Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 710
Filter
1.
Int J Mol Sci ; 25(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732162

ABSTRACT

The synucleinopathies are a diverse group of neurodegenerative disorders characterized by the accumulation of aggregated alpha-synuclein (aSyn) in vulnerable populations of brain cells. Oxidative stress is both a cause and a consequence of aSyn aggregation in the synucleinopathies; however, noninvasive methods for detecting oxidative stress in living animals have proven elusive. In this study, we used the reactive oxygen species (ROS)-sensitive positron emission tomography (PET) radiotracer [18F]ROStrace to detect increases in oxidative stress in the widely-used A53T mouse model of synucleinopathy. A53T-specific elevations in [18F]ROStrace signal emerged at a relatively early age (6-8 months) and became more widespread within the brain over time, a pattern which paralleled the progressive development of aSyn pathology and oxidative damage in A53T brain tissue. Systemic administration of lipopolysaccharide (LPS) also caused rapid and long-lasting elevations in [18F]ROStrace signal in A53T mice, suggesting that chronic, aSyn-associated oxidative stress may render these animals more vulnerable to further inflammatory insult. Collectively, these results provide novel evidence that oxidative stress is an early and chronic process during the development of synucleinopathy and suggest that PET imaging with [18F]ROStrace holds promise as a means of detecting aSyn-associated oxidative stress noninvasively.


Subject(s)
Brain , Disease Models, Animal , Oxidative Stress , Positron-Emission Tomography , Synucleinopathies , alpha-Synuclein , Animals , Synucleinopathies/diagnostic imaging , Synucleinopathies/metabolism , Synucleinopathies/pathology , Positron-Emission Tomography/methods , Mice , alpha-Synuclein/metabolism , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Fluorine Radioisotopes , Male , Mice, Transgenic , Radiopharmaceuticals , Reactive Oxygen Species/metabolism
2.
Int J Mol Sci ; 25(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38612761

ABSTRACT

The accumulation of misfolded and aggregated α-synuclein can trigger endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), leading to apoptotic cell death in patients with Parkinson's disease (PD). As the major ER chaperone, glucose-regulated protein 78 (GRP78/BiP/HSPA5) plays a key role in UPR regulation. GRP78 overexpression can modulate the UPR, block apoptosis, and promote the survival of nigral dopamine neurons in a rat model of α-synuclein pathology. Here, we explore the therapeutic potential of intranasal exogenous GRP78 for preventing or slowing PD-like neurodegeneration in a lactacystin-induced rat model. We show that intranasally-administered GRP78 rapidly enters the substantia nigra pars compacta (SNpc) and other afflicted brain regions. It is then internalized by neurons and microglia, preventing the development of the neurodegenerative process in the nigrostriatal system. Lactacystin-induced disturbances, such as the abnormal accumulation of phosphorylated pS129-α-synuclein and activation of the pro-apoptotic GRP78/PERK/eIF2α/CHOP/caspase-3,9 signaling pathway of the UPR, are substantially reversed upon GRP78 administration. Moreover, exogenous GRP78 inhibits both microglia activation and the production of proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in model animals. The neuroprotective and anti-inflammatory potential of exogenous GRP78 may inform the development of effective therapeutic agents for PD and other synucleinopathies.


Subject(s)
Acetylcysteine/analogs & derivatives , Parkinson Disease , Synucleinopathies , Humans , Animals , Rats , Parkinson Disease/drug therapy , Parkinson Disease/etiology , alpha-Synuclein/genetics , Endoplasmic Reticulum Chaperone BiP , Administration, Intranasal , Neuroprotection
3.
CNS Neurosci Ther ; 30(4): e14712, 2024 04.
Article in English | MEDLINE | ID: mdl-38615364

ABSTRACT

BACKGROUND: The specific non-motor symptoms associated with α-synucleinopathies, including orthostatic hypotension (OH), cognitive impairment, and emotional abnormalities, have been a subject of ongoing controversy over the mechanisms underlying the development of a vicious cycle among them. The distinct structural alterations in white matter (WM) in patients with α-synucleinopathies experiencing OH, alongside their association with other non-motor symptoms, remain unexplored. This study employs axial diffusivity and density imaging (NODDI) to investigate WM damage specific to α-synucleinopathies with concurrent OH, delivering fresh evidence to supplement our understanding of the pathogenic mechanisms and pathological rationales behind the occurrence of a spectrum of non-motor functional impairments in α-synucleinopathies. METHODS: This study recruited 49 individuals diagnosed with α-synucleinopathies, stratified into an α-OH group (n = 24) and an α-NOH group (without OH, n = 25). Additionally, 17 healthy controls were included for supine and standing blood pressure data collection, as well as neuropsychological assessments. Magnetic resonance imaging (MRI) was utilized for the calculation of NODDI parameters, and tract-based spatial statistics (TBSS) were employed to explore differential clusters. The fibers covered by these clusters were defined as regions of interest (ROI) for the extraction of NODDI parameter values and the analysis of their correlation with neuropsychological scores. RESULTS: The TBSS analysis unveiled specific cerebral regions exhibiting disparities within the α-OH group as compared to both the α-NOH group and the healthy controls. These differences were evident in clusters that indicated a decrease in the acquisition of the neurite density index (NDI), a reduction in the orientation dispersion index (ODI), and an increase in the isotropic volume fraction (FISO) (p < 0.05). The extracted values from these ROIs demonstrated significant correlations with clinically assessed differences in supine and standing blood pressure, overall cognitive scores, and anxiety-depression ratings (p < 0.05). CONCLUSION: Patients with α-synucleinopathies experiencing OH exhibit distinctive patterns of microstructural damage in the WM as revealed by the NODDI model, and there is a correlation with the onset and progression of non-motor functional impairments.


Subject(s)
Hypotension, Orthostatic , Synucleinopathies , White Matter , Humans , White Matter/diagnostic imaging , Hypotension, Orthostatic/diagnostic imaging , Brain , Depression , Antibodies
4.
Int J Biol Macromol ; 267(Pt 2): 131423, 2024 May.
Article in English | MEDLINE | ID: mdl-38583832

ABSTRACT

This article reveals the binding mechanism between glycyrrhizic acid (GA) and α-synuclein to may provide further information for the modulation of synucleinopathies using bioactive compounds. Therefore, the inhibitory activities of GA against α-synuclein aggregation and induced neurotoxicity were evaluated using different assays. Results showed that α-synuclein-GA binding was mediated by intermolecular hydrogen bonds leading to the formation of a slightly folded complex. Theoretical studies revealed that GA binds to the N-terminal domain of α-synuclein and triggers a compact structure around a major part of the N-terminal and the NAC regions along with fluctuations in the C-terminal domain, which are prerequisites for the inhibition of α-synuclein aggregation. Then, the cellular assays showed that GA as a potential small molecule can inhibit the oligomerization of α-synuclein and relevant neurotoxicity through modulation of neural viability, membrane leakage, and ROS formation in a concentration-dependent manner. As a result, the primary mechanism of GA's anti-aggregation and neuroprotective activities is the reorganized α-synuclein structure and fluctuating C-terminal domain, which promotes long-range transient intramolecular contacts between the N-terminal and the C-terminal domain.


Subject(s)
Glycyrrhizic Acid , Protein Aggregates , Synucleinopathies , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , alpha-Synuclein/chemistry , Cell Survival/drug effects , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/chemistry , Hydrogen Bonding , Molecular Docking Simulation , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Protein Aggregates/drug effects , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/drug therapy , Protein Binding , Reactive Oxygen Species/metabolism , Synucleinopathies/metabolism , Synucleinopathies/pathology
5.
Neurosci Biobehav Rev ; 161: 105672, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608829

ABSTRACT

Cognitive reserve has shown promise as a justification for neuropathologically unexplainable clinical outcomes in Alzheimer's disease. Recent evidence suggests this effect may be replicated in conditions like Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. However, the relationships between cognitive reserve and different cognitive abilities, as well as motor outcomes, are still poorly understood in these conditions. Additionally, it is unclear whether the reported effects are confounded by medication. This review analysed studies investigating the relationship between cognitive reserve and clinical outcomes in these α-synucleinopathy cohorts, identified from MEDLINE, Scopus, psycINFO, CINAHL, and Web of Science. 85 records, containing 176 cognition and 31 motor function effect sizes, were pooled using multilevel meta-analysis. There was a significant, positive association between higher cognitive reserve and both better cognition and motor function. Cognition effect sizes differed by disease subtype, cognitive reserve measure, and outcome type; however, no moderators significantly impacted motor function. Review findings highlight the clinical implications of cognitive reserve and importance of engaging in reserve-building behaviours.


Subject(s)
Cognitive Reserve , Humans , Cognitive Reserve/physiology , Synucleinopathies/physiopathology , Cognition/physiology , Parkinson Disease/physiopathology , Parkinson Disease/complications
6.
Int J Mol Sci ; 25(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38612454

ABSTRACT

Synucleinopathies are a group of central nervous system pathologies that are characterized by the intracellular accumulation of misfolded and aggregated α-synuclein in proteinaceous depositions known as Lewy Bodies (LBs). The transition of α-synuclein from its physiological to pathological form has been associated with several post-translational modifications such as phosphorylation and an increasing degree of insolubility, which also correlate with disease progression in post-mortem specimens from human patients. Neuronal expression of α-synuclein in model organisms, including Drosophila melanogaster, has been a typical approach employed to study its physiological effects. Biochemical analysis of α-synuclein solubility via high-speed ultracentrifugation with buffers of increasing detergent strength offers a potent method for identification of α-synuclein biochemical properties and the associated pathology stage. Unfortunately, the development of a robust and reproducible method for the evaluation of human α-synuclein solubility isolated from Drosophila tissues has remained elusive. Here, we tested different detergents for their ability to solubilize human α-synuclein carrying the pathological mutation A53T from the brains of aged flies. We also assessed the effect of sonication on the solubility of human α-synuclein and optimized a protocol to discriminate the relative amounts of soluble/insoluble human α-synuclein from dopaminergic neurons of the Drosophila brain. Our data established that, using a 5% SDS buffer, the three-step protocol separates cytosolic soluble, detergent-soluble and insoluble proteins in three sequential fractions according to their chemical properties. This protocol shows that sonication breaks down α-synuclein insoluble complexes from the fly brain, making them soluble in the SDS buffer and thus enriching the detergent-soluble fraction of the protocol.


Subject(s)
Synucleinopathies , Humans , Animals , Aged , alpha-Synuclein , Drosophila , Drosophila melanogaster , Detergents
7.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38612875

ABSTRACT

Neuropathological assessment was conducted on 1630 subjects, representing 5% of all the deceased that had been sent to the morgue of Uppsala University Hospital during a 15-year-long period. Among the 1630 subjects, 1610 were ≥41 years of age (range 41 to 102 years). Overall, hyperphosphorylated (HP) τ was observed in the brains of 98% of the 1610 subjects, and amyloid ß-protein (Aß) in the brains of 64%. The most common alteration observed was Alzheimer disease neuropathologic change (ADNC) (56%), followed by primary age-related tauopathy (PART) in 26% of the subjects. In 16% of the subjects, HPτ was limited to the locus coeruleus. In 14 subjects (<1%), no altered proteins were observed. In 3 subjects, only Aß was observed, and in 17, HPτ was observed in a distribution other than that seen in ADNC/PART. The transactive DNA-binding protein 43 (TDP43) associated with limbic-predominant age-related TDP encephalopathy (LATE) was observed in 565 (35%) subjects and α-synuclein (αS) pathology, i.e., Lewy body disease (LBD) or multi system atrophy (MSA) was observed in the brains of 21% of the subjects. A total of 39% of subjects with ADNC, 59% of subjects with PART, and 81% of subjects with HPτ limited to the locus coeruleus lacked concomitant pathologies, i.e., LATE-NC or LBD-NC. Of the 293 (18% of the 1610 subjects) subjects with dementia, 81% exhibited a high or intermediate level of ADNC. In 84% of all individuals with dementia, various degrees of concomitant alterations were observed; i.e., MIXED-NC was a common cause of dementia. A high or intermediate level of PART was observed in 10 subjects with dementia (3%), i.e., tangle-predominant dementia. No subjects exhibited only vascular NC (VNC), but in 17 subjects, severe VNC might have contributed to cognitive decline. Age-related tau astrogliopathy (ARTAG) was observed in 37% of the 1610 subjects and in 53% of those with dementia.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Lewy Body Disease , Limbic Encephalitis , Synucleinopathies , Tauopathies , Humans , Adult , Middle Aged , Aged , Aged, 80 and over , Amyloid beta-Peptides , Cognitive Dysfunction/etiology , Aging , Brain , Glycation End Products, Advanced
8.
Biochemistry (Mosc) ; 89(3): 523-542, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38648770

ABSTRACT

Less than ten years ago, evidence began to accumulate about association between the changes in the composition of gut microbiota and development of human synucleinopathies, in particular sporadic form of Parkinson's disease. We collected data from more than one hundred and thirty experimental studies that reported similar results and summarized the frequencies of detection of different groups of bacteria in these studies. It is important to note that it is extremely rare that a unidirectional change in the population of one or another group of microorganisms (only an elevation or only a reduction) was detected in the patients with Parkinson's disease. However, we were able to identify several groups of bacteria that were overrepresented in the patients with Parkinson's disease in the analyzed studies. There are various hypotheses about the molecular mechanisms that explain such relationships. Usually, α-synuclein aggregation is associated with the development of inflammatory processes that occur in response to the changes in the microbiome. However, experimental evidence is accumulating on the influence of bacterial proteins, including amyloids (curli), as well as various metabolites, on the α-synuclein aggregation. In the review, we provided up-to-date information about such examples.


Subject(s)
Amyloid , Gastrointestinal Microbiome , Parkinson Disease , Synucleinopathies , alpha-Synuclein , Humans , Synucleinopathies/metabolism , Synucleinopathies/microbiology , Synucleinopathies/pathology , Amyloid/metabolism , Parkinson Disease/metabolism , Parkinson Disease/microbiology , alpha-Synuclein/metabolism , Animals , Bacteria/metabolism , Bacterial Proteins/metabolism
9.
Cell Death Dis ; 15(4): 246, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575601

ABSTRACT

Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized by the loss of midbrain dopaminergic neurons (DaNs) and the abnormal accumulation of α-Synuclein (α-Syn) protein. Currently, no treatment can slow nor halt the progression of PD. Multiplications and mutations of the α-Syn gene (SNCA) cause PD-associated syndromes and animal models that overexpress α-Syn replicate several features of PD. Decreasing total α-Syn levels, therefore, is an attractive approach to slow down neurodegeneration in patients with synucleinopathy. We previously performed a genetic screen for modifiers of α-Syn levels and identified CDK14, a kinase of largely unknown function as a regulator of α-Syn. To test the potential therapeutic effects of CDK14 reduction in PD, we ablated Cdk14 in the α-Syn preformed fibrils (PFF)-induced PD mouse model. We found that loss of Cdk14 mitigates the grip strength deficit of PFF-treated mice and ameliorates PFF-induced cortical α-Syn pathology, indicated by reduced numbers of pS129 α-Syn-containing cells. In primary neurons, we found that Cdk14 depletion protects against the propagation of toxic α-Syn species. We further validated these findings on pS129 α-Syn levels in PD patient neurons. Finally, we leveraged the recent discovery of a covalent inhibitor of CDK14 to determine whether this target is pharmacologically tractable in vitro and in vivo. We found that CDK14 inhibition decreases total and pathologically aggregated α-Syn in human neurons, in PFF-challenged rat neurons and in the brains of α-Syn-humanized mice. In summary, we suggest that CDK14 represents a novel therapeutic target for PD-associated synucleinopathy.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Synucleinopathies , Animals , Humans , Mice , Rats , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Dopaminergic Neurons/metabolism , Mesencephalon/metabolism , Neurodegenerative Diseases/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Synucleinopathies/metabolism , Synucleinopathies/pathology
10.
Hum Brain Mapp ; 45(5): e26675, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38590155

ABSTRACT

Isolated REM sleep behavior disorder (iRBD) is an early stage of synucleinopathy with most patients progressing to Parkinson's disease (PD) or related conditions. Quantitative susceptibility mapping (QSM) in PD has identified pathological iron accumulation in the substantia nigra (SN) and variably also in basal ganglia and cortex. Analyzing whole-brain QSM across iRBD, PD, and healthy controls (HC) may help to ascertain the extent of neurodegeneration in prodromal synucleinopathy. 70 de novo PD patients, 70 iRBD patients, and 60 HCs underwent 3 T MRI. T1 and susceptibility-weighted images were acquired and processed to space standardized QSM. Voxel-based analyses of grey matter magnetic susceptibility differences comparing all groups were performed on the whole brain and upper brainstem levels with the statistical threshold set at family-wise error-corrected p-values <.05. Whole-brain analysis showed increased susceptibility in the bilateral fronto-parietal cortex of iRBD patients compared to both PD and HC. This was not associated with cortical thinning according to the cortical thickness analysis. Compared to iRBD, PD patients had increased susceptibility in the left amygdala and hippocampal region. Upper brainstem analysis revealed increased susceptibility within the bilateral SN for both PD and iRBD compared to HC; changes were located predominantly in nigrosome 1 in the former and nigrosome 2 in the latter group. In the iRBD group, abnormal dopamine transporter SPECT was associated with increased susceptibility in nigrosome 1. iRBD patients display greater fronto-parietal cortex involvement than incidental early-stage PD cohort indicating more widespread subclinical neuropathology. Dopaminergic degeneration in the substantia nigra is paralleled by susceptibility increase, mainly in nigrosome 1.


Subject(s)
Parkinson Disease , REM Sleep Behavior Disorder , Synucleinopathies , Humans , REM Sleep Behavior Disorder/diagnostic imaging , Synucleinopathies/complications , Synucleinopathies/pathology , Brain/diagnostic imaging , Brain/pathology , Substantia Nigra/diagnostic imaging , Substantia Nigra/pathology , Parkinson Disease/complications , Iron
12.
JAMA ; 331(15): 1298-1306, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38506839

ABSTRACT

Importance: Finding a reliable diagnostic biomarker for the disorders collectively known as synucleinopathies (Parkinson disease [PD], dementia with Lewy bodies [DLB], multiple system atrophy [MSA], and pure autonomic failure [PAF]) is an urgent unmet need. Immunohistochemical detection of cutaneous phosphorylated α-synuclein may be a sensitive and specific clinical test for the diagnosis of synucleinopathies. Objective: To evaluate the positivity rate of cutaneous α-synuclein deposition in patients with PD, DLB, MSA, and PAF. Design, Setting, and Participants: This blinded, 30-site, cross-sectional study of academic and community-based neurology practices conducted from February 2021 through March 2023 included patients aged 40 to 99 years with a clinical diagnosis of PD, DLB, MSA, or PAF based on clinical consensus criteria and confirmed by an expert review panel and control participants aged 40 to 99 years with no history of examination findings or symptoms suggestive of a synucleinopathy or neurodegenerative disease. All participants completed detailed neurologic examinations and disease-specific questionnaires and underwent skin biopsy for detection of phosphorylated α-synuclein. An expert review panel blinded to pathologic data determined the final participant diagnosis. Exposure: Skin biopsy for detection of phosphorylated α-synuclein. Main Outcomes: Rates of detection of cutaneous α-synuclein in patients with PD, MSA, DLB, and PAF and controls without synucleinopathy. Results: Of 428 enrolled participants, 343 were included in the primary analysis (mean [SD] age, 69.5 [9.1] years; 175 [51.0%] male); 223 met the consensus criteria for a synucleinopathy and 120 met criteria as controls after expert panel review. The proportions of individuals with cutaneous phosphorylated α-synuclein detected by skin biopsy were 92.7% (89 of 96) with PD, 98.2% (54 of 55) with MSA, 96.0% (48 of 50) with DLB, and 100% (22 of 22) with PAF; 3.3% (4 of 120) of controls had cutaneous phosphorylated α-synuclein detected. Conclusions and Relevance: In this cross-sectional study, a high proportion of individuals meeting clinical consensus criteria for PD, DLB, MSA, and PAF had phosphorylated α-synuclein detected by skin biopsy. Further research is needed in unselected clinical populations to externally validate the findings and fully characterize the potential role of skin biopsy detection of phosphorylated α-synuclein in clinical care.


Subject(s)
Skin , Synucleinopathies , alpha-Synuclein , Aged , Female , Humans , Male , alpha-Synuclein/analysis , Biopsy , Cross-Sectional Studies , Lewy Body Disease/diagnosis , Lewy Body Disease/pathology , Multiple System Atrophy/diagnosis , Multiple System Atrophy/pathology , Parkinson Disease/diagnosis , Parkinson Disease/pathology , Synucleinopathies/diagnosis , Synucleinopathies/pathology , Phosphorylation , Skin/chemistry , Skin/pathology , Pure Autonomic Failure/diagnosis , Pure Autonomic Failure/pathology , Reproducibility of Results , Adult , Middle Aged , Aged, 80 and over , Single-Blind Method , Prospective Studies
13.
Parkinsonism Relat Disord ; 122: 106077, 2024 May.
Article in English | MEDLINE | ID: mdl-38461037

ABSTRACT

These facts argue against the gain-of-function synucleinopathy hypothesis, which proposes that Lewy pathology causes Parkinson's disease: (1) most brains from people without neurological symptoms have multiple pathologies; (2) neither pathology type nor distribution correlate with disease severity or progression in Parkinson's disease; (3) aggregated α-synuclein in the form of Lewy bodies is not a space-occupying lesion but the insoluble fraction of its precursor, soluble monomeric α-synuclein; (4) pathology spread is passive, occurring by irreversible nucleation, not active replication; and (5) low cerebrospinal fluid α-synuclein levels predict brain atrophy and clinical disease progression. The transformation of α-synuclein into Lewy pathology may occur as a response to biological, toxic, or infectious stressors whose persistence perpetuates the nucleation process, depleting normal α-synuclein and eventually leading to Parkinson's symptoms from neuronal death. We propose testing the loss-of-function synucleinopenia hypothesis by evaluating the clinical and neurodegenerative rescue effect of replenishing the levels of monomeric α-synuclein.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Synucleinopathies/metabolism , Synucleinopathies/pathology , Animals , Brain/metabolism , Brain/pathology , Lewy Bodies/pathology , Lewy Bodies/metabolism
14.
Transl Neurodegener ; 13(1): 16, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38528629

ABSTRACT

Proteinopathy, defined as the abnormal accumulation of proteins that eventually leads to cell death, is one of the most significant pathological features of neurodegenerative diseases. Tauopathies, represented by Alzheimer's disease (AD), and synucleinopathies, represented by Parkinson's disease (PD), show similarities in multiple aspects. AD manifests extrapyramidal symptoms while dementia is also a major sign of advanced PD. We and other researchers have sequentially shown the cross-seeding phenomenon of α-synuclein (α-syn) and tau, reinforcing pathologies between synucleinopathies and tauopathies. The highly overlapping clinical and pathological features imply shared pathogenic mechanisms between the two groups of disease. The diagnostic and therapeutic strategies seemingly appropriate for one distinct neurodegenerative disease may also apply to a broader spectrum. Therefore, a clear understanding of the overlaps and divergences between tauopathy and synucleinopathy is critical for unraveling the nature of the complicated associations among neurodegenerative diseases. In this review, we discuss the shared and diverse characteristics of tauopathies and synucleinopathies from aspects of genetic causes, clinical manifestations, pathological progression and potential common therapeutic approaches targeting the pathology, in the aim to provide a timely update for setting the scheme of disease classification and provide novel insights into the therapeutic development for neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Synucleinopathies , Tauopathies , Humans , Synucleinopathies/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/therapy , Neurodegenerative Diseases/metabolism , tau Proteins/metabolism , Tauopathies/genetics , Tauopathies/complications , Tauopathies/metabolism , Alzheimer Disease/genetics
15.
Brain Behav ; 14(3): e3460, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38494747

ABSTRACT

Rapid eye movement behavior disorder (RBD) is a parasomnia characterized by the loss of skeletal muscle atonia during the rapid eye movement (REM) sleep phase. On the other hand, idiopathic RDB (iRBD) is considered the prelude of the various α-synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies and multiple system atrophy. Consequently, over 40% of patients eventually develop PD. Recent neuroimaging studies utilizing structural magnetic resonance imaging (s-MRI), diffusion-weighted imaging (DWI), and functional magnetic resonance imaging (fMRI) with graph theoretical analysis have demonstrated that patients with iRBD and Parkinson's disease have extensive brain abnormalities. Thus, it is crucial to identify new biomarkers that aid in determining the underlying physiopathology of iRBD group. This review was conducted systematically on the included full-text articles of s-MRI, DWI, and fMRI studies using graph theoretical analysis on patients with iRBD, per the procedures recommended by Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The literature search was conducted through the PubMed and Google scholar databases concentrating on studies from September to January 2022. Based on the three perspectives of integration, segregation, and centrality, the reviewed articles demonstrated that iRBD is associated with segregation disorders in frontal and limbic brain regions. Moreover, this study highlighted the need for additional longitudinal and multicenter studies to better understand the potential of graph metrics as brain biomarkers for identifying the underlying physiopathology of iRBD group.


Subject(s)
Parkinson Disease , REM Sleep Behavior Disorder , Synucleinopathies , Humans , REM Sleep Behavior Disorder/diagnostic imaging , REM Sleep Behavior Disorder/complications , Parkinson Disease/complications , Brain , Biomarkers
16.
Sci Rep ; 14(1): 6239, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38486089

ABSTRACT

The accumulation of α-synuclein (α-Syn) into Lewy bodies is a hallmark of synucleinopathies, a group of neurological disorders that include Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Small oligomers as well as larger fibrils of α-Syn have been suggested to induce cell toxicity leading to a degenerative loss of neurones. A richer understanding of α-Syn aggregation in disease, however, requires the identification of the different α-Syn species and the characterisation of their biochemical properties. We here aimed at a more in-depth characterisation of the α-Syn transgenic mice, Line 62 (L62), and examined the deposition pattern and solubility of human and murine α-Syn in these mice using immunohistochemical and biochemical methods. Application of multiple antibodies confirmed mAb syn204 as the most discriminatory antibody for human α-Syn in L62. Syn204 revealed an intense and widespread immunohistochemical α-Syn labelling in parietal cortex and hippocampus, and to a lower level in basal forebrain and hindbrain regions. The labelled α-Syn represented somatic inclusions as well as processes and synaptic endings. Biochemical analysis revealed a Triton-resistant human α-Syn pool of large oligomers, a second pool of small oligomers that was not resistant to solubilization with urea/Triton. A third SDS-soluble pool of intermediate sized aggregates containing a mixture of both, human and mouse α-Syn was also present. These data suggest that several pools of α-Syn can exist in neurones, most likely in different cellular compartments. Information about these different pools is important for the development of novel disease modifying therapies aimed at α-Syn.


Subject(s)
Parkinson Disease , Synucleinopathies , Animals , Humans , Mice , alpha-Synuclein/metabolism , Antibodies , Mice, Transgenic , Parkinson Disease/metabolism , Solubility
17.
Eur J Pharmacol ; 970: 176505, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38503400

ABSTRACT

Alpha-Synuclein (α-Syn) aggregation is a pathological feature of synucleinopathies, neurodegenerative disorders that include Parkinson's disease (PD). Here, we explored the efficacy of N,N,N',N'-tetraethyl-10H-phenothiazine-3,7-diamine dihydrochloride (LETC), a protein aggregation inhibitor, on α-Syn aggregation. In both cellular models and transgenic mice, α-Syn aggregation was achieved by the overexpression of full-length human α-Syn fused with a signal sequence peptide. α-Syn accumulated in transfected DH60.21 neuroblastoma cells and α-Syn aggregation was inhibited by LETC with an EC50 of 0.066 ± 0.047 µM. Full-length human α-Syn overexpressing Line 62 (L62) mice accumulated neuronal α-Syn that was associated with a decreased motor performance in the open field and automated home cage. LETC, administered orally for 6 weeks at 10 mg/kg significantly decreased α-Syn-positive neurons in multiple brain regions and this resulted in a rescue of movement deficits in the open field in these mice. LETC however, did not improve activity deficits of L62 mice in the home cage environment. The results suggest that LETC may provide a potential disease modification therapy in synucleinopathies through the inhibition of α-Syn aggregation.


Subject(s)
Parkinson Disease , Synucleinopathies , Mice , Humans , Animals , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Synucleinopathies/pathology , Parkinson Disease/metabolism , Mice, Transgenic , Brain/metabolism
18.
Mol Brain ; 17(1): 14, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38444039

ABSTRACT

Synucleinopathies refer to a group of disorders characterized by SNCA/α-synuclein (α-Syn)-containing cytoplasmic inclusions and neuronal cell loss in the nervous system including the cortex, a common feature being cognitive impairment. Still, the molecular pathogenesis of cognitive decline remains poorly understood, hampering the development of effective treatments. Here, we generated induced pluripotent stem cells (iPSCs) derived from familial Parkinson's disease (PD) patients carrying SNCA A53T mutation, differentiating them into cortical neurons by a direct conversion method. Patient iPSCs-derived cortical neurons harboring mutant α-Syn exhibited increased α-Syn-positive aggregates, shorter neurites, and time-dependent vulnerability. Furthermore, RNA-sequencing analysis, followed by biochemical validation, identified the activation of the ERK1/2 and JNK cascades in cortical neurons with SNCA A53T mutation. This result was consistent with a reverted phenotype of neuronal death in cortical neurons when treated with ERK1/2 and JNK inhibitors, respectively. Our findings emphasize the role of ERK1/2 and JNK cascades in the vulnerability of cortical neurons in synucleinopathies, and they could pave the way toward therapeutic advancements for synucleinopathies.


Subject(s)
Synucleinopathies , alpha-Synuclein , Humans , MAP Kinase Signaling System , Neurons , Neurites
19.
Nat Commun ; 15(1): 2642, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531900

ABSTRACT

A key hallmark of Parkinson's disease (PD) is Lewy pathology. Composed of α-synuclein, Lewy pathology is found both in dopaminergic neurons that modulate motor function, and cortical regions that control cognitive function. Recent work has established the molecular identity of dopaminergic neurons susceptible to death, but little is known about cortical neurons susceptible to Lewy pathology or molecular changes induced by aggregates. In the current study, we use spatial transcriptomics to capture whole transcriptome signatures from cortical neurons with α-synuclein pathology compared to neurons without pathology. We find, both in PD and related PD dementia, dementia with Lewy bodies and in the pre-formed fibril α-synucleinopathy mouse model, that specific classes of excitatory neurons are vulnerable to developing Lewy pathology. Further, we identify conserved gene expression changes in aggregate-bearing neurons that we designate the Lewy-associated molecular dysfunction from aggregates (LAMDA) signature. Neurons with aggregates downregulate synaptic, mitochondrial, ubiquitin-proteasome, endo-lysosomal, and cytoskeletal genes and upregulate DNA repair and complement/cytokine genes. Our results identify neurons vulnerable to Lewy pathology in the PD cortex and describe a conserved signature of molecular dysfunction in both mice and humans.


Subject(s)
Lewy Body Disease , Parkinson Disease , Synucleinopathies , Humans , Mice , Animals , alpha-Synuclein/metabolism , Lewy Body Disease/pathology , Parkinson Disease/metabolism , Dopaminergic Neurons/metabolism , Gene Expression Profiling
20.
Neuropharmacology ; 249: 109865, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38342377

ABSTRACT

Protein pathology spreading within the nervous system, accompanies neurodegeneration and a spectrum of motor and cognitive dysfunctions. Currently available therapies against Parkinson's disease and other synucleinopathies are mostly symptomatic and fail to slow the disease progression in the long term. Modification of α-synuclein (αS) aggregation and toxicity of its pathogenic forms is one of the main goals in neuroprotective approach. Since the discovery of lipid component of Lewy bodies, fatty acids became a crucial, yet little explored target for research. MUFAs (monounsaturated fatty acids) are substrates for lipids, such as phospholipids, triglycerides and cholesteryl esters. They regulate membrane fluidity, take part in signal transduction, cellular differentiation and other fundamental processes. αS and MUFA interactions are essential for Lewy body pathology. αS increases levels of MUFAs, mainly oleic acid, which in turn can enhance αS toxicity and aggregation. Thus, reduction of MUFAs synthesis by inhibition of stearoyl-CoA desaturase (SCD) activity could be the new way to prevent aggravation of αS pathology. Due to the limited distribution in peripheral tissues, SCD5 is a potential target in novel therapies and therefore could be an important starting point in search for disease-modifying neuroprotective therapy. Here we summarize facts about physiology and pathology of αS, explain recently discovered lipid-αS interactions, review SCD function and involved mechanisms, present available SCD inhibitors and discuss their pharmacological potential in disease management. Modulation of MUFA synthesis, decreasing αS and lipid toxicity is clearly essential, but unexplored avenue in pharmacotherapy of Parkinson's disease and synucleinopathies.


Subject(s)
Parkinson Disease , Synucleinopathies , Humans , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Stearoyl-CoA Desaturase/metabolism , Fatty Acids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...