Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.021
Filter
1.
Sci Rep ; 14(1): 10689, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724641

ABSTRACT

Homeostatic plasticity, the ability of neurons to maintain their averaged activity constant around a set point value, is thought to account for the central hyperactivity after hearing loss. Here, we investigated the putative role of GABAergic neurotransmission in this mechanism after a noise-induced hearing loss larger than 50 dB in high frequencies in guinea pigs. The effect of GABAergic inhibition is linked to the normal functioning of K + -Cl- co-transporter isoform 2 (KCC2) which maintains a low intracellular concentration of chloride. The expression of membrane KCC2 were investigated before and after noise trauma in the ventral and dorsal cochlear nucleus (VCN and DCN, respectively) and in the inferior colliculus (IC). Moreover, the effect of gabazine (GBZ), a GABA antagonist, was also studied on the neural activity in IC. We show that KCC2 is downregulated in VCN, DCN and IC 3 days after noise trauma, and in DCN and IC 30 days after the trauma. As expected, GBZ application in the IC of control animals resulted in an increase of spontaneous and stimulus-evoked activity. In the noise exposed animals, on the other hand, GBZ application decreased the stimulus-evoked activity in IC neurons. The functional implications of these central changes are discussed.


Subject(s)
Hearing Loss, Noise-Induced , K Cl- Cotransporters , Symporters , gamma-Aminobutyric Acid , Animals , Symporters/metabolism , Symporters/antagonists & inhibitors , Guinea Pigs , Hearing Loss, Noise-Induced/metabolism , Hearing Loss, Noise-Induced/physiopathology , gamma-Aminobutyric Acid/metabolism , Male , Cochlear Nucleus/metabolism , Pyridazines/pharmacology , Neurons/metabolism
2.
Cell Mol Life Sci ; 81(1): 206, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709307

ABSTRACT

The epithelial-mesenchymal transformation (EMT) process of alveolar epithelial cells is recognized as involved in the development of pulmonary fibrosis. Recent evidence has shown that lipopolysaccharide (LPS)-induced aerobic glycolysis of lung tissue and elevated lactate concentration are associated with the pathogenesis of sepsis-associated pulmonary fibrosis. However, it is uncertain whether LPS promotes the development of sepsis-associated pulmonary fibrosis by promoting lactate accumulation in lung tissue, thereby initiating EMT process. We hypothesized that monocarboxylate transporter-1 (MCT1), as the main protein for lactate transport, may be crucial in the pathogenic process of sepsis-associated pulmonary fibrosis. We found that high concentrations of lactate induced EMT while moderate concentrations did not. Besides, we demonstrated that MCT1 inhibition enhanced EMT process in MLE-12 cells, while MCT1 upregulation could reverse lactate-induced EMT. LPS could promote EMT in MLE-12 cells through MCT1 inhibition and lactate accumulation, while this could be alleviated by upregulating the expression of MCT1. In addition, the overexpression of MCT1 prevented LPS-induced EMT and pulmonary fibrosis in vivo. Altogether, this study revealed that LPS could inhibit the expression of MCT1 in mouse alveolar epithelial cells and cause lactate transport disorder, which leads to lactate accumulation, and ultimately promotes the process of EMT and lung fibrosis.


Subject(s)
Epithelial-Mesenchymal Transition , Lactic Acid , Lipopolysaccharides , Monocarboxylic Acid Transporters , Pulmonary Fibrosis , Symporters , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/antagonists & inhibitors , Animals , Epithelial-Mesenchymal Transition/drug effects , Lipopolysaccharides/pharmacology , Symporters/metabolism , Symporters/genetics , Symporters/antagonists & inhibitors , Mice , Lactic Acid/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/chemically induced , Mice, Inbred C57BL , Cell Line , Male , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/drug effects , Up-Regulation/drug effects
3.
Prostate ; 84(9): 814-822, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38558458

ABSTRACT

BACKGROUND: Tumor initiation and progression necessitate a metabolic shift in cancer cells. Consequently, the progression of prostate cancer (PCa), a leading cause of cancer-related deaths in males globally, involves a shift from lipogenic to glycolytic metabolism. Androgen deprivation therapy (ADT) serves as the standard treatment for advanced-stage PCa. However, despite initial patient responses, castrate resistance emerges ultimately, necessitating novel therapeutic approaches. Therefore, in this study, we aimed to investigate the role of monocarboxylate transporters (MCTs) in PCa post-ADT and evaluate their potential as therapeutic targets. METHODS: PCa cells (LNCaP and C4-2 cell line), which has high prostate-specific membrane antigen (PSMA) and androgen receptor (AR) expression among PCa cell lines, was used in this study. We assessed the expression of MCT1 in PCa cells subjected to ADT using charcoal-stripped bovine serum (CSS)-containing medium or enzalutamide (ENZ). Furthermore, we evaluated the synergistic anticancer effects of combined treatment with ENZ and SR13800, an MCT1 inhibitor. RESULTS: Short-term ADT led to a significant upregulation in folate hydrolase 1 (FOLH1) and solute carrier family 16 member 1 (SLC16A1) gene levels, with elevated PSMA and MCT1 protein levels. Long-term ADT induced notable changes in cell morphology with further upregulation of FOLH1/PSMA and SLC16A1/MCT1 levels. Treatment with ENZ, a nonsteroidal anti-androgen, also increased PSMA and MCT1 expression. However, combined therapy with ENZ and SR13800 led to reduced PSMA level, decreased cell viability, and suppressed expression of cancer stem cell markers and migration indicators. Additionally, analysis of human PCa tissues revealed a positive correlation between PSMA and MCT1 expression in tumor regions. CONCLUSIONS: Our results demonstrate that ADT led to a significant upregulation in MCT1 levels. However, the combination of ENZ and SR13800 demonstrated a promising synergistic anticancer effect, highlighting a potential therapeutic significance for patients with PCa undergoing ADT.


Subject(s)
Androgen Antagonists , Benzamides , Monocarboxylic Acid Transporters , Nitriles , Phenylthiohydantoin , Prostatic Neoplasms , Symporters , Male , Humans , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/antagonists & inhibitors , Monocarboxylic Acid Transporters/genetics , Cell Line, Tumor , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Nitriles/pharmacology , Symporters/metabolism , Symporters/antagonists & inhibitors , Symporters/genetics , Benzamides/pharmacology
4.
Invest Ophthalmol Vis Sci ; 65(4): 18, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38587441

ABSTRACT

Purpose: Fuchs endothelial corneal dystrophy (FECD) is a progressive blinding disorder, characterized by increased corneal endothelial excrescences (guttae), corneal endothelial cell loss, and edema. These symptoms are hypothesized to be caused by changes in the extracellular matrix (ECM) and mitochondrial dysfunction in the corneal endothelium. Despite this clinical and biological relevance, a comprehensive animal model that recapitulates all the major disease characteristics is currently unavailable. In this study, we develop such a model to improve our understanding of the signaling pathways involved in the FECD progression and develop strategies for early intervention. Method: To generate a comprehensive FECD model, we generated a double mutant mouse bearing tamoxifen-inducible knockdown of Slc4a11 and the Col8a2 (Q455K) mutation. We performed optical coherence tomography (OCT) and in vivo confocal microscopy using the Heidelberg Retinal Tomography 3 - Rostock Cornea module (HRT3-RCM) on the mice at 5 weeks of age before tamoxifen feeding to establish baseline values for corneal thickness, endothelial cell density, and test for the presence of guttae. We measured these parameters again post-tamoxifen treatment at 16 weeks of age. We collected corneas at 16 weeks to perform histopathology, immunofluorescence staining for tight junctions, adherens junctions, and oxidative stress. We evaluated endothelial pump function using a lactate assay. Results: The double mutant tamoxifen-fed animals showed the presence of guttae, and displayed increased corneal thickness and decreased endothelial cell density. Endothelial cells showed altered morphology with disrupted adherens junctions and elevated reactive oxygen species (ROS). Finally, we found that stromal lactate concentrations were elevated in the double mutant mice, indicative of compromised endothelial pump function. Conclusions: Overall, this mouse model recapitulates all the important phenotypic features associated with FECD.


Subject(s)
Fuchs' Endothelial Dystrophy , Symporters , Animals , Mice , Fuchs' Endothelial Dystrophy/genetics , Endothelial Cells , Disease Models, Animal , Lactic Acid , Tamoxifen/pharmacology , Anion Transport Proteins
5.
J Med Chem ; 67(8): 6687-6704, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38574002

ABSTRACT

In the face of escalating metabolic disease prevalence, largely driven by modern lifestyle factors, this study addresses the critical need for novel therapeutic approaches. We have identified the sodium-coupled citrate transporter (NaCT or SLC13A5) as a target for intervention. Utilizing rational drug design, we developed a new class of SLC13A5 inhibitors, anchored by the hydroxysuccinic acid scaffold, refining the structure of PF-06649298. Among these, LBA-3 emerged as a standout compound, exhibiting remarkable potency with an IC50 value of 67 nM, significantly improving upon PF-06649298. In vitro assays demonstrated LBA-3's efficacy in reducing triglyceride levels in OPA-induced HepG2 cells. Moreover, LBA-3 displayed superior pharmacokinetic properties and effectively lowered triglyceride and total cholesterol levels in diverse mouse models (PCN-stimulated and starvation-induced), without detectable toxicity. These findings not only spotlight LBA-3 as a promising candidate for hyperlipidemia treatment but also exemplify the potential of targeted molecular design in advancing metabolic disorder therapeutics.


Subject(s)
Hyperlipidemias , Humans , Animals , Mice , Hyperlipidemias/drug therapy , Hep G2 Cells , Structure-Activity Relationship , Symporters/antagonists & inhibitors , Symporters/metabolism , Male , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/chemistry , Hypolipidemic Agents/therapeutic use , Hypolipidemic Agents/pharmacokinetics , Drug Discovery , Mice, Inbred C57BL , Triglycerides/blood , Triglycerides/metabolism , Drug Design
7.
Biol Pharm Bull ; 47(4): 764-770, 2024.
Article in English | MEDLINE | ID: mdl-38569835

ABSTRACT

L-Lactate transport via monocarboxylate transporters (MCTs) in the central nervous system, represented by the astrocyte-neuron lactate shuttle (ANLS), is crucial for the maintenance of brain functions, including memory formation. Previously, we have reported that MCT1 contributes to L-lactate transport in normal human astrocytes. Therefore, in this study, we aimed to identify transporters that contribute to L-lactate transport in human neurons. SH-SY5Y cells, which are used as a model for human neurons, were differentiated using all-trans-retinoic acid. L-Lactate uptake was measured using radiolabeled L-lactate, and the expression of MCT proteins was confirmed Western blotting. L-Lactate transport was pH-dependent and saturated at high concentrations. Kinetic analysis suggested that L-lactate uptake was biphasic. Furthermore, MCT1, 2 selective inhibitors inhibited L-lactate transport. In addition, the expression of MCT1 and 2 proteins, but not MCT4, was confirmed. In this study, we demonstrated that MCT1 and 2 are major contributors to L-lactate transport in differentiated human neuroblastoma SH-SY5Y cells from the viewpoint of kinetic analysis. These results lead to a better understanding of ANLS in humans, and further exploration of the factors that can promote MCT1 and 2 functions is required.


Subject(s)
Neuroblastoma , Symporters , Humans , Kinetics , Biological Transport , Carrier Proteins/metabolism , Lactic Acid/metabolism , Membrane Transport Proteins/metabolism , Monocarboxylic Acid Transporters/metabolism , Symporters/metabolism
8.
Biomolecules ; 14(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38672410

ABSTRACT

Inflammation is a physiological condition characterized by a complex interplay between different cells handled by metabolites and specific inflammatory-related molecules. In some pathological situations, inflammation persists underlying and worsening the pathological state. Over the years, two membrane transporters namely OCTN1 (SLC22A4) and OCTN2 (SLC22A5) have been shown to play specific roles in inflammation. These transporters form the OCTN subfamily within the larger SLC22 family. The link between these proteins and inflammation has been proposed based on their link to some chronic inflammatory diseases such as asthma, Crohn's disease (CD), and rheumatoid arthritis (RA). Moreover, the two transporters show the ability to mediate the transport of several compounds including carnitine, carnitine derivatives, acetylcholine, ergothioneine, and gut microbiota by-products, which have been specifically associated with inflammation for their anti- or proinflammatory action. Therefore, the absorption and distribution of these molecules rely on the presence of OCTN1 and OCTN2, whose expression is modulated by inflammatory cytokines and transcription factors typically activated by inflammation. In the present review, we wish to provide a state of the art on OCTN1 and OCTN2 transport function and regulation in relationships with inflammation and inflammatory diseases focusing on the metabolic signature collected in different body districts and gene polymorphisms related to inflammatory diseases.


Subject(s)
Inflammation , Organic Cation Transport Proteins , Solute Carrier Family 22 Member 5 , Symporters , Humans , Inflammation/metabolism , Solute Carrier Family 22 Member 5/metabolism , Solute Carrier Family 22 Member 5/genetics , Animals , Organic Cation Transport Proteins/metabolism , Organic Cation Transport Proteins/genetics , Ergothioneine/metabolism , Crohn Disease/metabolism , Crohn Disease/genetics , Crohn Disease/pathology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/genetics , Gastrointestinal Microbiome , Carnitine/metabolism , Asthma/metabolism , Asthma/genetics , Acetylcholine/metabolism
9.
Viruses ; 16(4)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38675909

ABSTRACT

Adjuvant systemic therapies effectively reduce the risk of breast cancer recurrence and metastasis, but therapy resistance can develop in some patients due to breast cancer stem cells (BCSCs). Oncolytic adenovirus (OAd) represents a promising therapeutic approach as it can specifically target cancer cells. However, its potential to target BCSCs remains unclear. Here, we evaluated a Cox-2 promoter-controlled, Ad5/3 fiber-modified OAd designed to encode the human sodium iodide symporter (hNIS) in breast cancer models. To confirm the potential of OAds to target BCSCs, we employed BCSC-enriched estrogen receptor-positive (ER+) paclitaxel-resistant (TaxR) cells and tumorsphere assays. OAd-hNIS demonstrated significantly enhanced binding and superior oncolysis in breast cancer cells, including ER+ cells, while exhibiting no activity in normal mammary epithelial cells. We observed improved NIS expression as the result of adenovirus death protein deletion. OAd-hNIS demonstrated efficacy in targeting TaxR BCSCs, exhibiting superior killing and hNIS expression compared to the parental cells. Our vector was capable of inhibiting tumorsphere formation upon early infection and reversing paclitaxel resistance in TaxR cells. Importantly, OAd-hNIS also destroyed already formed tumorspheres seven days after their initiation. Overall, our findings highlight the promise of OAd-hNIS as a potential tool for studying and targeting ER+ breast cancer recurrence and metastasis.


Subject(s)
Adenoviridae , Breast Neoplasms , Drug Resistance, Neoplasm , Neoplastic Stem Cells , Oncolytic Virotherapy , Oncolytic Viruses , Paclitaxel , Humans , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Breast Neoplasms/therapy , Breast Neoplasms/drug therapy , Paclitaxel/pharmacology , Adenoviridae/genetics , Adenoviridae/physiology , Oncolytic Viruses/genetics , Oncolytic Viruses/physiology , Oncolytic Virotherapy/methods , Female , Cell Line, Tumor , Animals , Mice , Symporters/metabolism , Symporters/genetics , Genetic Vectors/genetics
10.
Regul Toxicol Pharmacol ; 149: 105619, 2024 May.
Article in English | MEDLINE | ID: mdl-38614220

ABSTRACT

The Xenopus Eleutheroembryonic Thyroid Assay (XETA) was recently published as an OECD Test Guideline for detecting chemicals acting on the thyroid axis. However, the OECD validation did not cover all mechanisms that can potentially be detected by the XETA. This study was therefore initiated to investigate and consolidate the applicability domain of the XETA regarding the following mechanisms: thyroid hormone receptor (THR) agonism, sodium-iodide symporter (NIS) inhibition, thyroperoxidase (TPO) inhibition, deiodinase (DIO) inhibition, glucocorticoid receptor (GR) agonism, and uridine 5'-diphospho-glucuronosyltransferase (UDPGT) induction. In total, 22 chemicals identified as thyroid-active or -inactive in Amphibian Metamorphosis Assays (AMAs) were tested using the XETA OECD Test Guideline. The comparison showed that both assays are highly concordant in identifying chemicals with mechanisms of action related to THR agonism, DIO inhibition, and GR agonism. They also consistently identified the UDPGT inducers as thyroid inactive. NIS inhibition, investigated using sodium perchlorate, was not detected in the XETA. TPO inhibition requires further mechanistic investigations as the reference chemicals tested resulted in opposing response directions in the XETA and AMA. This study contributes refining the applicability domain of the XETA, thereby helping to clarify the conditions where it can be used as an ethical alternative to the AMA.


Subject(s)
Biological Assay , Endocrine Disruptors , Metamorphosis, Biological , Symporters , Thyroid Gland , Animals , Thyroid Gland/drug effects , Thyroid Gland/metabolism , Metamorphosis, Biological/drug effects , Biological Assay/methods , Endocrine Disruptors/toxicity , Xenopus laevis , Receptors, Thyroid Hormone/metabolism , Receptors, Thyroid Hormone/agonists , Iodide Peroxidase/metabolism
11.
Sci Rep ; 14(1): 9355, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654093

ABSTRACT

Thyroid hormones (TH) play critical roles during nervous system development and patients carrying coding variants of MCT8 (monocarboxylate transporter 8) or THRA (thyroid hormone receptor alpha) present a spectrum of neurological phenotypes resulting from perturbed local TH action during early brain development. Recently, human cerebral organoids (hCOs) emerged as powerful in vitro tools for disease modelling recapitulating key aspects of early human cortex development. To begin exploring prospects of this model for thyroid research, we performed a detailed characterization of the spatiotemporal expression of MCT8 and THRA in developing hCOs. Immunostaining showed MCT8 membrane expression in neuronal progenitor cell types including early neuroepithelial cells, radial glia cells (RGCs), intermediate progenitors and outer RGCs. In addition, we detected robust MCT8 protein expression in deep layer and upper layer neurons. Spatiotemporal SLC16A2 mRNA expression, detected by fluorescent in situ hybridization (FISH), was highly concordant with MCT8 protein expression across cortical cell layers. FISH detected THRA mRNA expression already in neuroepithelium before the onset of neurogenesis. THRA mRNA expression remained low in the ventricular zone, increased in the subventricular zone whereas strong THRA expression was observed in excitatory neurons. In combination with a robust up-regulation of known T3 response genes following T3 treatment, these observations show that hCOs provide a promising and experimentally tractable model to probe local TH action during human cortical neurogenesis and eventually to model the consequences of impaired TH function for early cortex development.


Subject(s)
Cerebral Cortex , Monocarboxylic Acid Transporters , Neurogenesis , Organoids , RNA, Messenger , Symporters , Thyroid Hormone Receptors alpha , Female , Humans , Pregnancy , Cerebral Cortex/embryology , Cerebral Cortex/metabolism , Gene Expression Regulation, Developmental , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Neurogenesis/genetics , Neurons/metabolism , Organoids/metabolism , Pregnancy Trimester, First/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Symporters/genetics , Symporters/metabolism , Thyroid Hormone Receptors alpha/genetics , Thyroid Hormone Receptors alpha/metabolism , Thyroid Hormones/metabolism , Thyroid Hormones/genetics
12.
eNeuro ; 11(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38604775

ABSTRACT

A sublethal ischemic episode [termed preconditioning (PC)] protects neurons in the brain against a subsequent severe ischemic injury. This phenomenon is known as brain ischemic tolerance and has received much attention from researchers because of its robust neuroprotective effects. We have previously reported that PC activates astrocytes and subsequently upregulates P2X7 receptors, thereby leading to ischemic tolerance. However, the downstream signals of P2X7 receptors that are responsible for PC-induced ischemic tolerance remain unknown. Here, we show that PC-induced P2X7 receptor-mediated lactate release from astrocytes has an indispensable role in this event. Using a transient focal cerebral ischemia model caused by middle cerebral artery occlusion, extracellular lactate levels during severe ischemia were significantly increased in mice who experienced PC; this increase was dependent on P2X7 receptors. In addition, the intracerebroventricular injection of lactate protected against cerebral ischemic injury. In in vitro experiments, although stimulation of astrocytes with the P2X7 receptor agonist BzATP had no effect on the protein levels of monocarboxylate transporter (MCT) 1 and MCT4 (which are responsible for lactate release from astrocytes), BzATP induced the plasma membrane translocation of these MCTs via their chaperone CD147. Importantly, CD147 was increased in activated astrocytes after PC, and CD147-blocking antibody abolished the PC-induced facilitation of astrocytic lactate release and ischemic tolerance. Taken together, our findings suggest that astrocytes induce ischemic tolerance via P2X7 receptor-mediated lactate release.


Subject(s)
Astrocytes , Ischemic Preconditioning , Lactic Acid , Mice, Inbred C57BL , Monocarboxylic Acid Transporters , Receptors, Purinergic P2X7 , Animals , Astrocytes/metabolism , Astrocytes/drug effects , Ischemic Preconditioning/methods , Lactic Acid/metabolism , Lactic Acid/pharmacology , Receptors, Purinergic P2X7/metabolism , Male , Monocarboxylic Acid Transporters/metabolism , Basigin/metabolism , Brain Ischemia/metabolism , Symporters/metabolism , Infarction, Middle Cerebral Artery/metabolism , Disease Models, Animal , Muscle Proteins/metabolism , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Mice , Cells, Cultured , Brain/metabolism , Mice, Knockout
14.
J Cell Mol Med ; 28(9): e18352, 2024 May.
Article in English | MEDLINE | ID: mdl-38685685

ABSTRACT

Gliomas, the most lethal tumours in brain, have a poor prognosis despite accepting standard treatment. Limited benefits from current therapies can be attributed to genetic, epigenetic and microenvironmental cues that affect cell programming and drive tumour heterogeneity. Through the analysis of Hi-C data, we identified a potassium-chloride co-transporter SLC12A5 associated with disrupted topologically associating domain which was downregulated in tumour tissues. Multiple independent glioma cohorts were included to analyse the characterization of SLC12A5 and found it was significantly associated with pathological features, prognostic value, genomic alterations, transcriptional landscape and drug response. We constructed two SLC12A5 overexpression cell lines to verify the function of SLC12A5 that suppressed tumour cell proliferation and migration in vitro. In addition, SLC12A5 was also positively associated with GABAA receptor activity and negatively associated with pro-tumour immune signatures and immunotherapy response. Collectively, our study provides a comprehensive characterization of SLC12A5 in glioma and supports SLC12A5 as a potential suppressor of disease progression.


Subject(s)
Brain Neoplasms , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glioma , K Cl- Cotransporters , Symporters , Humans , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Symporters/genetics , Symporters/metabolism , Cell Movement/genetics , Prognosis , Receptors, GABA-A/metabolism , Receptors, GABA-A/genetics
15.
Placenta ; 150: 31-38, 2024 May.
Article in English | MEDLINE | ID: mdl-38583303

ABSTRACT

INTRODUCTION: Fetal growth restriction (FGR) may affect placental transfer of key nutrients to the fetus, such as the fatty acid docosahexaenoic acid (DHA). Major facilitator superfamily domain containing 2A (MFSD2A) has been described as a specific DHA carrier in placenta, but its expression has not been studied in FGR. The aim of this study was to evaluate for the first time the placental MFSD2A levels in late-FGR pregnancies and the maternal and cord plasma DHA. METHODS: 87 pregnant women from a tertial reference center were classified into late-FGR (N = 18) or control (N = 69). Fatty acid profile was determined in maternal and cord venous plasma, as well as placental levels of MFSD2A and of insulin mediators like phospho-protein kinase B (phospho-AKT) and phospho-extracellular regulated kinase (phospho-ERK). RESULTS: Maternal fatty acid profile did not differ between groups. Nevertheless, late-FGR cord vein presented higher content of saturated fatty acids than control, producing a concomitant decrease in the percentage of some unsaturated fatty acids. In the late-FGR group, a lower DHA fetal/maternal ratio was observed when using percentages, but not with concentrations. No alterations were found in the expression of MFSD2A in late-FGR placentas, nor in phospho-AKT or phospho-ERK. DISCUSSION: MFSD2A protein expression was not altered in late-FGR placentas, in line with no differences in cord DHA concentration between groups. The increase in the saturated fatty acid content of late-FGR cord might be a compensatory mechanism to ensure fetal energy supply, decreasing other fatty acids percentage. Future studies are warranted to elucidate if altered saturated fatty acid profile in late-FGR fetuses might predispose them to postnatal catch-up and to long-term health consequences.


Subject(s)
Docosahexaenoic Acids , Fetal Growth Retardation , Placenta , Humans , Female , Pregnancy , Docosahexaenoic Acids/metabolism , Docosahexaenoic Acids/blood , Placenta/metabolism , Fetal Growth Retardation/metabolism , Adult , Fetal Blood/metabolism , Fetal Blood/chemistry , Symporters/metabolism , Case-Control Studies
16.
Vet Comp Oncol ; 22(2): 239-244, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38488259

ABSTRACT

Thyroid follicular tumours may take up iodide via the sodium-iodide symporter. Knowledge of iodide uptake could then allow treatment with I-131 in dogs with high-risk tumours. The objective of this study was to determine the relationship between clinically detectable iodide uptake (as determined by scintigraphy and/or thyroxine concentrations) and sodium iodide symporter immunohistochemical labelling on histologically fixed thyroid tumours. Nineteen dogs were identified who were diagnosed with thyroid carcinoma and underwent surgery from November 2017 to July 2021. All had recorded thyroid hormone concentrations and were hyperthyroid and/or underwent preoperative nuclear imaging using planar scintigraphy (technetium-99m or I-123), or I-124 PET-CT. All dogs subsequently underwent surgery to remove the thyroid mass. Twenty-two tumours were submitted for histopathologic analysis immediately following surgery, which confirmed a diagnosis of thyroid carcinoma for each tumour. Images and/or thyroid hormone concentrations were reviewed for the included cases, and tumours were sorted into an avid/functional group (group 1) and a non-avid/functional group (group 2). The tumour tissues were re-examined histologically using sodium iodide symporter (NIS) immunohistochemistry (IHC). Group 1 contained 15 avid/functional tumours. Twelve of these tumours had membranous NIS IHC labelling. Group 2 contained 7 non-avid tumours. One of these tumours had membranous NIS IHC labelling. This resulted in an overall sensitivity and specificity for identification of avid/functional tumours with membranous NIS of 80.0% and 85.7%, respectively. NIS IHC may predict ion trapping in canine follicular thyroid tumours. Further studies using iodide-based imaging are warranted to better determine the clinical utility of this diagnostic modality.


Subject(s)
Dog Diseases , Symporters , Thyroid Neoplasms , Animals , Dogs , Symporters/metabolism , Thyroid Neoplasms/veterinary , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/pathology , Dog Diseases/metabolism , Dog Diseases/diagnosis , Male , Female , Iodine Radioisotopes , Immunohistochemistry/veterinary , Iodides/metabolism
17.
Nat Commun ; 15(1): 2476, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509088

ABSTRACT

Cellular entry of the hepatitis B and D viruses (HBV/HDV) requires binding of the viral surface polypeptide preS1 to the hepatobiliary transporter Na+-taurocholate co-transporting polypeptide (NTCP). This interaction can be blocked by bulevirtide (BLV, formerly Myrcludex B), a preS1 derivative and approved drug for treating HDV infection. Here, to elucidate the basis of this inhibitory function, we determined a cryo-EM structure of BLV-bound human NTCP. BLV forms two domains, a plug lodged in the bile salt transport tunnel of NTCP and a string that covers the receptor's extracellular surface. The N-terminally attached myristoyl group of BLV interacts with the lipid-exposed surface of NTCP. Our structure reveals how BLV inhibits bile salt transport, rationalizes NTCP mutations that decrease the risk of HBV/HDV infection, and provides a basis for understanding the host specificity of HBV/HDV. Our results provide opportunities for structure-guided development of inhibitors that target HBV/HDV docking to NTCP.


Subject(s)
Hepatitis B , Lipopeptides , Symporters , Humans , Hepatitis B virus/physiology , Antiviral Agents/therapeutic use , Receptors, Virus/metabolism , Bile Acids and Salts/metabolism , Hepatitis Delta Virus/physiology , Symporters/metabolism , Virus Internalization , Hepatocytes/metabolism
18.
Diabetes Res Clin Pract ; 209: 111604, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38447911

ABSTRACT

AIMS: Sodium glucose co-transporter 2 inhibitors (SGLT2is) and/or glucagon-like peptide-1 receptor agonists (GLP-1 RAs) with proven cardio- and reno-protective benefits are recommended in people with type 2 diabetes (T2D) at high risk of cardiovascular disease, chronic kidney disease, and/or heart failure. This pooled analysis compared efficacy and safety outcomes of iGlarLixi with or without SGLT2is in people with T2D. METHODS: This post hoc analysis evaluated outcomes in participants who were receiving an SGLT2i when initiating iGlarLixi (SGLT2i users) and those who were not (SGLT2i non-users) in a pooled dataset from three trials: LixiLan-G (advancing from a GLP-1 RA), SoliMix and LixiLan ONE CAN (advancing from basal insulin). RESULTS: Baseline characteristics were generally similar between 219 users and 746 non-users. Least squares mean changes in HbA1c from baseline to Week 26 were similar for users (-1.2 % [95 % confidence intervals: -1.4 %, -1.1 %]) and non-users (-1.2 % [-1.2 %, -1.1 %]). Changes in body weight, fasting glucose and post-prandial glucose were similar between groups, as were hypoglycaemic events. CONCLUSIONS: Pooled results from three studies of adults with T2D demonstrated that iGlarLixi provided similar clinically meaningful improvements in glycaemic control without increased hypoglycaemia risk, regardless of concomitant use of SGLT2is.


Subject(s)
Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Symporters , Adult , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Insulin Glargine/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Blood Glucose , Glycated Hemoglobin , Drug Combinations , Peptides/therapeutic use , Hypoglycemic Agents/adverse effects , Glucagon-Like Peptide 1/therapeutic use , Glucose/therapeutic use , Symporters/therapeutic use , Sodium/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists
19.
Int J Mol Sci ; 25(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542096

ABSTRACT

Heart failure (HF) remains a major cause of morbidity and mortality worldwide. Recently, significant advances have been made in its treatment; however, diuretics remain the cornerstone in managing congestion in HF. Although diuretic resistance poses a significant challenge in the management of HF and is associated with poor outcomes, only limited alternative pharmaceutical options are available in clinical practice. The objective of this narrative review is to provide a comprehensive analysis of the current evidence on the effects of sodium-glucose co-transporter-2 (SGLT-2) inhibitors on diuretic resistance in HF patients. The primary emphasis is placed on clinical data that assess the impact of SGLT-2 inhibitors on fluid balance, symptom improvement, and clinical outcomes and secondarily on safety profile and potential adverse effects associated with SGLT-2 inhibitor use in acute decompensated HF. The current evidence on the efficacy of SGLT-2 on diuretic resistance remains controversial. Findings from observational and randomized studies are quite heterogenous; however, they converge on the notion that although SGLT-2 inhibitors show promise for mitigating diuretic resistance in HF, their diuretic effect may not be potent enough to be widely used to relieve objective signs of congestion in patients with HF. Importantly, the introduction of SGLT-2 inhibitors in HF treatment appears to be generally well tolerated, with manageable adverse effects. Further research is needed to investigate the underlying mechanisms and the possible beneficial impact of SGLT-2 inhibitors on diuretic resistance in HF.


Subject(s)
Diabetes Mellitus, Type 2 , Heart Failure , Sodium-Glucose Transporter 2 Inhibitors , Symporters , Humans , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Diuretics/adverse effects , Heart Failure/complications , Glucose/therapeutic use , Sodium , Diabetes Mellitus, Type 2/drug therapy
20.
Microbiology (Reading) ; 170(3)2024 03.
Article in English | MEDLINE | ID: mdl-38488830

ABSTRACT

Sialic acid (Sia) transporters are critical to the capacity of host-associated bacteria to utilise Sia for growth and/or cell surface modification. While N-acetyl-neuraminic acid (Neu5Ac)-specific transporters have been studied extensively, little is known on transporters dedicated to anhydro-Sia forms such as 2,7-anhydro-Neu5Ac (2,7-AN) or 2,3-dehydro-2-deoxy-Neu5Ac (Neu5Ac2en). Here, we used a Sia-transport-null strain of Escherichia coli to investigate the function of members of anhydro-Sia transporter families previously identified by computational studies. First, we showed that the transporter NanG, from the Glycoside-Pentoside-Hexuronide:cation symporter family, is a specific 2,7-AN transporter, and identified by mutagenesis a crucial functional residue within the putative substrate-binding site. We then demonstrated that NanX transporters, of the Major Facilitator Superfamily, also only transport 2,7-AN and not Neu5Ac2en nor Neu5Ac. Finally, we provided evidence that SiaX transporters, of the Sodium-Solute Symporter superfamily, are promiscuous Neu5Ac/Neu5Ac2en transporters able to acquire either substrate equally well. The characterisation of anhydro-Sia transporters expands our current understanding of prokaryotic Sia metabolism within host-associated microbial communities.


Subject(s)
N-Acetylneuraminic Acid , N-Acetylneuraminic Acid/analogs & derivatives , Organic Anion Transporters , Symporters , N-Acetylneuraminic Acid/chemistry , Symporters/genetics , Symporters/metabolism , Bacteria/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...