Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.446
Filter
1.
Vis Neurosci ; 41: E003, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39291699

ABSTRACT

Synaptotagmin-9 (Syt9) is a Ca2+ sensor mediating fast synaptic release expressed in various parts of the brain. The presence and role of Syt9 in retina is unknown. We found evidence for Syt9 expression throughout the retina and created mice to conditionally eliminate Syt9 in a cre-dependent manner. We crossed Syt9fl/fl mice with Rho-iCre, HRGP-Cre, and CMV-Cre mice to generate mice in which Syt9 was eliminated from rods (rodSyt9CKO), cones (coneSyt9CKO), or whole animals (CMVSyt9). CMVSyt9 mice showed an increase in scotopic electroretinogram (ERG) b-waves evoked by bright flashes with no change in a-waves. Cone-driven photopic ERG b-waves were not significantly different in CMVSyt9 knockout mice and selective elimination of Syt9 from cones had no effect on ERGs. However, selective elimination from rods decreased scotopic and photopic b-waves as well as oscillatory potentials. These changes occurred only with bright flashes where cone responses contribute. Synaptic release was measured in individual rods by recording anion currents activated by glutamate binding to presynaptic glutamate transporters. Loss of Syt9 from rods had no effect on spontaneous or depolarization-evoked release. Our data show that Syt9 acts at multiple sites in the retina and suggest that it may play a role in regulating transmission of cone signals by rods.


Subject(s)
Electroretinography , Mice, Knockout , Retina , Retinal Cone Photoreceptor Cells , Retinal Rod Photoreceptor Cells , Synaptotagmins , Animals , Synaptotagmins/metabolism , Synaptotagmins/genetics , Retina/metabolism , Retina/physiology , Mice , Retinal Rod Photoreceptor Cells/physiology , Retinal Rod Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/physiology , Retinal Cone Photoreceptor Cells/metabolism , Photic Stimulation , Mice, Inbred C57BL
2.
Cell Rep ; 43(8): 114595, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39116209

ABSTRACT

Neurotransmitter release consists of rapid synchronous release followed by longer-lasting asynchronous release (AR). Although the presynaptic proteins that trigger synchronous release are well understood, the mechanisms for AR remain unclear. AR is sustained by low concentrations of intracellular Ca2+ and Sr2+, suggesting the involvement of sensors with high affinities for both ions. Synaptotagmin 7 (SYT7) partly mediates AR, but substantial AR persists in the absence of SYT7. The closely related SYT3 binds Ca2+ and Sr2+ with high affinity, making it a promising candidate to mediate AR. Here, we use knockout mice to study the contribution of SYT3 and SYT7 to AR at cerebellar and hippocampal synapses. AR is dramatically reduced when both isoforms are absent, which alters the number and timing of postsynaptic action potentials. Our results confirm the long-standing prediction that SYT3 mediates AR and show that SYT3 and SYT7 act as dominant mechanisms for AR at three central synapses.


Subject(s)
Cerebellum , Hippocampus , Mice, Knockout , Synapses , Synaptotagmins , Animals , Cerebellum/metabolism , Synaptotagmins/metabolism , Synaptotagmins/genetics , Hippocampus/metabolism , Synapses/metabolism , Mice , Calcium/metabolism , Mice, Inbred C57BL , Synaptic Transmission
3.
Cell Mol Life Sci ; 81(1): 342, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123091

ABSTRACT

A Disintegrin And Metalloproteinase 10 (ADAM10) plays a pivotal role in shaping neuronal networks by orchestrating the activity of numerous membrane proteins through the shedding of their extracellular domains. Despite its significance in the brain, the specific cellular localization of ADAM10 remains not well understood due to a lack of appropriate tools. Here, using a specific ADAM10 antibody suitable for immunostainings, we observed that ADAM10 is localized to presynapses and especially enriched at presynaptic vesicles of mossy fiber (MF)-CA3 synapses in the hippocampus. These synapses undergo pronounced frequency facilitation of neurotransmitter release, a process that play critical roles in information transfer and neural computation. We demonstrate, that in conditional ADAM10 knockout mice the ability of MF synapses to undergo this type of synaptic plasticity is greatly reduced. The loss of facilitation depends on the cytosolic domain of ADAM10 and association with the calcium sensor synaptotagmin 7 rather than ADAM10's proteolytic activity. Our findings unveil a new role of ADAM10 in the regulation of synaptic vesicle exocytosis.


Subject(s)
ADAM10 Protein , Amyloid Precursor Protein Secretases , Membrane Proteins , Mice, Knockout , Neuronal Plasticity , Synaptic Vesicles , Animals , ADAM10 Protein/metabolism , ADAM10 Protein/genetics , Neuronal Plasticity/physiology , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice , Synaptic Vesicles/metabolism , Mice, Inbred C57BL , Synapses/metabolism , Mossy Fibers, Hippocampal/metabolism , Hippocampus/metabolism , Exocytosis/physiology , Presynaptic Terminals/metabolism , Synaptic Transmission , Synaptotagmins/metabolism , Synaptotagmins/genetics
4.
Cell Death Dis ; 15(8): 560, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097602

ABSTRACT

Spinal motor neurons (MNs) represent a highly vulnerable cellular population, which is affected in fatal neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). In this study, we show that the heterozygous loss of SYT13 is sufficient to trigger a neurodegenerative phenotype resembling those observed in ALS and SMA. SYT13+/- hiPSC-derived MNs displayed a progressive manifestation of typical neurodegenerative hallmarks such as loss of synaptic contacts and accumulation of aberrant aggregates. Moreover, analysis of the SYT13+/- transcriptome revealed a significant impairment in biological mechanisms involved in motoneuron specification and spinal cord differentiation. This transcriptional portrait also strikingly correlated with ALS signatures, displaying a significant convergence toward the expression of pro-apoptotic and pro-inflammatory genes, which are controlled by the transcription factor TP53. Our data show for the first time that the heterozygous loss of a single member of the synaptotagmin family, SYT13, is sufficient to trigger a series of abnormal alterations leading to MN sufferance, thus revealing novel insights into the selective vulnerability of this cell population.


Subject(s)
Amyotrophic Lateral Sclerosis , Motor Neurons , Synaptotagmins , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Motor Neurons/metabolism , Motor Neurons/pathology , Synaptotagmins/metabolism , Synaptotagmins/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Heterozygote , Phenotype , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Cell Differentiation/genetics , Gene Knockout Techniques
5.
Biochem Soc Trans ; 52(4): 1715-1725, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39082978

ABSTRACT

Various cell types release neurotransmitters, hormones and many other compounds that are stored in secretory vesicles by exocytosis via the formation of a fusion pore traversing the vesicular membrane and the plasma membrane. This process of membrane fusion is mediated by the Soluble N-ethylmaleimide-Sensitive Factor Attachment Proteins REceptor (SNARE) protein complex, which in neurons and neuroendocrine cells is composed of the vesicular SNARE protein Synaptobrevin and the plasma membrane proteins Syntaxin and SNAP25 (Synaptosomal-Associated Protein of 25 kDa). Before a vesicle can undergo fusion and release of its contents, it must dock at the plasma membrane and undergo a process named 'priming', which makes it ready for release. The primed vesicles form the readily releasable pool, from which they can be rapidly released in response to stimulation. The stimulus is an increase in Ca2+ concentration near the fusion site, which is sensed primarily by the vesicular Ca2+ sensor Synaptotagmin. Vesicle priming involves at least the SNARE proteins as well as Synaptotagmin and the accessory proteins Munc18, Munc13, and Complexin but additional proteins may also participate in this process. This review discusses the current views of the interactions and the structural changes that occur among the proteins of the vesicle priming machinery.


Subject(s)
Exocytosis , Membrane Fusion , SNARE Proteins , SNARE Proteins/metabolism , Humans , Animals , Exocytosis/physiology , Secretory Vesicles/metabolism , Synaptotagmins/metabolism , Calcium/metabolism , Cell Membrane/metabolism
6.
DNA Cell Biol ; 43(9): 452-462, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39046915

ABSTRACT

SYT13 is one of the atypical members of the synaptotagmin (SYT) family whose function has attracted considerable attention in recent years. Although SYT13 has been studied in several types of human cancers, such as lung cancer, its role in esophageal squamous cell carcinoma (ESCC) is still unclear. It was demonstrated that SYT13 is significantly upregulated in ESCC tissues compared with normal ones and correlated with higher degree of malignancy. Knockdown of SYT13 could inhibit ESCC cell proliferation and migration, while promoting cell apoptosis. Meanwhile, ESCC cells with relatively lower SYT13 expression grew slower in vivo and finally formed smaller xenografts. Furthermore, acrosomal vesicular protein 1 was identified as a potential downstream target of SYT13, which regulates cell phenotypes of ESCC cells in cooperation with SYT13. All the in vitro and in vivo results in this study identified that SYT13 silencing could be an effective strategy to inhibit the development of ESCC, which could be considered as a promising therapeutic target in the treatment of ESCC.


Subject(s)
Cell Proliferation , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Gene Expression Regulation, Neoplastic , Synaptotagmins , Up-Regulation , Humans , Synaptotagmins/metabolism , Synaptotagmins/genetics , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Animals , Cell Proliferation/genetics , Cell Line, Tumor , Mice , Cell Movement/genetics , Mice, Nude , Apoptosis/genetics , Male , Female , Disease Progression , Middle Aged , Mice, Inbred BALB C
7.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000085

ABSTRACT

Fragile X syndrome (FXS) is an intellectual developmental disorder characterized, inter alia, by deficits in the short-term processing of neural information, such as sensory processing and working memory. The primary cause of FXS is the loss of fragile X messenger ribonucleoprotein (FMRP), which is profoundly involved in synaptic function and plasticity. Short-term synaptic plasticity (STSP) may play important roles in functions that are affected by FXS. Recent evidence points to the crucial involvement of the presynaptic calcium sensor synaptotagmin-7 (Syt-7) in STSP. However, how the loss of FMRP affects STSP and Syt-7 have been insufficiently studied. Furthermore, males and females are affected differently by FXS, but the underlying mechanisms remain elusive. The aim of the present study was to investigate possible changes in STSP and the expression of Syt-7 in the dorsal (DH) and ventral (VH) hippocampus of adult males and females in a Fmr1-knockout (KO) rat model of FXS. We found that the paired-pulse ratio (PPR) and frequency facilitation/depression (FF/D), two forms of STSP, as well as the expression of Syt-7, are normal in adult KO males, but the PPR is increased in the ventral hippocampus of KO females (6.4 ± 3.7 vs. 18.3 ± 4.2 at 25 ms in wild type (WT) and KO, respectively). Furthermore, we found no gender-related differences, but did find robust region-dependent difference in the STSP (e.g., the PPR at 50 ms: 50.0 ± 5.5 vs. 17.6 ± 2.9 in DH and VH of WT male rats; 53.1 ± 3.6 vs. 19.3 ± 4.6 in DH and VH of WT female rats; 48.1 ± 2.3 vs. 19.1 ± 3.3 in DH and VH of KO male rats; and 51.2 ± 3.3 vs. 24.7 ± 4.3 in DH and VH of KO female rats). AMPA receptors are similarly expressed in the two hippocampal segments of the two genotypes and in both genders. Also, basal excitatory synaptic transmission is higher in males compared to females. Interestingly, we found more than a twofold higher level of Syt-7, not synaptotagmin-1, in the dorsal compared to the ventral hippocampus in the males of both genotypes (0.43 ± 0.1 vs. 0.16 ± 0.02 in DH and VH of WT male rats, and 0.6 ± 0.13 vs. 0.23 ± 0.04 in DH and VH of KO male rats) and in the WT females (0.97 ± 0.23 vs. 0.31 ± 0.09 in DH and VH). These results point to the susceptibility of the female ventral hippocampus to FMRP loss. Importantly, the different levels of Syt-7, which parallel the higher score of the dorsal vs. ventral hippocampus on synaptic facilitation, suggest that Syt-7 may play a pivotal role in defining the striking differences in STSP along the long axis of the hippocampus.


Subject(s)
Disease Models, Animal , Fragile X Mental Retardation Protein , Fragile X Syndrome , Hippocampus , Neuronal Plasticity , Synaptotagmins , Animals , Female , Male , Rats , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/physiopathology , Hippocampus/metabolism , Synaptotagmins/metabolism , Synaptotagmins/genetics
8.
Brain Res Bull ; 214: 110994, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38830486

ABSTRACT

Synaptotagmin-7 (SYT7) has been proposed as an innovative therapeutic strategy for treating cognitive impairment, while its contribution to Alzheimer's disease (AD) alleviation remains unclear. In this study, we investigated the role and potential mechanisms of SYT7 in AD. APP/PS1 mice were induced as an AD mouse model, and RNA-sequencing was conducted to analyze the transcriptomic differences between the brain tissues of AD mice and controls. SYT7, which was the most significantly differentially expressed gene in the RNA-sequencing, was found to be reduced in AD-like mice, and overexpression of SYT7 alleviated cognitive dysfunction and attenuated neuroinflammation and neuronal loss in the hippocampal tissues of mice with AD. Transcription factor double-strand-break repair protein rad21 homolog (RAD21) bound to the promoter of SYT7 to activate SYT7 transcription. SYT7 and RAD21 were expressed in microglia. SYT7 and RAD21 both promoted M2 polarization of microglia, while silencing of SYT7 repressed the M2 polarization of microglia in the presence of RAD21 overexpression. Overall, our results indicate that RAD21 mediated transcriptional activation of SYT7 to promote M2 polarization of microglia, thereby alleviating AD-like symptoms in mice, which might provide prospective cues for developing therapeutic strategies to improve cognitive impairment and AD course.


Subject(s)
Alzheimer Disease , Microglia , Synaptotagmins , Animals , Male , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Cognitive Dysfunction/metabolism , Disease Models, Animal , Hippocampus/metabolism , Mice, Transgenic , Microglia/metabolism , Synaptotagmins/metabolism , Synaptotagmins/genetics
9.
Cancer Sci ; 115(8): 2630-2645, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38889208

ABSTRACT

Prostate carcinoma represents a predominant malignancy affecting the male population, with androgen deprivation therapy (ADT) serving as a critical therapeutic modality for advanced disease states, but it often leads to the development of resistance. Enzalutamide (Enz), a second-generation antiandrogen drug, initially offers substantial therapeutic benefit, but its efficacy wanes as drug resistance ensues. In this study, we found that synaptotagmin 4 (SYT4) is an upregulated gene in enzalutamide-resistant (EnzR) cell lines. The downregulation of SYT4, in combination with enzalutamide therapy, substantially enhances the antiproliferative effect on resistant prostate cancer cells beyond the capacity of enzalutamide monotherapy. SYT4 promotes vesicle efflux by binding to the synaptosome-associated protein 25 (SNAP25), thereby contributing to cell resistance against enzalutamide. The elevated expression of SYT4 is mediated by bromodomain-containing protein 4 (BRD4), and BRD4 inhibition effectively suppressed the expression of SYT4. Treatment with a therapeutic dose of enzalutamide combined with ASO-1, an antisense oligonucleotide drug targeting SYT4, shows promising results in reversing the resistance of prostate cancer to enzalutamide.


Subject(s)
Benzamides , Drug Resistance, Neoplasm , Exosomes , Nitriles , Phenylthiohydantoin , Prostatic Neoplasms , Synaptotagmins , Phenylthiohydantoin/pharmacology , Male , Humans , Cell Line, Tumor , Exosomes/metabolism , Exosomes/drug effects , Synaptotagmins/metabolism , Synaptotagmins/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Transcription Factors/metabolism , Transcription Factors/genetics , Animals , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Mice , Gene Expression Regulation, Neoplastic/drug effects , Cell Proliferation/drug effects , Bromodomain Containing Proteins , Synaptosomal-Associated Protein 25
10.
Eur J Med Res ; 29(1): 338, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890718

ABSTRACT

BACKGROUND: Synaptotagmin 11 (SYT11) plays a pivotal role in neuronal vesicular trafficking and exocytosis. However, no independent prognostic studies have focused on various cancers. In this study, we aimed to summarize the clinical significance and molecular landscape of SYT11 in various tumor types. METHODS: Using several available public databases, we investigated abnormal SYT11 expression in different tumor types and its potential clinical association with prognosis, methylation profiling, immune infiltration, gene enrichment analysis, and protein-protein interaction analysis, and identified common pathways. RESULTS: TCGA and Genotype-Tissue Expression (GTEx) showed that SYT11 was widely expressed across tumor and corresponding normal tissues. Survival analysis showed that SYT11 expression correlated with the prognosis of seven cancer types. Additionally, SYT11 mRNA expression was not affected by promoter methylation, but regulated by certain miRNAs and associated with cancer patient prognosis. In vitro experiments further verified a negative correlation between the expression of SYT11 and miR-19a-3p in human colorectal, lung, and renal cancer cell lines. Moreover, aberrant SYT11 expression was significantly associated with immune infiltration. Pathway enrichment analysis revealed that the biological and molecular processes of SYT11 were related to clathrin-mediated endocytosis, Rho GTPase signaling, and cell motility-related functions. CONCLUSIONS: Our results provide a clear understanding of the role of SYT11 in various cancer types and suggest that SYT11 may be of prognostic and clinical significance.


Subject(s)
MicroRNAs , Neoplasms , Synaptotagmins , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , DNA Methylation , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Neoplasms/genetics , Neoplasms/metabolism , Prognosis , Synaptotagmins/genetics , Synaptotagmins/metabolism
11.
J Cell Biol ; 223(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38842573

ABSTRACT

Extracellular vesicles (EVs) are released by many cell types, including neurons, carrying cargoes involved in signaling and disease. It is unclear whether EVs promote intercellular signaling or serve primarily to dispose of unwanted materials. We show that loss of multivesicular endosome-generating endosomal sorting complex required for transport (ESCRT) machinery disrupts release of EV cargoes from Drosophila motor neurons. Surprisingly, ESCRT depletion does not affect the signaling activities of the EV cargo Synaptotagmin-4 (Syt4) and disrupts only some signaling activities of the EV cargo evenness interrupted (Evi). Thus, these cargoes may not require intercellular transfer via EVs, and instead may be conventionally secreted or function cell-autonomously in the neuron. We find that EVs are phagocytosed by glia and muscles, and that ESCRT disruption causes compensatory autophagy in presynaptic neurons, suggesting that EVs are one of several redundant mechanisms to remove cargoes from synapses. Our results suggest that synaptic EV release serves primarily as a proteostatic mechanism for certain cargoes.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Endosomal Sorting Complexes Required for Transport , Extracellular Vesicles , Motor Neurons , Signal Transduction , Synapses , Animals , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Extracellular Vesicles/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Synapses/metabolism , Motor Neurons/metabolism , Autophagy , Synaptotagmins/metabolism , Synaptotagmins/genetics , Neuroglia/metabolism
12.
Cancer Sci ; 115(8): 2659-2672, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38710213

ABSTRACT

Circular RNAs (circRNAs) have emerged as crucial regulators in tumor progression, yet their specific role in hepatocellular carcinoma (HCC) remains largely uncharacterized. In this study, we utilized high-transcriptome sequencing to identify the upregulation of circESYT2 (hsa_circ_002142) in HCC tissues. Functional experiments carried out in vivo and in vitro revealed that circESYT2 played a significant role in maintaining the growth and metastatic behaviors of HCC. Through integrative analysis, we identified enolase 2 (ENO2) as a potential target regulated by circESYT2 through the competitive endogenous RNA sponge mechanism. Additional gain- or loss-of-function experiments indicated that overexpression of circESYT2 led to a tumor-promoting effect, which could be reversed by transfection of microRNA-665 (miR-665) mimic or ENO2 knockdown in HCC cells. Furthermore, the direct interaction between miR-665 and circESYT2 and between miR-665 and ENO2 was confirmed using RNA immunoprecipitation, FISH, RNA pull-down, and dual-luciferase reporter assays, highlighting the involvement of the circESYT2/miR-665/ENO2 axis in promoting HCC progression. These findings shed light on the molecular characteristics of circESYT2 in HCC tissues and suggest its potential as a biomarker or therapeutic target for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Disease Progression , Gene Expression Regulation, Neoplastic , Liver Neoplasms , MicroRNAs , Phosphopyruvate Hydratase , RNA, Circular , Animals , Female , Humans , Male , Mice , Middle Aged , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice, Nude , MicroRNAs/genetics , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , RNA, Circular/genetics , Up-Regulation/genetics , Synaptotagmins/genetics
13.
EMBO Rep ; 25(6): 2610-2634, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698221

ABSTRACT

GABAB receptors (GBRs), the G protein-coupled receptors for GABA, regulate synaptic transmission throughout the brain. A main synaptic function of GBRs is the gating of Cav2.2-type Ca2+ channels. However, the cellular compartment where stable GBR/Cav2.2 signaling complexes form remains unknown. In this study, we demonstrate that the vesicular protein synaptotagmin-11 (Syt11) binds to both the auxiliary GBR subunit KCTD16 and Cav2.2 channels. Through these dual interactions, Syt11 recruits GBRs and Cav2.2 channels to post-Golgi vesicles, thus facilitating assembly of GBR/Cav2.2 signaling complexes. In addition, Syt11 stabilizes GBRs and Cav2.2 channels at the neuronal plasma membrane by inhibiting constitutive internalization. Neurons of Syt11 knockout mice exhibit deficits in presynaptic GBRs and Cav2.2 channels, reduced neurotransmitter release, and decreased GBR-mediated presynaptic inhibition, highlighting the critical role of Syt11 in the assembly and stable expression of GBR/Cav2.2 complexes. These findings support that Syt11 acts as a vesicular scaffold protein, aiding in the assembly of signaling complexes from low-abundance components within transport vesicles. This mechanism enables insertion of pre-assembled functional signaling units into the synaptic membrane.


Subject(s)
Mice, Knockout , Signal Transduction , Synaptotagmins , Animals , Synaptotagmins/metabolism , Synaptotagmins/genetics , Mice , Humans , Neurons/metabolism , Synaptic Transmission , Receptors, GABA-B/metabolism , Receptors, GABA-B/genetics , Presynaptic Terminals/metabolism , Calcium Channels, N-Type/metabolism , Calcium Channels, N-Type/genetics , Golgi Apparatus/metabolism , Protein Binding , HEK293 Cells
14.
J Genet Genomics ; 51(9): 911-921, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38582297

ABSTRACT

MicroRNAs (miRNAs) play a significant role in axon regeneration following spinal cord injury. However, the functions of numerous miRNAs in axon regeneration within the central nervous system (CNS) remain largely unexplored. Here, we elucidate the positive role of microRNA-2184 (miR-2184) in axon regeneration within zebrafish Mauthner cells (M-cells). The upregulation of miR-2184 in a single M-cell can facilitate axon regeneration, while the specific sponge-induced silencing of miR-2184 leads to impeded regeneration. We show that syt3, a downstream target of miR-2184, negatively regulates axon regeneration, and the regeneration suppression modulated by syt3 depends on its binding to Ca2+. Furthermore, pharmacological stimulation of the cAMP/PKA pathway suggests that changes in the readily releasable pool may affect axon regeneration. Our data indicate that miR-2184 promotes axon regeneration of M-cells within the CNS by modulating the downstream target syt3, providing valuable insights into potential therapeutic strategies.


Subject(s)
Axons , MicroRNAs , Nerve Regeneration , Synaptotagmins , Zebrafish Proteins , Animals , Axons/metabolism , Axons/physiology , Calcium/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Spinal Cord Injuries/genetics , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Synaptotagmins/genetics , Synaptotagmins/metabolism , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
15.
Funct Integr Genomics ; 24(3): 77, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38632140

ABSTRACT

BACKGROUND: Gastric cancer (GC) remains a leading cause of cancer mortality globally. Synaptotagmin-4 (SYT4), a calcium-sensing synaptic vesicle protein, has been implicated in the oncogenesis of diverse malignancies. PURPOSE: This study delineates the role of SYT4 in modulating clinical outcomes and biological behaviors in GC. METHODS: We evaluated SYT4 expression in GC specimens using bioinformatics analyses and immunohistochemistry. Functional assays included CCK8 proliferation tests, apoptosis assays via flow cytometry, confocal calcium imaging, and xenograft models. Western blotting elucidated MAPK pathway involvement. Additionally, we investigated the impact of the calcium channel blocker amlodipine on cellular dynamics and MAPK pathway activity. RESULTS: SYT4 was higher in GC tissues, and the elevated SYT4 was significantly correlated with adverse prognosis. Both univariate and multivariate analyses confirmed SYT4 as an independent prognostic indicator for GC. Functionally, SYT4 promoted tumorigenesis by fostering cellular proliferation, inhibiting apoptosis, and enhancing intracellular Ca2+ influx, predominantly via MAPK pathway activation. Amlodipine pre-treatment attenuated SYT4-driven cell growth and potentiated apoptosis, corroborated by in vivo xenograft assessments. These effects were attributed to MAPK pathway suppression by amlodipine. CONCLUSION: SYT4 emerges as a potential prognostic biomarker and a pro-oncogenic mediator in GC through a Ca2+-dependent MAPK mechanism. Amlodipine demonstrates significant antitumor effects against SYT4-driven GC, positing its therapeutic promise. This study underscores the imperative of targeting calcium signaling in GC treatment strategies.


Subject(s)
Amlodipine , Calcium Signaling , Stomach Neoplasms , Synaptotagmins , Humans , Amlodipine/pharmacology , Amlodipine/therapeutic use , Calcium/metabolism , Calcium Signaling/drug effects , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Synaptotagmins/antagonists & inhibitors , Synaptotagmins/genetics , Synaptotagmins/metabolism , Calcium Channel Blockers/pharmacology
16.
Elife ; 122024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536730

ABSTRACT

Despite decades of intense study, the molecular basis of asynchronous neurotransmitter release remains enigmatic. Synaptotagmin (syt) 7 and Doc2 have both been proposed as Ca2+ sensors that trigger this mode of exocytosis, but conflicting findings have led to controversy. Here, we demonstrate that at excitatory mouse hippocampal synapses, Doc2α is the major Ca2+ sensor for asynchronous release, while syt7 supports this process through activity-dependent docking of synaptic vesicles. In synapses lacking Doc2α, asynchronous release after single action potentials is strongly reduced, while deleting syt7 has no effect. However, in the absence of syt7, docked vesicles cannot be replenished on millisecond timescales. Consequently, both synchronous and asynchronous release depress from the second pulse onward during repetitive activity. By contrast, synapses lacking Doc2α have normal activity-dependent docking, but continue to exhibit decreased asynchronous release after multiple stimuli. Moreover, disruption of both Ca2+ sensors is non-additive. These findings result in a new model whereby syt7 drives activity-dependent docking, thus providing synaptic vesicles for synchronous (syt1) and asynchronous (Doc2 and other unidentified sensors) release during ongoing transmission.


Subject(s)
Synapses , Synaptic Vesicles , Synaptotagmins , Animals , Mice , Action Potentials , Calcium/metabolism , Exocytosis , Neurotransmitter Agents , Synapses/metabolism , Synaptic Transmission , Synaptic Vesicles/metabolism , Synaptotagmin I/metabolism , Synaptotagmins/metabolism , Calcium-Binding Proteins/metabolism , Nerve Tissue Proteins/metabolism
17.
Elife ; 132024 Mar 07.
Article in English | MEDLINE | ID: mdl-38450720

ABSTRACT

Synapse is the fundamental structure for neurons to transmit information between cells. The proper synapse formation is crucial for developing neural circuits and cognitive functions of the brain. The aberrant synapse formation has been proved to cause many neurological disorders, including autism spectrum disorders and intellectual disability. Synaptic cell adhesion molecules (CAMs) are thought to play a major role in achieving mechanistic cell-cell recognition and initiating synapse formation via trans-synaptic interactions. Due to the diversity of synapses in different brain areas, circuits and neurons, although many synaptic CAMs, such as Neurexins (NRXNs), Neuroligins (NLGNs), Synaptic cell adhesion molecules (SynCAMs), Leucine-rich-repeat transmembrane neuronal proteins (LRRTMs), and SLIT and NTRK-like protein (SLITRKs) have been identified as synaptogenic molecules, how these molecules determine specific synapse formation and whether other molecules driving synapse formation remain undiscovered are unclear. Here, to provide a tool for synapse labeling and synaptic CAMs screening by artificial synapse formation (ASF) assay, we generated synaptotagmin-1-tdTomato (Syt1-tdTomato) transgenic mice by inserting the tdTomato-fused synaptotagmin-1 coding sequence into the genome of C57BL/6J mice. In the brain of Syt1-tdTomato transgenic mice, the tdTomato-fused synaptotagmin-1 (SYT1-tdTomato) signals were widely observed in different areas and overlapped with synapsin-1, a widely-used synaptic marker. In the olfactory bulb, the SYT1-tdTomato signals are highly enriched in the glomerulus. In the cultured hippocampal neurons, the SYT1-tdTomato signals showed colocalization with several synaptic markers. Compared to the wild-type (WT) mouse neurons, cultured hippocampal neurons from Syt1-tdTomato transgenic mice presented normal synaptic neurotransmission. In ASF assays, neurons from Syt1-tdTomato transgenic mice could form synaptic connections with HEK293T cells expressing NLGN2, LRRTM2, and SLITRK2 without immunostaining. Therefore, our work suggested that the Syt1-tdTomato transgenic mice with the ability to label synapses by tdTomato, and it will be a convenient tool for screening synaptogenic molecules.


Subject(s)
Cell Adhesion Molecules , Red Fluorescent Protein , Synapses , Humans , Mice , Animals , Mice, Transgenic , HEK293 Cells , Mice, Inbred C57BL , Cell Adhesion Molecules/metabolism , Synapses/physiology , Synaptotagmins/metabolism , Neural Cell Adhesion Molecules/metabolism
18.
eNeuro ; 11(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38365841

ABSTRACT

Dopamine neurons switch from tonic pacemaker activity to high-frequency bursts in response to salient stimuli. These bursts lead to superlinear increases in dopamine release, and the degree of this increase is highly dependent on firing frequency. The superlinearity and frequency dependence of dopamine release implicate short-term plasticity processes. The presynaptic Ca2+-sensor synaptotagmin-7 (SYT7) has suitable properties to mediate such short-term plasticity and has been implicated in regulating dopamine release from somatodendritic compartments. Here, we use a genetically encoded dopamine sensor and whole-cell electrophysiology in Syt7 KO mice to determine how SYT7 contributes to both axonal and somatodendritic dopamine release. We find that SYT7 mediates a hidden component of facilitation of release from dopamine terminals that can be unmasked by lowering initial release probability or by predepressing synapses with low-frequency stimulation. Depletion of SYT7 increased short-term depression and reduced release during stimulations that mimic in vivo firing. Recordings of D2-mediated inhibitory postsynaptic currents in the substantia nigra pars compacta (SNc) confirmed a similar role for SYT7 in somatodendritic release. Our results indicate that SYT7 drives short-term facilitation of dopamine release, which may explain the frequency dependence of dopamine signaling seen in vivo.


Subject(s)
Depression , Dopamine , Animals , Mice , Calcium/metabolism , Dopaminergic Neurons/metabolism , Synapses/metabolism , Synaptotagmins
19.
EMBO Rep ; 25(1): 286-303, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177911

ABSTRACT

Upon T-cell activation, the levels of the secondary messenger diacylglycerol (DAG) at the plasma membrane need to be controlled to ensure appropriate T-cell receptor signaling and T-cell functions. Extended-Synaptotagmins (E-Syts) are a family of inter-organelle lipid transport proteins that bridge the endoplasmic reticulum and the plasma membrane. In this study, we identify a novel regulatory mechanism of DAG-mediated signaling for T-cell effector functions based on E-Syt proteins. We demonstrate that E-Syts downmodulate T-cell receptor signaling, T-cell-mediated cytotoxicity, degranulation, and cytokine production by reducing plasma membrane levels of DAG. Mechanistically, E-Syt2 predominantly modulates DAG levels at the plasma membrane in resting-state T cells, while E-Syt1 and E-Syt2 negatively control T-cell receptor signaling upon stimulation. These results reveal a previously underappreciated role of E-Syts in regulating DAG dynamics in T-cell signaling.


Subject(s)
Signal Transduction , T-Lymphocytes , Synaptotagmins/metabolism , Cell Membrane/metabolism , Biological Transport , Receptors, Antigen, T-Cell/metabolism , Calcium/metabolism
20.
J Neurosci ; 44(9)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38262726

ABSTRACT

Synapses with high release probability (Pr ) tend to exhibit short-term synaptic depression. According to the prevailing model, this reflects the temporary depletion of release-ready vesicles after an initial action potential (AP). At the high-Pr layer 4 to layer 2/3 (L4-L2/3) synapse in rodent somatosensory cortex, short-term plasticity appears to contradict the depletion model: depression is absent at interstimulus intervals (ISIs) <50 ms and develops to a maximum at ∼200 ms. To understand the mechanism(s) underlying the biphasic time course of short-term plasticity at this synapse, we used whole-cell electrophysiology and two-photon calcium imaging in acute slices from male and female juvenile mice. We tested several candidate mechanisms including neuromodulation, postsynaptic receptor desensitization, and use-dependent changes in presynaptic AP-evoked calcium. We found that, at single L4-L2/3 synapses, Pr varies as a function of ISI, giving rise to the distinctive short-term plasticity time course. Furthermore, the higher-than-expected Pr at short ISIs depends on expression of synaptotagmin 7 (Syt7). Our results show that two distinct vesicle release processes summate to give rise to short-term plasticity at this synapse: (1) a basal, high-Pr release mechanism that undergoes rapid depression and recovers slowly (τ = ∼3 s) and (2) a Syt7-dependent mechanism that leads to a transient increase in Pr (τ = ∼100 ms) after the initial AP. We thus reveal how these synapses can maintain a very high probability of neurotransmission for multiple APs within a short time frame. Key words : depression; facilitation; short-term plasticity; synaptotagmin 7.


Subject(s)
Calcium , Neuronal Plasticity , Animals , Female , Male , Mice , Calcium/metabolism , Neuronal Plasticity/physiology , Synapses/physiology , Synaptic Transmission/physiology , Synaptotagmins/genetics , Synaptotagmins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL