. Then, the diet supplemented with EGF was fed to IUGR piglets to study the effects of EGF supplementation on the liver antioxidant function of IUGR-weaned piglets. Results showed that IUGR caused serious damage to the liver of piglets, while dietary EGF supplementation could reverse the oxidative injury induced by IUGR to some extent. Therefore, this study confirmed that EGF has positive effects on the liver health of piglets with IUGR.


Subject(s)
Antioxidants , Swine Diseases , Female , Animals , Swine , Antioxidants/metabolism , Epidermal Growth Factor/pharmacology , Fetal Growth Retardation/drug therapy , Fetal Growth Retardation/veterinary , Fetal Growth Retardation/metabolism , Hydrogen Peroxide/metabolism , NF-E2-Related Factor 2/metabolism , Liver/metabolism , Dietary Supplements/analysis , Malondialdehyde/metabolism , Swine Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...