Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.445
Filter
1.
Theriogenology ; 226: 286-293, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38954997

ABSTRACT

HT-2 toxin is a type of mycotoxin which is shown to affect gastric and intestinal lesions, hematopoietic and immunosuppressive effects, anorexia, lethargy, nausea. Recently, emerging evidences indicate that HT-2 also disturbs the reproductive system. In this study, we investigated the impact of HT-2 toxin exposure on the organelles of porcine oocytes. Our results found that the abnormal distribution of endoplasmic reticulum increased after HT-2 treatment, with the perturbation of ribosome protein RPS3 and GRP78 expression; Golgi apparatus showed diffused localization pattern and GM130 localization was also impaired, thereby affecting the Rab10-based vesicular transport; Due to the impairment of ribosomes, ER, and Golgi apparatus, the protein supply to lysosomes was hindered, resulting in lysosomal damage, which further disrupted the LC3-based autophagy. Moreover, the results indicated that the function and distribution of mitochondria were also affected by HT-2 toxin, showing with fragments of mitochondria, decreased TMRE and ATP level. Taken together, our study suggested that HT-2 toxin exposure induces damage to the organelles for endomembrane system, which further inhibited the meiotic maturation of porcine oocytes.


Subject(s)
In Vitro Oocyte Maturation Techniques , Oocytes , Animals , Swine , Oocytes/drug effects , In Vitro Oocyte Maturation Techniques/veterinary , T-2 Toxin/toxicity , T-2 Toxin/analogs & derivatives , Female , Golgi Apparatus/drug effects , Endoplasmic Reticulum/drug effects , Mitochondria/drug effects
2.
Ecotoxicol Environ Saf ; 281: 116612, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38896898

ABSTRACT

T-2 toxin is one of trichothecene mycotoxins, which can impair appetite and decrease food intake. However, the specific mechanisms for T-2 toxin-induced anorexia are not fully clarified. Multiple research results had shown that gut microbiota have a significant effect on appetite regulation. Hence, this study purposed to explore the potential interactions of the gut microbiota and appetite regulate factors in anorexia induced by T-2 toxin. The study divided the mice into control group (CG, 0 mg/kg BW T-2 toxin) and T-2 toxin-treated group (TG, 1 mg/kg BW T-2 toxin), which oral gavage for 4 weeks, to construct a subacute T-2 toxin poisoning mouse model. This data proved that T-2 toxin was able to induce an anorexia in mice by increased the contents of gastrointestinal hormones (CCK, GIP, GLP-1 and PYY), neurotransmitters (5-HT and SP), as well as pro-inflammatory cytokines (IL-1ß, IL-6 and TNF-α) in serum of mice. T-2 toxin disturbed the composition of gut microbiota, especially, Faecalibaculum and Allobaculum, which was positively correlated with CCK, GLP-1, 5-HT, IL-1ß, IL-6 and TNF-α, which played a certain role in regulating host appetite. In conclusion, gut microbiota changes (especially an increase in the abundance of Faecalibaculum and Allobaculum) promote the upregulation of gastrointestinal hormones, neurotransmitters, and pro-inflammatory cytokines, which may be a potential mechanism of T-2 toxin-induced anorexia.


Subject(s)
Anorexia , Gastrointestinal Microbiome , T-2 Toxin , Animals , T-2 Toxin/toxicity , Gastrointestinal Microbiome/drug effects , Anorexia/chemically induced , Mice , Cytokines/metabolism , Gastrointestinal Hormones/metabolism , Male
3.
Cells ; 13(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891032

ABSTRACT

The Fusarium fungi is found in cereals and feedstuffs and may produce mycotoxins, which are secondary metabolites, such as the T-2 toxin (T-2). In this work, we explored the hepatotoxicity of T-2 using microfluidic 3D hepatic cultures. The objectives were: (i) exploring the benefits of microfluidic 3D cultures compared to conventional 3D cultures available commercially (Aggrewell plates), (ii) establishing 3D co-cultures of hepatic cells (HepG2) and stellate cells (LX2) and assessing T-2 exposure in this model, (iii) characterizing the induction of metabolizing enzymes, and (iv) evaluating inflammatory markers upon T-2 exposure in microfluidic hepatic cultures. Our results demonstrated that, in comparison to commercial (large-volume) 3D cultures, spheroids formed faster and were more functional in microfluidic devices. The viability and hepatic function decreased with increasing T-2 concentrations in both monoculture and co-cultures. The RT-PCR analysis revealed that exposure to T-2 upregulates the expression of multiple Phase I and Phase II hepatic enzymes. In addition, several pro- and anti-inflammatory proteins were increased in co-cultures after exposure to T-2.


Subject(s)
Liver , Spheroids, Cellular , T-2 Toxin , T-2 Toxin/toxicity , Humans , Hep G2 Cells , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Liver/drug effects , Liver/pathology , Liver/metabolism , Coculture Techniques , Microfluidics/methods , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Cell Survival/drug effects
4.
Toxicology ; 506: 153858, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38825033

ABSTRACT

This study aims to investigate the impact of T-2 toxin on the regulation of downstream target genes and signaling pathways through exosome-released miRNA in the development of cartilage damage in Kashin-Beck disease (KBD). Serum samples from KBD patients and supernatant from C28/I2 cells treated with T-2 toxin were collected for the purpose of comparing the differential expression of exosomal miRNA using absolute quantitative miRNA-seq. Target genes of differential exosomal miRNAs were identified using Targetscan and Miranda databases, followed by GO and KEGG enrichment analyses. Validation of key indicators of chondrocyte injury in KBD was conducted using Real-time quantitative PCR (RT-qPCR) and Immunohistochemical staining (IHC). A total of 20 exosomal miRNAs related to KBD were identified in serum, and 13 in chondrocytes (C28/I2). The identified exosomal miRNAs targeted 48,459 and 60,612 genes, primarily enriched in cell organelles and membranes, cell differentiation, and cytoskeleton in the serum, and the cytoplasm and nucleus, metal ion binding in chondrocyte (C28/I2). The results of the KEGG enrichment analysis indicated that the Ras signaling pathway may play a crucial role in the pathogenesis of KBD. Specifically, the upregulation of hsa-miR-181a-5p and hsa-miR-21-3p, along with the downregulation of hsa-miR-152-3p and hsa-miR-186-5p, were observed. Additionally, T-2 toxin intervention led to a significant downregulation of RALA, REL, and MAPK10 expression. Furthermore, the protein levels of RALA, REL, and MAPK10 were notably decreased in the superficial and middle layers of cartilage tissues from KBD. The induction of differential expression of chondrocyte exosomal miRNAs by T-2 toxin results in the collective regulation of target genes RALA, REL, and MAPK10, ultimately mediating the Ras signaling pathway and causing a disruption in chondrocyte extracellular matrix metabolism, leading to chondrocyte injury.


Subject(s)
Chondrocytes , Exosomes , MicroRNAs , Signal Transduction , T-2 Toxin , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Exosomes/metabolism , Exosomes/drug effects , Exosomes/genetics , Signal Transduction/drug effects , T-2 Toxin/toxicity , Male , Kashin-Beck Disease/chemically induced , Kashin-Beck Disease/genetics , Kashin-Beck Disease/pathology , Kashin-Beck Disease/metabolism , Female , Middle Aged , ras Proteins/metabolism , ras Proteins/genetics , Adult , Cell Line
5.
Chemosphere ; 361: 142388, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38777202

ABSTRACT

Mycotoxins and pesticides frequently coexist in agricultural commodities on a global scale. The potential transgenerational consequences induced by these substances pose a significant threat to human health. However, there is a lack of data concerning the effects of co-contamination by these chemicals in the F1 generation following parental exposure. This investigation delved into the mixture effects of T-2 toxin (T-2) and epoxiconazole (EPO) on the offspring of zebrafish (Danio rerio). The findings revealed that exposure across generations to a combination of T-2 and EPO resulted in toxicity in the larvae of the F1 generation. This was demonstrated by a significant increase in the levels or activities of malondialdehyde (MDA), thyroxine (T4), Caspase3, and cas9, along with a decrease in the levels of cyp19a, ERα, and ERß. These outcomes suggested that cross-generational exposure to T-2 and EPO in D. rerio disrupted oxidative balance, induced cell apoptosis, and affected the endocrine system. Moreover, these effects were magnified when the F1 generation was continuously exposed to these compounds. Notably, these adverse effects could persist in subsequent generations without additional exposure. This study underscored the potential dangers associated with the simultaneous presence of T-2 and EPO on the development of fish offspring and the resulting environmental hazards to aquatic ecosystems. These findings emphasized the significant health risks posed by cross-generational exposure and highlighted the need for additional legislative measures to address these concerns.


Subject(s)
T-2 Toxin , Triazoles , Zebrafish , Animals , T-2 Toxin/toxicity , Triazoles/toxicity , Water Pollutants, Chemical/toxicity , Larva/drug effects , Female , Apoptosis/drug effects , Malondialdehyde/metabolism , Oxidative Stress/drug effects , Epoxy Compounds
6.
Toxicon ; 245: 107767, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768830

ABSTRACT

Kashin-Beck Disease (KBD), an osteoarticular disorder, is potentially influenced by several factors, among which selenium deficiency and HT-2 mycotoxin exposure are considered significant. However, the combined effect of these factors on femoral development remains unclear, Conducted over eight weeks on forty-eight male mice categorized into control, selenium-deficient, and HT-2 toxin-exposed groups, including dual-exposure sets, this study comprehensively monitored body weight, bone metabolism markers, and cellular health. Employing biomechanical analysis, micro-computed tomography (micro-CT), and transmission electron microscopy (TEM), we unearthed a reduction in body weight due to HT-2 toxin alone, with selenium deficiency exacerbating these effects synergistically. Our results unveil that both factors independently affect bone metabolism, yet their confluence leads to a pronounced degradation of bone health parameters, including alterations in calcium, phosphorus, and vitamin D levels, alongside marked changes in osteoblast and osteoclast activity and bone cell structures. The notable damage to femoral cortical and trabecular architectures underscores the perilous interplay between dietary selenium absence and HT-2 toxin presence, necessitating a deeper understanding of their separate and joint effects on bone integrity. These discoveries underscore the imperative for a nuanced approach to toxicology research and public health policy, highlighting the pivotal influence of environmental and nutritional factors on skeletal well-being.


Subject(s)
Femur , Selenium , T-2 Toxin , Animals , Selenium/deficiency , Mice , Male , T-2 Toxin/toxicity , Kashin-Beck Disease , X-Ray Microtomography
7.
Ecotoxicol Environ Saf ; 279: 116503, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38810288

ABSTRACT

Kashin-Beck disease (KBD) is an endemic, environmentally associated cartilage disease. Previous studies have shown that the environmental suspected pathogenic factors of KBD, T-2 toxin and low selenium, are involved in the regulation of inflammation, oxidative stress and autophagy in some tissues and organs. In cartilage diseases, the level of cellular autophagy determines the fate of the chondrocytes. However, whether autophagy is involved in KBD cartilage lesions, and the role of low selenium and T-2 toxins in KBD cartilage injury and autophagy are still unclear. This work took the classical AMPK/mTOR/ULK1 autophagy regulatory pathway as the entry point to clarify the relationship between the environmental suspected pathogenic factors and chondrocyte autophagy. Transmission electron microscopy was used to observe the autophagy of chondrocytes in KBD patients. qRT-PCR and western blot were used to analyze the expression of AMPK/mTOR/ULK1 pathway and autophagy markers. The rat model of KBD was established by low selenium and T-2 toxin, the autophagy in rat cartilage was detected after 4- and 12-week interventions. Chondrocyte autophagy was found in KBD, and the AMPK/mTOR/ULK1 pathway was down-regulated. In the rat model, the pathway showed an up-regulated trend when low selenium and T-2 toxin, were treated for a short time or low concentration, and autophagy level increased. However, when low selenium and T-2 toxin were treated for a long time or at high concentrations, the pathway showed a down-regulated trend, and the autophagy level was reduced and even defective. In conclusion, in the process of KBD cartilage lesion, chondrocyte autophagy level may increase in the early stage, and decrease in the late stage with the progression of lesion. Low selenium and T-2 toxins may affect autophagy by AMPK/mTOR/ULK1 pathway.


Subject(s)
AMP-Activated Protein Kinases , Autophagy-Related Protein-1 Homolog , Autophagy , Chondrocytes , Kashin-Beck Disease , Selenium , T-2 Toxin , TOR Serine-Threonine Kinases , T-2 Toxin/toxicity , T-2 Toxin/analogs & derivatives , Autophagy/drug effects , Kashin-Beck Disease/pathology , TOR Serine-Threonine Kinases/metabolism , Animals , Autophagy-Related Protein-1 Homolog/metabolism , Male , Chondrocytes/drug effects , Chondrocytes/pathology , Humans , AMP-Activated Protein Kinases/metabolism , Rats , Female , Middle Aged , Rats, Sprague-Dawley , Signal Transduction/drug effects , Adult , Intracellular Signaling Peptides and Proteins
8.
Talanta ; 276: 126203, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38718648

ABSTRACT

T-2 toxin, a hazardous mycotoxin often present in cereals and products based on cereals, poses a substantial risk to humans and animals due to its high toxicity. The development of uncomplicated, quick and highly sensitive methods for detecting T-2 toxin is imperative. In this work, a portable sensing system was constructed using water column height as a readout device in combination with a controlled release system, which allows for an accurate quantitative analysis of T-2 toxin without the need for expensive instrumentation or skilled technicians. Hyaluronic acid (HA) hydrogel was constructed by double cross-linked DNA/aptamer hybrids with polyethyleneimine (PEI) and embedded with platinum nanoparticles (Pt NPs). The aptamer specifically bound to T-2 toxin in its presence, resulting in the disruption of the hydrogel and subsequent release of the Pt NPs. These Pt NPs were later mixed with a solution of H2O2 in a confined reaction flask, leading to the decomposition of H2O2 into O2. A glass capillary tube containing a column of red water had been inserted into the cap of the reaction flask, and the low solubility of O2 led to an increase in pressure within the reaction unit, causing the red water column to rise. There is a good linear correlation between the height of the capillary liquid level and the T-2 toxin concentration in the range of 20 ng/mL to 6 µg/mL. The system has been successfully used to detect T-2 toxin in samples of barley tea and corn.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Platinum , T-2 Toxin , T-2 Toxin/analysis , Biosensing Techniques/methods , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , Platinum/chemistry , Water/chemistry , DNA/chemistry , DNA/analysis , Hydrogels/chemistry , Limit of Detection , Hyaluronic Acid/chemistry , Polyethyleneimine/chemistry
9.
Nutrients ; 16(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38794687

ABSTRACT

It has been strongly suggested that selenium deficiency and T-2 toxin contamination have a strong relationship with the occurrence and development of Kashin-Beck disease (KBD). In order to provide information for understanding the high prevalence of KBD in Tibet, this study collected the responses to a cubital venous blood and dietary questionnaire of 125 subjects including 75 KBD patients and 50 healthy controls in a KBD-prevalent county (Luolong County) in Tibet, China. A total of 10 household local families were randomly selected in this area, and local diet samples of brick tea, Zanba powder, milk residue, and hulless Barley were collected from these residents. Selenium content in blood was detected by inductively coupled plasma mass spectrometry (ICP-MS). The T-2 toxin contamination level in food sample was assayed using an ELISA kit. The selenium levels of patients and controls were 42.0 ± 19.8 and 56.06 ± 22.4 µg/L, respectively. The serum selenium level in controls was higher than that in patients, but there was no significant difference, and the serum selenium level both in patients and controls in Tibet was lower than the normal range. The results of the dietary survey showed that the number of respondents who consumed butter tea was large; 46.67% of patients indicated that they drank buttered tea every day, which was significantly higher than in controls. The contents of T-2 toxin in Zanba powder, milk residue, hulless barley and drinking water samples were below the detection limit (0.05 µg/kg); this result was labeled Tr. Unexpectedly, the contents of T-2 toxin in brick tea were higher, with average levels of 424 ± 56 µg/kg in Detong village and 396 ± 24 µg/kg in Langcuo village. For the first time, we report the presence of an extremely high concentration of T-2 toxin in brick tea of Tibet.


Subject(s)
Kashin-Beck Disease , Selenium , T-2 Toxin , Humans , Tibet/epidemiology , Kashin-Beck Disease/epidemiology , Kashin-Beck Disease/blood , T-2 Toxin/blood , T-2 Toxin/analogs & derivatives , T-2 Toxin/analysis , Female , Male , Selenium/blood , Adult , Middle Aged , Prevalence , Beverages , Food Contamination/analysis , Tea/chemistry , Diet/statistics & numerical data , Case-Control Studies , Diet Surveys
10.
Genes (Basel) ; 15(5)2024 05 01.
Article in English | MEDLINE | ID: mdl-38790208

ABSTRACT

T-2 toxin (T-2), an A-type mono mycotoxin produced by various Fusarium species, disrupts DNA/RNA and protein synthesis upon entering the body, resulting in pathological conditions in various tissues/organs and posing a significant threat to human and animal health. However, the mechanisms underlying its toxicity remain unclear. With the goal of learning how T-2 affects reproduction in animals, we utilized primary porcine ovarian granulosa cells (pGCs) as a carrier in vitro and constructed concentration models for analyzing cell morphology and RNA-sequencing (RNA-seq). Our findings showed that T-2 could influence pGCs morphology, induce cell cycle arrest, and promote apoptosis in a dose-dependent manner. The results of RNA-seq analyses indicated that a total of 8216 genes exhibited significant differential expression (DEG) following T-2 treatment, of which 4812 were observed to be down-regulated and 3404 were up-regulated. The DEGs following T-2 toxin treatment of pGCs had a notable impact on many metabolic pathways such as PI3K-Akt, Ras, MAPK, and apoptosis, which in turn altered important physiological processes. Gene set enrichment analysis (GSEA) indicated that the differences in the harmful effects of T-2 might be caused by the varying control of cellular processes and the pathway responsible for steroid metabolism. These results present further insights regarding the mechanism of T-2 action on sow reproductive toxicity, enhance our understanding of T-2 reproductive toxicological effects, and lay a theoretical foundation for the judicious prevention of T-2-induced reproductive toxicity.


Subject(s)
Apoptosis , Granulosa Cells , T-2 Toxin , Animals , T-2 Toxin/toxicity , Female , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Apoptosis/drug effects , Swine , Cells, Cultured , Cell Cycle Checkpoints/drug effects , Signal Transduction/drug effects
11.
Food Chem Toxicol ; 189: 114759, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796086

ABSTRACT

T-2 toxin is a highly cardiotoxic environmental contaminant. Selenium can uphold the cardiovascular system's functionality. Selenium insufficiency is common. The aim of this study was to elucidate the effects of low selenium diet alone or in combination with T-2 toxin on myocardial tissue damage. Thirty-two Sprague-Dawley rats of 3 weeks of age were randomized into control, low selenium diet, low selenium diet combined with T-2 toxin groups (at doses of 10 ng/g and 100 ng/g body weight) for 12-weeks intervention. Pathohistology and ultrastructural changes in cardiac tissue were observed. Changes in cardiac metabolites were analyzed using untargeted metabolomics. The findings demonstrated that cardiac tissue abnormalities, interstitial bleeding, inflammatory cell infiltration, and mitochondrial damage can be brought on by low selenium diet alone or in combination with the T-2 toxin. A low selenium diet alone or in combination with the T-2 toxin affected cardiac metabolic profiles and resulted in aberrant modifications in many metabolic pathways, including the metabolism of amino acids, cholesterol, and thiamine. Accordingly, low selenium diet and T-2 toxin may have a synergistic effect. Our findings provide fresh insights into the processes of cardiac injury by revealing the effects of low selenium diet and T-2 toxin on cardiac metabolism.


Subject(s)
Metabolomics , Myocardium , Rats, Sprague-Dawley , Selenium , T-2 Toxin , Animals , T-2 Toxin/toxicity , Selenium/pharmacology , Selenium/administration & dosage , Male , Rats , Myocardium/metabolism , Myocardium/pathology , Diet , Heart/drug effects
12.
Food Chem Toxicol ; 189: 114724, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734200

ABSTRACT

Notch signaling regulates cartilage formation and homeostasis. Kashin-Beck Disease (KBD), an endemic osteochondropathy, is characterized by severe cartilage degradation. The etiology of KBD is related to the exposure of HT-2 toxin, a mycotoxin and primary metabolite of T-2 toxin. This study aims to explore the role of HT-2 toxin in the Notch signaling regulation and extracellular matrix (ECM) metabolism of hiPSCs-Chondrocytes. Immunohistochemistry and qRT-PCR were employed to investigate the expression of Notch pathway molecules in KBD articular cartilage and primary chondrocytes. hiPSCs-Chondrocytes, derived from hiPSCs, were treated with 100 ng/mL HT-2 toxin and the γ-secretase inhibitor (DAPT) for 48h, respectively. The markers related to the Notch signaling pathway and ECM were assessed using qRT-PCR and Western blot. Notch pathway dysregulation was prominent in KBD cartilage. HT-2 toxin exposure caused cytotoxicity in hiPSCs-Chondrocytes, and activated Notch signaling by increasing the mRNA and protein levels of NOTCH1 and HES1. HT-2 toxin also upregulated ECM catabolic enzymes and downregulated ECM components (COL2A1 and ACAN), indicating ECM degradation. DAPT-mediated Notch signaling inhibition suppressed the mRNA and protein level of ADAMTS5 expression while enhancing ECM component expression in hiPSCs-Chondrocytes. This study suggests that HT-2 toxin may induce ECM degradation in hiPSCs-Chondrocytes through activating Notch signaling.


Subject(s)
Chondrocytes , Extracellular Matrix , Induced Pluripotent Stem Cells , Receptors, Notch , Signal Transduction , T-2 Toxin , Humans , Signal Transduction/drug effects , Chondrocytes/drug effects , Chondrocytes/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , T-2 Toxin/toxicity , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Receptors, Notch/metabolism , Receptors, Notch/genetics , Kashin-Beck Disease/metabolism , Cartilage, Articular/metabolism , Cartilage, Articular/cytology , Cartilage, Articular/drug effects , Transcription Factor HES-1/metabolism , Transcription Factor HES-1/genetics , Cells, Cultured
13.
Food Chem Toxicol ; 188: 114630, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604577

ABSTRACT

In this study, we conducted a systematic assessment of the effectsof deoxynivalenol (DON) and T-2 mycotoxins (T-2) on the developmental processes and structural integrity of murine femurs, considering both the isolated and synergistic effects of these toxins. To this end, we divided 72 male mice into nine groups, each subjected to varying dosages of T-2, DON, or their combinations. Over a four-week experimental period, meticulous monitoring was undertaken regarding the mice's body weight, biochemical markers of bone formation and resorption, and the activity of relevant cells. To comprehensively evaluate alterations in bone structure, we employed biomechanical analysis, micro-computed tomography (micro-CT), and transmission electron microscopy.Our findings unveiled a significant revelation: the mice exhibited a dose-dependent decrease in body weight upon exposure to individual mycotoxins, while the combined use of these toxins manifested an atypical antagonistic effect. Furthermore, we observed variations in the levels of calcium, phosphorus, and vitamin D, as well as adjustments in the activities of osteoblasts and osteoclasts, all intricately linked to the dosage and ratio of the toxins. Alterations in biomechanical properties were also noted to correlate with the dosage and combination of toxins. Analyses via micro-CT and transmission electron microscopy further corroborated the substantial impact of toxin dosage and combinations on both cortical and trabecular bone structures.In summation, our research unequivocally demonstrates the dose- and ratio-dependent detrimental effects of DON and T-2 mycotoxins on the growth and structural integrity of murine femurs. These insights accentuate the importance of a profound understanding of the potential risks these toxins pose to bone health, offering pivotal guidance for future toxicological research and public health preventative strategies.


Subject(s)
Femur , T-2 Toxin , Trichothecenes , X-Ray Microtomography , Animals , Trichothecenes/toxicity , Male , Femur/drug effects , Mice , T-2 Toxin/toxicity , Osteoblasts/drug effects , Osteogenesis/drug effects , Osteoclasts/drug effects , Body Weight/drug effects
14.
Toxicon ; 243: 107718, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38614246

ABSTRACT

Mycotoxins are toxic, fungal secondary metabolites that contaminate agricultural commodities, food, and feed. Among them, T-2, HT-2, and diacetoxyscirpenol (DAS; the major type A trichothecene) are primarily produced from Fusarium species. These mycotoxins exert numerous toxicological effects in animals and humans, such as dermatotoxicity, haematotoxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, and immunotoxicity. In the present study, human Jurkat T cells were used as a model to investigate apoptotic cell death induced by T-2, HT-2, and DAS. The results showed that T-2, HT-2, and DAS decreased cell viability and increased production of Reactive Oxygen Species in a time- and dose-dependency. Based on their IC50 values, they could be ranked in decreasing order of cytotoxicity as T-2 > HT-2 > DAS. All tested mycotoxins caused DNA fragmentation, up-regulated cytochrome C, caspase 3, and caspase 9 mRNA levels, and down-regulated the relative expression of Bcl-2 and caspase 8. The effects of these trichothecenes on apoptosis were determined based on flow cytometry. At the IC50 concentrations, the percentages of apoptotic cells were significantly higher than for the controls. Taken together, these data suggested that T-2, HT-2, and DAS could induce apoptosis through the mitochondrial apoptotic pathway.


Subject(s)
Apoptosis , Cell Survival , Reactive Oxygen Species , T-2 Toxin , Trichothecenes , Humans , Trichothecenes/toxicity , Jurkat Cells , T-2 Toxin/toxicity , T-2 Toxin/analogs & derivatives , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , DNA Fragmentation/drug effects , Cytochromes c/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism
15.
Toxicon ; 243: 107735, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38670500

ABSTRACT

T-2 toxin is one of the most toxic mycotoxins. People are primarily exposed to T-2 toxin through the consumption of spoiled food, typically over extended periods and at low doses. T-2 toxin can cause damage to articular cartilage. However, the exact mechanism is not fully understood. In this experiment, 36 male rats were divided into a control group, a solvent control group, and a T-2 toxin group. The rats in the T-2 toxin group were orally administered the toxin at a dosage of 100 ng/g BW/Day. The damage to articular cartilage and key proteins associated with the autophagy process and the HIF-1α/AMPK signaling axis was assessed at 4, 8, 12, and 16 weeks. Our findings indicate that T-2 toxin-induced damage to articular cartilage in rats coincided with impaired autophagy linked to the HIF-1α/AMPK signaling pathway. This study offers novel insights into the precise mechanism underlying T-2 toxin-induced damage to articular cartilage.


Subject(s)
AMP-Activated Protein Kinases , Autophagy , Cartilage, Articular , Hypoxia-Inducible Factor 1, alpha Subunit , Rats, Sprague-Dawley , Signal Transduction , T-2 Toxin , Animals , T-2 Toxin/toxicity , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Male , Autophagy/drug effects , Signal Transduction/drug effects , Rats , AMP-Activated Protein Kinases/metabolism
16.
Toxins (Basel) ; 16(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38668591

ABSTRACT

Trichothecenes produced by Fusarium species are commonly detected in oats. However, the ratios of the concentrations of free trichothecenes and their conjugates and how they are impacted by different interacting environmental conditions are not well documented. This study aims to examine the effect of water activity (0.95 and 0.98 aw) and temperature (20 and 25 °C) stress on the production of T-2 and HT-2 toxins, deoxynivalenol and their conjugates, as well as diacetoxyscirpenol (DAS). Multiple mycotoxins were detected using liquid chromatography-tandem mass spectrometry from 64 contaminated oat samples. The highest concentrations of HT-2-glucoside (HT-2-Glc) were observed at 0.98 aw and 20 °C, and were higher than other type A trichothecenes in the natural oats' treatments. However, no statistical differences were found between the mean concentrations of HT-2-Glc and HT-2 toxins in all storage conditions analysed. DAS concentrations were generally low and highest at 0.95 aw and 20 °C, while deoxynivalenol-3-glucoside levels were highest at 0.98 aw and 20 °C in the naturally contaminated oats. Emerging mycotoxins such as beauvericin, moniliformin, and enniatins mostly increased with a rise in water activity and temperature in the naturally contaminated oats treatment. This study reinforces the importance of storage aw and temperature conditions in the high risk of free and modified toxin contamination of small cereal grains.


Subject(s)
Avena , Food Contamination , Fusarium , Glucosides , T-2 Toxin/analogs & derivatives , Trichothecenes , Fusarium/metabolism , Avena/microbiology , Avena/chemistry , Trichothecenes/analysis , Glucosides/analysis , Food Contamination/analysis , Temperature , Mycotoxins/analysis , T-2 Toxin/analysis
17.
Environ Int ; 185: 108537, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38452463

ABSTRACT

This study aimed to present the occurrence of sixteen mycotoxins in 105 meat alternatives based on wheat, legumes, and vegetables from Italy. The targeted mycotoxins were aflatoxins (AFB1, AFB2, AFG1, AFG2), fumonisins B1 and B2 (FB1, FB2), alternariol (AOH), alternariol monomethyl ether (AME), tentoxin (TEN), ochratoxin A (OTA), zearalenone (ZEN), T-2/HT-2 toxin, deoxynivalenol (DON), enniatin B (ENNB), and beauvericin (BEA). The occurrence of mycotoxins was between 0% (AFB2) - 97.4% (ENNB). Mycotoxin co-occurrence varied from binary combinations up to mixtures of twelve. To assess the dietary exposure and potential health risks we simulated the replacement of meat consumption for Italian consumers with meat alternatives. The cumulative exposure to Alternaria mycotoxins and trichothecenes indicated a potential health risk while the exposure to aflatoxins and ochratoxin A indicated a potential health concern related to liver and renal cancer in the model scenario. Moreover, we estimated the risk of liver cancer from exposure to AFB1 and quantified the potential burden using Disability-Adjusted Life Years (DALYs). Luckily, the potential risk of liver cancer was low between 0 and 0.05/100,000 individuals with an associated burden of disease of 0.83 DALYs/100,000 individuals. Taking into consideration the presence of meat alternatives on the food market and the ongoing shift towards plant-based diets there is a need for continuous monitoring to keep the occurrence at safe levels. More attention is needed from the regulatory side for policymakers to consider the legislations of mycotoxins in meat alternatives.


Subject(s)
Aflatoxins , Liver Neoplasms , Mycotoxins , T-2 Toxin , Humans , Mycotoxins/adverse effects , Dietary Exposure/adverse effects , Meat Substitutes , Food Contamination/analysis , Cost of Illness
18.
Toxins (Basel) ; 16(3)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38535820

ABSTRACT

In the context of nephrotoxic risks associated with environmental contaminants, this study focused on the impact of mycotoxin exposure on the renal health of laying hens, with particular attention to oxidative stress pathways. Sixty laying hens were assigned to three groups-a control group (CON), a low-dose mycotoxin group (LOW), and a high-dose mycotoxin group (HIGH)-and monitored for 72 h. Mycotoxin contamination involved T-2/HT-2 toxin, DON/3-AcDON/15-AcDON, and FB1 at their EU-recommended levels (low mix) and at double doses (high mix). Clinical assessments revealed no signs of toxicity or notable weight changes. Analysis of the glutathione redox system parameters demonstrated that the reduced glutathione content was lower than that in the controls at 48 h and higher at 72 h. Glutathione peroxidase activity increased in response to mycotoxin exposure. In addition, the gene expression patterns of key redox-sensitive pathways, including Keap1-Nrf2-ARE and the AhR pathway, were examined. Notably, gene expression profiles revealed dynamic responses to mycotoxin exposure over time, underscoring the intricate interplay of redox-related mechanisms in the kidney. This study sheds light on the early effects of mycotoxin mixtures on laying hens' kidneys and their potential for oxidative stress.


Subject(s)
Fumonisins , Mycotoxins , T-2 Toxin , Trichothecenes , Animals , Female , Kelch-Like ECH-Associated Protein 1 , Chickens , NF-E2-Related Factor 2 , Oxidative Stress , Kidney , Glutathione
19.
Talanta ; 273: 125971, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38521020

ABSTRACT

T-2 is one of the most potent cytotoxic food-borne mycotoxins. In this work, we have developed and characterized an electrochemical microfluidic immunosensor for T-2 toxin quantification in wheat germ samples. T-2 toxin detection was carried out using a competitive immunoassay method based on monoclonal anti-T-2 antibodies immobilized on the poly(methyl methacrylate) (PMMA) microfluidic central channel. The platinum wire working electrode at the end of the channel was in situ modified by a single-step electrodeposition procedure with reduced graphene oxide (rGO)-nanoporous gold (NPG). T-2 toxin in the sample was allowed to compete with T-2-horseradish peroxidase (HRP) conjugated for the specific recognizing sites of immobilized anti-T-2 monoclonal antibodies. The HRP, in the presence of hydrogen peroxide (H2O2), catalyzes the oxidation of 4-tert-butylcatechol (4-TBC), whose back electrochemical reduction was detected on the nanostructured electrode at -0.15 V. Thus, at low T-2 concentrations in the sample, more enzymatically conjugated T-2 will bind to the capture antibodies, and, therefore, a higher current is expected. The detection limits found for electrochemical immunosensor, and commercial ELISA procedure were 0.10 µg kg-1 and 10 µg kg-1, and the intra- and inter-assay coefficients of variation were below 5.35% and 6.87%, respectively. Finally, our microfluidic immunosensor to T-2 toxin will significantly contribute to faster, direct, and secure in situ analysis in agricultural samples.


Subject(s)
Biosensing Techniques , Graphite , Metal Nanoparticles , Mycotoxins , Nanopores , T-2 Toxin , Graphite/chemistry , Immunoassay/methods , Microfluidics , Gold/chemistry , Biosensing Techniques/methods , Hydrogen Peroxide/chemistry , Electrochemical Techniques/methods , Limit of Detection , Metal Nanoparticles/chemistry
20.
Sci Rep ; 14(1): 5865, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38467671

ABSTRACT

The present study assessed the ability of Trichoderma to combat F. sporotrichioides, focusing on their antagonistic properties. Tests showed that Trichoderma effectively inhibited F. sporotrichioides mycelial growth, particularly with T. atroviride strains. In co-cultures on rice grains, Trichoderma almost completely reduced the biosynthesis of T-2 and HT-2 toxins by Fusarium. T-2 toxin-α-glucoside (T-2-3α-G), HT-2 toxin-α-glucoside (HT-2-3α-G), and HT-2 toxin-ß-glucoside (HT-2-3ß-G) were observed in the common culture medium, while these substances were not present in the control medium. The study also revealed unique metabolites and varying metabolomic profiles in joint cultures of Trichoderma and Fusarium, suggesting complex interactions. This research offers insights into the processes of biocontrol by Trichoderma, highlighting its potential as a sustainable solution for managing cereal plant pathogens and ensuring food safety.


Subject(s)
Fusarium , T-2 Toxin , T-2 Toxin/analogs & derivatives , Trichoderma , T-2 Toxin/metabolism , Fusarium/metabolism , Trichoderma/metabolism , Glycosylation , Edible Grain/metabolism , Glucosides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL