Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.696
Filter
1.
FASEB J ; 38(10): e23661, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38733310

ABSTRACT

Itching is an aversive somatosensation that triggers the desire to scratch. Transient receptor potential (TRP) channel proteins are key players in acute and chronic itch. However, whether the modulatory effect of fibroblast growth factor 13 (FGF13) on acute and chronic itch is associated with TRP channel proteins is unclear. Here, we demonstrated that conditional knockout of Fgf13 in dorsal root ganglion neurons induced significant impairment in scratching behaviors in response to acute histamine-dependent and chronic dry skin itch models. Furthermore, FGF13 selectively regulated the function of the TRPV1, but not the TRPA1 channel on Ca2+ imaging and electrophysiological recordings, as demonstrated by a significant reduction in neuronal excitability and current density induced by TRPV1 channel activation, whereas TRPA1 channel activation had no effect. Changes in channel currents were also verified in HEK cell lines. Subsequently, we observed that selective modulation of TRPV1 by FGF13 required its microtubule-stabilizing effect. Furthermore, in FGF13 knockout mice, only the overexpression of FGF13 with a tubulin-binding domain could rescue TRP channel function and the impaired itch behavior. Our findings reveal a novel mechanism by which FGF13 is involved in TRPV1-dependent itch transduction and provide valuable clues for alleviating pathological itch syndrome.


Subject(s)
Fibroblast Growth Factors , Mice, Knockout , Microtubules , Pruritus , TRPV Cation Channels , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Pruritus/metabolism , Pruritus/genetics , Animals , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Mice , Humans , HEK293 Cells , Microtubules/metabolism , Ganglia, Spinal/metabolism , Male , Mice, Inbred C57BL , TRPA1 Cation Channel/metabolism , TRPA1 Cation Channel/genetics
2.
Nihon Yakurigaku Zasshi ; 159(3): 165-168, 2024.
Article in Japanese | MEDLINE | ID: mdl-38692881

ABSTRACT

Molecular oxygen suffices the ATP production required for the survival of us aerobic organisms. But it is also true that oxygen acts as a source of reactive oxygen species that elicit a spectrum of damages in living organisms. To cope with such intrinsic ambiguity of biological activity oxygen exerts, aerobic mechanisms are equipped with an exquisite adaptive system, which sensitively detects partial pressure of oxygen within the body and controls appropriate oxygen supply to the tissues. Physiological responses to hypoxia are comprised of the acute and chronic phases, in the former of which the oxygen-sensing remains controversial particularly from mechanistic points of view. Recently, we have revealed that the prominently redox-sensitive cation channel TRPA1 plays key roles in oxygen-sensing mechanisms identified in the peripheral tissues and the central nervous system. In this review, we summarize recent development of researches on oxygen-sensing mechanisms including that in the carotid body, which has been recognized as the oxygen receptor organ central to acute oxygen-sensing. We also discuss how ubiquitously the TRPA1 contributes to the mechanisms underlying the acute phase of adaptation to hypoxia.


Subject(s)
Oxygen , TRPA1 Cation Channel , Transient Receptor Potential Channels , TRPA1 Cation Channel/metabolism , Humans , Oxygen/metabolism , Animals , Transient Receptor Potential Channels/metabolism , Hypoxia/metabolism , Calcium Channels/metabolism , Nerve Tissue Proteins/metabolism , Reactive Oxygen Species/metabolism , Carotid Body/metabolism
3.
J Histochem Cytochem ; 72(5): 275-287, 2024 May.
Article in English | MEDLINE | ID: mdl-38725415

ABSTRACT

The TRPA1 ion channel is a sensitive detector of reactive chemicals, found primarily on sensory neurons. The phenotype exhibited by mice lacking TRPA1 suggests its potential as a target for pharmacological intervention. Antibody-based detection for distribution analysis is a standard technique. In the case of TRPA1, however, there is no antibody with a plausible validation in knockout animals or functional studies, but many that have failed in this regard. To this end we employed the single molecule in situ hybridization technique RNAscope on sensory neurons immediately after detection of calcium responses to the TRPA1 agonist allyl isothiocyanate. There is a clearly positive correlation between TRPA1 calcium imaging and RNAscope detection (R = 0.43), although less than what might have been expected. Thus, the technique of choice should be carefully considered to suit the research question. The marginal correlation between TRPV1 RNAscope and the specific agonist capsaicin indicates that such validation is advisable for every RNAscope target. Given the recent description of a long-awaited TRPA1 reporter mouse, TRPA1 RNAscope detection might still have its use cases, for detection of RNA at particular sites, for example, defined structurally or by other molecular markers.


Subject(s)
Calcium , Isothiocyanates , TRPA1 Cation Channel , Animals , TRPA1 Cation Channel/metabolism , TRPA1 Cation Channel/genetics , Isothiocyanates/pharmacology , Mice , Calcium/metabolism , Transient Receptor Potential Channels/metabolism , Transient Receptor Potential Channels/genetics , Transient Receptor Potential Channels/agonists , Capsaicin/pharmacology , In Situ Hybridization , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/agonists , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/drug effects , Mice, Inbred C57BL , Calcium Channels/metabolism , Calcium Channels/genetics , Male
4.
Cell Mol Life Sci ; 81(1): 187, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635081

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) poses significant challenges due to limited treatment options despite its complex pathogenesis involving cellular and molecular mechanisms. This study investigated the role of transient receptor potential ankyrin 1 (TRPA1) channels in regulating M2 macrophage polarization in IPF progression, potentially offering novel therapeutic targets. Using a bleomycin-induced pulmonary fibrosis model in C57BL/6J mice, we assessed the therapeutic potential of the TRPA1 inhibitor HC-030031. TRPA1 upregulation was observed in fibrotic lungs, correlating with worsened lung function and reduced survival. TRPA1 inhibition mitigated fibrosis severity, evidenced by decreased collagen deposition and restored lung tissue stiffness. Furthermore, TRPA1 blockade reversed aberrant M2 macrophage polarization induced by bleomycin, associated with reduced Smad2 phosphorylation in the TGF-ß1-Smad2 pathway. In vitro studies with THP-1 cells treated with bleomycin and HC-030031 corroborated these findings, highlighting TRPA1's involvement in fibrotic modulation and macrophage polarization control. Overall, targeting TRPA1 channels presents promising therapeutic potential in managing pulmonary fibrosis by reducing pro-fibrotic marker expression, inhibiting M2 macrophage polarization, and diminishing collagen deposition. This study sheds light on a novel avenue for therapeutic intervention in IPF, addressing a critical need in the management of this challenging disease.


Subject(s)
Idiopathic Pulmonary Fibrosis , Macrophages , TRPA1 Cation Channel , Animals , Mice , Acetanilides , Bleomycin , Collagen , Cytoskeletal Proteins , Mice, Inbred C57BL , Purines , TRPA1 Cation Channel/metabolism
5.
Neurosci Lett ; 828: 137763, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38574849

ABSTRACT

The role of the hypothalamic cold-sensitive ion channels - transient receptor potential melastatin 8 (TRPM8) and transient receptor potential ankyrin 1 (TRPA1) in homeostatic systems of thermoregulation and water-salt balance - is not clear. The interaction of homeostatic systems of thermoregulation and water-salt balance without additional temperature load did not receive due attention, too. On the models of water-balance disturbance, we tried to elucidate some aspect of these problems. Body temperature (Tbody), O2 consumption, CO2 excretion, electrical muscle activity (EMA), temperature of tail skin (Ttail), plasma osmolality, as well as gene expression of hypothalamic TRPM8 and TRPA1 have been registered in rats of 3 groups: control; water-deprived (3 days under dry-eating); and hyperhydrated (6 days without dry food, drinking liquid 4 % sucrose). No relationship was observed between plasma osmolality and gene expression of Trpm8 and Trpa1. In water-deprived rats, the constriction of skin vessels, increased fat metabolism by 10 % and increased EMA by 48 % allowed the animals to maintain Tbody unchanged. The hyperhydrated rats did not develop sufficient mechanisms, and their Tbody decreased by 0.8 °C. The development of reactions was correlated with the expression of genes of thermosensitive ion channels in the anterior hypothalamus. Ttail had a direct correlation with the expression of the Trpm8 gene, whereas EMA directly correlated with the expression of the Trpa1 gene in water-deprived group. The obtained data attract attention from the point of view of management and correction of physiological functions by modulating the ion channel gene expression.


Subject(s)
Body Temperature Regulation , TRPA1 Cation Channel , TRPM Cation Channels , Animals , Rats , Body Temperature Regulation/genetics , Cold Temperature , Cytoskeletal Proteins/metabolism , Temperature , TRPA1 Cation Channel/metabolism , TRPM Cation Channels/metabolism
6.
J Ethnopharmacol ; 330: 118217, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38641072

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The natural anodyne Ligustilide (Lig), derived from Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong Hort., has been traditionally employed for its analgesic properties in the treatment of dysmenorrhea and migraine, and rheumatoid arthritis pain. Despite the existing reports on the correlation between TRP channels and the analgesic effects of Lig, a comprehensive understanding of their underlying mechanisms of action remains elusive. AIM OF THE STUDY: The objective of this study is to elucidate the mechanism of action of Lig on the analgesic target TRPA1 channel. METHODS: The therapeutic effect of Lig was evaluated in a rat acute soft tissue injury model. The analgesic target was identified through competitive inhibition of TRP channel agonists at the animal level, followed by Fluo-4/Ca2+ imaging on live cells overexpressing TRP proteins. The potential target was verified through in-gel imaging, colocalization using a Lig-derived molecular probe, and a drug affinity response target stability assay. The binding site of Lig was identified through protein spectrometry and further analyzed using molecular docking, site-specific mutation, and multidisciplinary approaches. RESULTS: The administration of Lig effectively ameliorated pain and attenuated oxidative stress and inflammatory responses in rats with soft tissue injuries. Moreover, the analgesic effects of Lig were specifically attributed to TRPA1. Mechanistic studies have revealed that Lig directly activates TRPA1 by interacting with the linker domain in the pre-S1 region of TRPA1. Through metabolic transformation, 6,7-epoxyligustilide (EM-Lig) forms a covalent bond with Cys703 of TRPA1 at high concentrations and prolonged exposure time. This irreversible binding prevents endogenous electrophilic products from entering the cysteine active center of ligand-binding pocket of TRPA1, thereby inhibiting Ca2+ influx through the channel opening and ultimately relieving pain. CONCLUSIONS: Lig selectively modulates the TRPA1 channel in a bimodal manner via non-electrophilic/electrophilic metabolic conversion. The epoxidized metabolic intermediate EM-Lig exerts analgesic effects by irreversibly inhibiting the activation of TRPA1 on sensory neurons. These findings not only highlight the analgesic mechanism of Lig but also offer a novel nucleophilic attack site for the development of TRPA1 antagonists in the pre-S1 region.


Subject(s)
4-Butyrolactone , Analgesics , Rats, Sprague-Dawley , TRPA1 Cation Channel , Animals , TRPA1 Cation Channel/metabolism , Analgesics/pharmacology , Analgesics/chemistry , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , 4-Butyrolactone/chemistry , Rats , Humans , Pain/drug therapy , Cysteine/pharmacology , Cysteine/chemistry , Male , Molecular Docking Simulation , HEK293 Cells , Binding Sites , Female
7.
J Physiol Biochem ; 80(2): 451-463, 2024 May.
Article in English | MEDLINE | ID: mdl-38564162

ABSTRACT

The physical and functional interaction between transient receptor potential channel ankyrin 1 (TRPA1) and neuronal calcium sensor 1 (NCS-1) was assessed. NCS-1 is a calcium (Ca2+) sensor found in many tissues, primarily neurons, and TRPA1 is a Ca2+ channel involved not only in thermal and pain sensation but also in conditions such as cancer and chemotherapy-induced peripheral neuropathy, in which NCS-1 is also a regulatory component.We explored the interactions between these two proteins by employing western blot, qRT-PCR, co-immunoprecipitation, Ca2+ transient monitoring with Fura-2 spectrophotometry, and electrophysiology assays in breast cancer cells (MDA-MB-231) with different levels of NCS-1 expression and neuroblastoma cells (SH-SY5Y).Our findings showed that the expression of TRPA1 was directly correlated with NCS-1 levels at both the protein and mRNA levels. Additionally, we found a physical and functional association between these two proteins. Physically, the NCS-1 and TRPA1 co-immunoprecipitate. Functionally, NCS-1 enhanced TRPA1-dependent Ca2+ influx, current density, open probability, and conductance, where the functional effects depended on PI3K. Conclusion: NCS-1 appears to act not only as a Ca2+ sensor but also modulates TRPA1 protein expression and channel function in a direct fashion through the PI3K pathway. These results contribute to understanding how Ca2+ homeostasis is regulated and provides a mechanism underlying conditions where Ca2+ dynamics are compromised, including breast cancer. With a cellular pathway identified, targeted treatments can be developed for breast cancer and neuropathy, among other related diseases.


Subject(s)
Breast Neoplasms , Neuronal Calcium-Sensor Proteins , Neurons , Neuropeptides , Phosphatidylinositol 3-Kinases , TRPA1 Cation Channel , Humans , TRPA1 Cation Channel/metabolism , TRPA1 Cation Channel/genetics , Neuronal Calcium-Sensor Proteins/metabolism , Neuronal Calcium-Sensor Proteins/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Cell Line, Tumor , Neurons/metabolism , Neurons/drug effects , Neuropeptides/metabolism , Neuropeptides/genetics , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Calcium/metabolism , Calcium Signaling
8.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612571

ABSTRACT

Osteosarcoma is a highly malignant, painful cancer with poor treatment opportunities and a bad prognosis. Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors are non-selective cation channels that have been of great interest in cancer, as their expression is increased in some malignancies. In our study we aim to characterize the expression and functionality of the TRPA1 and TRPV1 channels in human and mouse osteosarcoma tissues and in a mouse cell line. TRPA1/Trpa1 and TRPV1/Trpv1 mRNA expressions were demonstrated by PCR gel electrophoresis and RNAscope in situ hybridization. The function of these channels was confirmed by their radioactive 45Ca2+ uptake in response to the TRPA1 agonist, Allyl-isothiocyanate (AITC), and TRPV1 agonist, capsaicin, in K7M2 cells. An ATP-based K2M7 cell viability luminescence assay was used to determine cell viability after AITC or capsaicin treatments. Both TRPA1/Trpa1 and TRPV1/Trpv1 were expressed similarly in human and mouse osteosarcoma tissues, while Trpa1 transcripts were more abundantly present in K7M2 cells. TRPA1 activation with 200 µM AITC induced a significant 45Ca2+ influx into K7M2 cells, and the antagonist attenuated this effect. In accordance with the lower Trpv1 expression, capsaicin induced a moderate 45Ca2+ uptake, which did not reach the level of statistical significance. Both AITC and capsaicin significantly reduced K7M2 cell viability, demonstrating EC50 values of 22 µM and 74 µM. The viability-decreasing effect of AITC was significantly but only partially antagonized by HC-030031, but the action of capsaicin was not affected by the TRPV1 antagonist capsazepine. We provide here the first data on the functional expression of the TRPA1 and TRPV1 ion channels in osteosarcoma, suggesting novel diagnostic and/or therapeutic perspectives.


Subject(s)
Bone Neoplasms , Calcium Radioisotopes , Isothiocyanates , Osteosarcoma , TRPA1 Cation Channel , TRPV Cation Channels , Animals , Humans , Mice , Bone Neoplasms/genetics , Capsaicin/pharmacology , Osteosarcoma/genetics , TRPA1 Cation Channel/genetics , TRPA1 Cation Channel/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
9.
Life Sci ; 346: 122633, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38615746

ABSTRACT

AIMS: Systemic administration of ammonium chloride (NH4Cl), an acidifying agent used in human patients and experimental conditions, causes hypothermia in mice, however, the mechanisms of the thermoregulatory response to NH4Cl and whether it develops in other species remained unknown. MAIN METHODS: We studied body temperature (Tb) changes in rats and mice induced by intraperitoneal administration of NH4Cl after blockade of transient receptor potential vanilloid-1 (TRPV1) or ankyrin-1 (TRPA1) channels. KEY FINDINGS: In rats, NH4Cl decreased Tb by 0.4-0.8°C (p < 0.05). The NH4Cl-induced hypothermia also developed in Trpv1 knockout (Trpv1-/-) and wild-type (Trpv1+/+) mice, however, the Tb drop was exaggerated in Trpv1-/- mice compared to Trpv1+/+ controls with maximal decreases of 4.0 vs. 2.1°C, respectively (p < 0.05). Pharmacological blockade of TRPV1 channels with AMG 517 augmented the hypothermic response to NH4Cl in genetically unmodified mice and rats (p < 0.05 for both). In contrast, when NH4Cl was infused to mice genetically lacking the TRPA1 channel, the hypothermic response was significantly attenuated compared to wild-type controls with maximal mean Tb difference of 1.0°C between the genotypes (p = 0.008). Pretreatment of rats with a TRPA1 antagonist (A967079) also attenuated the NH4Cl-induced Tb drop with a maximal difference of 0.7°C between the pretreatment groups (p = 0.003). SIGNIFICANCE: TRPV1 channels limit, whereas TRPA1 channels exaggerate the development of NH4Cl-induced hypothermia in rats and mice, but other mechanisms are also involved. Our results warrant for regular Tb control and careful consideration of NH4Cl treatment in patients with TRPA1 and TRPV1 channel dysfunctions.


Subject(s)
Ammonium Chloride , Hypothermia , Mice, Knockout , TRPA1 Cation Channel , TRPV Cation Channels , Animals , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Hypothermia/chemically induced , Hypothermia/metabolism , Mice , Male , Rats , TRPA1 Cation Channel/metabolism , TRPA1 Cation Channel/genetics , Ammonium Chloride/pharmacology , Mice, Inbred C57BL , Rats, Sprague-Dawley , Body Temperature/drug effects
10.
J Med Chem ; 67(5): 3287-3306, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38431835

ABSTRACT

Transient receptor potential ankyrin 1 (TRPA1) is a nonselective calcium ion channel highly expressed in the primary sensory neurons, functioning as a polymodal sensor for exogenous and endogenous stimuli, and has been implicated in neuropathic pain and respiratory disease. Herein, we describe the optimization of potent, selective, and orally bioavailable TRPA1 small molecule antagonists with strong in vivo target engagement in rodent models. Several lead molecules in preclinical single- and short-term repeat-dose toxicity studies exhibited profound prolongation of coagulation parameters. Based on a thorough investigative toxicology and clinical pathology analysis, anticoagulation effects in vivo are hypothesized to be manifested by a metabolite─generated by aldehyde oxidase (AO)─possessing a similar pharmacophore to known anticoagulants (i.e., coumarins, indandiones). Further optimization to block AO-mediated metabolism yielded compounds that ameliorated coagulation effects in vivo, resulting in the discovery and advancement of clinical candidate GDC-6599, currently in Phase II clinical trials for respiratory indications.


Subject(s)
Respiratory Tract Diseases , Transient Receptor Potential Channels , Humans , Transient Receptor Potential Channels/metabolism , TRPA1 Cation Channel , Aldehyde Oxidase/metabolism , Oxidoreductases/metabolism , Cytoskeletal Proteins/metabolism
11.
Curr Opin Pharmacol ; 75: 102447, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471384

ABSTRACT

Several decades of research support the involvement of transient receptor potential (TRP) channels in nociception. Despite the disappointments of early TRPV1 antagonist programs, the TRP family remains a promising therapeutic target in pain disorders. High-dose capsaicin patches are already in clinical use to relieve neuropathic pain. At present, localized injections of the side-directed TRPV1 agonist capsaicin and resiniferatoxin are undergoing clinical trials in patients with osteoarthritis and bone cancer pain. TRPA1, TRPM3, and TRPC5 channels are also of significant interest. This review discusses the role of TRP channels in human pain conditions.


Subject(s)
Musculoskeletal Pain , Neuralgia , Transient Receptor Potential Channels , Humans , Capsaicin , Neuralgia/drug therapy , TRPV Cation Channels , TRPA1 Cation Channel
12.
Int Immunopharmacol ; 131: 111916, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38522138

ABSTRACT

BACKGROUND: TRP protein is sensitive to external temperature changes, but its pathogenic mechanism in the upper airway mucosa is still unclear. OBJECTIVE: To investigate the mechanism of TRPV1and TRPA1 in regulating the secretion of inflammatory factors in nasal epithelial cells. METHODS: The expression of TRPV1 and TRPA1 in nasal mucosal epithelial cells was investigated using immunofluorescence assays. Epithelial cells were stimulated with TRPV1 and TRPA1 agonists and antagonists, and changes in Ca2+ release and inflammatory factor secretion in epithelial cells were detected. TSLP secretion stimulated with the calcium chelating agent EGTA was evaluated. The transcription factor NFAT was observed by immunofluorescence staining. RESULTS: TRPV1 and TRPA1 expression was detected in nasal epithelial cells, and Ca2+ influx was increased after stimulation with agonists. After the activation of TRPV1 and TRPA1, the gene expression of TSLP, IL-25, and IL-33 and the protein expression levels of TSLP and IL-33 were increased, and only TSLP could be inhibited by antagonists and siRNAs. After administration of EGTA, the secretion of TSLP was inhibited significantly, and the expression of the transcription factor NFAT in the nucleus was observed after activation of the TRPV1 and TRPA1 proteins in epithelial cells. CONCLUSION: Activation of TRPV1 and TRPA1 on nasal epithelial cells stimulates the generation of TSLP through the Ca2+/NFAT pathway. It also induces upregulation of IL-25 and IL-33 gene expression levels and increased levels of IL-33 protein, leading to the development of airway inflammation.


Subject(s)
Interleukin-33 , TRPV Cation Channels , TRPV Cation Channels/metabolism , TRPA1 Cation Channel/genetics , TRPA1 Cation Channel/metabolism , Interleukin-33/metabolism , Egtazic Acid/metabolism , Gene Expression , Nasal Mucosa/metabolism , Epithelial Cells/metabolism , Transcription Factors/genetics
13.
Am J Physiol Regul Integr Comp Physiol ; 326(5): R427-R437, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38497128

ABSTRACT

Methylglyoxal (MG), a reactive metabolic byproduct of glycolysis, is a causative of painful diabetic neuropathy. Patients with diabetes are associated with more frequent severe asthma exacerbation. Stimulation of capsaicin-sensitive lung vagal (CSLV) afferents may contribute to the pathogenesis of hyperreactive airway diseases such as asthma. However, the possibility of the stimulatory effect of MG on CSLV afferents and the underlying mechanisms remain unknown. Our results showed that intravenous injection of MG (25 mg/kg, MG25) in anesthetized, spontaneously breathing rats elicited pulmonary chemoreflexes characterized by apnea, bradycardia, and hypotension. The MG-induced apneic response was reproducible and dose dependent. MG25 no longer evoked these reflex responses after perineural capsaicin treatment of both cervical vagi to block C-fibers' conduction, suggesting that the reflexes were mediated through the stimulation of CSLV afferents. Pretreatment with HC030031 [an antagonist of transient receptor potential ankyrin subtype 1 protein (TRPA1)] or AP18 (another TRPA1 antagonist), but not their vehicle, markedly attenuated the apneic response induced by MG25. Consistently, electrophysiological results showed that pretreatment with HC030031 largely attenuated the intense discharge in CSLV afferents induced by injection of MG25 in open-chest and artificially ventilated rats. In isolated CSLV neurons, the perfusion of MG evoked an abrupt and pronounced increase in calcium transients in a concentration-dependent manner. This stimulatory effect on CSLV neurons was also abolished by HC030031 treatment but not by its vehicle. In conclusion, these results suggest that MG exerts a stimulatory effect on CSLV afferents, inducing pulmonary chemoreflexes, and such stimulation is mediated through the TRPA1 activation.NEW & NOTEWORTHY Methylglyoxal (MG) is implicated in the development of painful diabetic neuropathy. A retrospective cohort study revealed an increased incidence of asthma exacerbations in patients with diabetes. This study demonstrated that elevated circulating MG levels stimulate capsaicin-sensitive lung vagal afferents via activation of TRPA1, which in turn triggers respiratory reflexes. These findings provide new information for understanding the pathogenic mechanism of diabetes-associated hyperreactive airway diseases and potential therapy.


Subject(s)
Acetanilides , Asthma , Diabetic Neuropathies , Purines , Humans , Rats , Animals , Capsaicin/pharmacology , Rats, Sprague-Dawley , Pyruvaldehyde/adverse effects , Pyruvaldehyde/metabolism , Diabetic Neuropathies/metabolism , Retrospective Studies , Lung , Vagus Nerve/physiology , Apnea , Asthma/metabolism , TRPA1 Cation Channel/metabolism
14.
Sci Total Environ ; 918: 170668, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38320701

ABSTRACT

BACKGROUND: Transient receptor potential (TRP) ankyrin 1 (TRPA1) could mediate ozone-induced lung injury. Optic Atrophy 1 (OPA1) is one of the significant mitochondrial fusion proteins. Impaired mitochondrial fusion, resulting in mitochondrial dysfunction and ferroptosis, may drive the onset and progression of lung injury. In this study, we examined whether TRPA1 mediated ozone-induced bronchial epithelial cell and lung injury by activating PI3K/Akt with the involvement of OPA1, leading to ferroptosis. METHODS: Wild-type, TRPA1-knockout (KO) mice (C57BL/6 J background) and ferrostatin-1 (Fer-1)-pretreated mice were exposed to 2.5 ppm ozone for 3 h. Human bronchial epithelial (BEAS-2B) cells were treated with 1 ppm ozone for 3 h in the presence of TRPA1 inhibitor A967079 or TRPA1-knockdown (KD) as well as pharmacological modulators of PI3K/Akt-OPA1-ferroptosis. Transcriptome was used to screen and decipher the differential gene expressions and pathways. Oxidative stress, inflammation and ferroptosis were measured together with mitochondrial morphology, function and dynamics. RESULTS: Acute ozone exposure induced airway inflammation and airway hyperresponsiveness (AHR), reduced mitochondrial fusion, and enhanced ferroptosis in mice. Similarly, acute ozone exposure induced inflammatory responses, altered redox responses, abnormal mitochondrial structure and function, reduced mitochondrial fusion and enhanced ferroptosis in BEAS-2B cells. There were increased mitochondrial fusion, reduced inflammatory responses, decreased redox responses and ferroptosis in ozone-exposed TRPA1-KO mice and Fer-1-pretreated ozone-exposed mice. A967079 and TRPA1-KD enhanced OPA1 and prevented ferroptosis through the PI3K/Akt pathway in BEAS-2B cells. These in vitro results were further confirmed in pharmacological modulator experiments. CONCLUSION: Exposure to ozone induces mitochondrial dysfunction in human bronchial epithelial cells and mouse lungs by activating TRPA1, which results in ferroptosis mediated via a PI3K/Akt/OPA1 axis. This supports a potential role of TRPA1 blockade in preventing the deleterious effects of ozone.


Subject(s)
Ferroptosis , Lung Injury , Mitochondrial Diseases , Oximes , Ozone , Humans , Mice , Animals , Lung Injury/chemically induced , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Ozone/metabolism , Mice, Inbred C57BL , Inflammation/chemically induced , Epithelial Cells , Mitochondrial Diseases/metabolism , Lung/metabolism , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/pharmacology , TRPA1 Cation Channel/metabolism
15.
Medicine (Baltimore) ; 103(5): e37056, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38306561

ABSTRACT

Colorectal cancer is a cancer that arises from the abnormal growth of cells in the colon or rectum. Osteosarcoma (OS) is a common primary bone tumor with high degree of malignancy. The configuration files for colorectal cancer dataset GSE142279 and OS datasets GSE197158 and GSE206448 were downloaded from Gene Expression Omnibus database using the platforms GPL20795, GPL20301, and GPL24676. Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis (WGCNA) was performed. Construction and analysis of protein-protein interactions (PPI) network. Functional enrichment analysis, gene set enrichment analysis (GSEA) were performed. A heat map of gene expression was drawn. The Comparative Toxicogenomics Database (CTD) was used to find the diseases most associated with the core genes. TargetScan was used to screen miRNAs regulating DEGs. According to the Gene Ontology (GO) analysis, DEGs are mainly enriched in acetylcholine binding receptor activity involved in Wnt signaling pathway, cell polarity pathway, PI3K-Akt signaling pathway, receptor regulator activity, cytokine-cytokine receptor interaction, transcriptional misregulation in cancer, and inflammation-mediated regulation of tryptophan transport. In the Metascape enrichment analysis, GO enrichment items related to the regulation of Wnt signaling pathway, regulation of muscle system process, and regulation of actin filament-based movement. Eight core genes (CUX1, NES, BCL11B, PAX6, EMX1, MCOLN2, TRPA1, TRPC4) were identified. CTD showed that 4 genes (CUX1, EMX1, TRPA1, BCL11B) were associated with colorectal neoplasms, colorectal tumors, colonic diseases, multiple myeloma, OS, and inflammation. PAX6, TRPA1, BCL11B, MCOLN2, CUX1, and EMX1 are highly expressed in colorectal cancer and OS, and the higher the expression level, the worse the prognosis.


Subject(s)
Bone Neoplasms , Colorectal Neoplasms , Homeodomain Proteins , Osteosarcoma , PAX6 Transcription Factor , Humans , Phosphatidylinositol 3-Kinases/metabolism , Gene Expression Profiling , Transcription Factors/genetics , Osteosarcoma/pathology , Bone Neoplasms/pathology , Colorectal Neoplasms/genetics , Inflammation/genetics , Tumor Suppressor Proteins/genetics , Computational Biology , Gene Regulatory Networks , Gene Expression Regulation, Neoplastic , TRPA1 Cation Channel/genetics , Repressor Proteins/metabolism
16.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339042

ABSTRACT

We have previously proven the involvement of transient receptor potential ankyrin 1 (TRPA1) in stress adaptation. A lack of TRPA1 affects both urocortin 1 (member of the corticotropin-releasing hormone (CRH) family) content of the Edinger-Westphal nucleus. The noradrenergic locus ceruleus (LC) is also an important player in mood control. We aimed at investigating whether the TRPA1 is expressed in the LC, and to test if the response to chronic variable mild stress (CVMS) is affected by a lack of TRPA1. The TRPA1 expression was examined via RNAscope in situ hybridization. We investigated TRPA1 knockout and wildtype mice using the CVMS model of depression. Tyrosine hydroxylase (TH) and FOSB double immunofluorescence were used to test the functional neuromorphological changes in the LC. No TRPA1 expression was detected in the LC. The TH content was not affected by CVMS exposure. The CVMS-induced FOSB immunosignal did not co-localize with the TH neurons. TRPA1 is not expressed in the LC. A lack of functional TRPA1 receptor neither directly nor indirectly affects the TH content of LC neurons under CVMS.


Subject(s)
Locus Coeruleus , Stress, Psychological , TRPA1 Cation Channel , Animals , Mice , Corticotropin-Releasing Hormone/metabolism , Gene Expression , Locus Coeruleus/physiopathology , Urocortins/metabolism , TRPA1 Cation Channel/genetics , Stress, Psychological/genetics , Stress, Psychological/physiopathology , Tyrosine 3-Monooxygenase/metabolism
17.
J Nat Prod ; 87(4): 722-732, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38408345

ABSTRACT

The first detailed phytochemical analysis of the cannabigerol (CBG)-rich chemotype IV of Cannabis sativa L. resulted in the isolation of the expected cannabigerolic acid/cannabigerol (CBGA/CBG) and cannabidiolic acid/cannabidiol (CBDA/CBD) and of nine new phytocannabinoids (5-13), which were fully characterized by HR-ESIMS and 1D and 2D NMR. These included mono- or dihydroxylated CBGA/CBG analogues, a congener with a truncated side chain (10), cyclocannabigerol B (11), and the CBD derivatives named cannabifuranols (12 and 13). Cyclocannabigerol B and cannabifuranols are characterized by a novel phytocannabinoid structural architecture. The isolated phytocannabinoids were assayed on the receptor channels TRPA1 and TRPM8, unveiling a potent dual TRPA1 agonist/TRPM8 antagonist profile for compounds 6, 7, and 14. Chiral separation of the two enantiomers of 5 resulted in the discovery of a synergistic effect of the two enantiomers on TRPA1.


Subject(s)
Cannabinoids , Cannabis , TRPA1 Cation Channel , TRPM Cation Channels , Transient Receptor Potential Channels , Cannabis/chemistry , TRPA1 Cation Channel/antagonists & inhibitors , Cannabinoids/pharmacology , Cannabinoids/chemistry , Cannabinoids/isolation & purification , TRPM Cation Channels/antagonists & inhibitors , Molecular Structure , Transient Receptor Potential Channels/antagonists & inhibitors , Transient Receptor Potential Channels/drug effects , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Phytochemicals/chemistry , Humans , Cannabidiol/pharmacology , Cannabidiol/chemistry , Calcium Channels/metabolism
18.
Biochem Pharmacol ; 222: 116074, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395265

ABSTRACT

Olanzapine, a widely prescribed atypical antipsychotic, poses a great risk to the patient's health by fabricating a plethora of severe metabolic and cardiovascular adverse effects eventually reducing life expectancy and patient compliance. Its heterogenous receptor binding profile has made it difficult to point out a specific cause or treatment for the related side effects. Growing body of evidence suggest that transient receptor potential (TRP) channel subfamily Ankyrin 1 (TRPA1) has pivotal role in pathogenesis of type 2 diabetes and obesity. With this background, we aimed to investigate the role of pharmacological manipulations of TRPA1 channels in antipsychotic (olanzapine)-induced metabolic alterations in female mice using allyl isothiocyanate (AITC) and HC-030031 (TRPA1 agonist and antagonist, respectively). It was found that after 6 weeks of treatment, AITC prevented olanzapine-induced alterations in body weight and adiposity; serum, and liver inflammatory markers; glucose and lipid metabolism; and hypothalamic appetite regulation, nutrient sensing, inflammatory and TRPA1 channel signaling regulating genes. Furthermore, several of these effects were absent in the presence of HC-030031 (TRPA1 antagonist) indicating protective role of TRPA1 agonism in attenuating olanzapine-induced metabolic alterations. Supplementary in-depth studies are required to study TRPA1 channel effect on other aspects of olanzapine-induced metabolic alterations.


Subject(s)
Acetanilides , Antipsychotic Agents , Diabetes Mellitus, Type 2 , Purines , Transient Receptor Potential Channels , Mice , Humans , Female , Animals , TRPA1 Cation Channel , Olanzapine , Antipsychotic Agents/toxicity , Isothiocyanates/pharmacology , Obesity/chemically induced , Obesity/drug therapy , Liver/metabolism
19.
Biomed Res ; 45(1): 45-55, 2024.
Article in English | MEDLINE | ID: mdl-38325845

ABSTRACT

T-type Ca2+ channels and TRPA1 expressed in sensory neurons are involved in pain. We previously demonstrated a functional interaction of these channels under physiological conditions. Here we investigated the possible involvement of these channels in inflammatory pain condition. We also evaluated the relationship of these channels endogenously expressed in RIN-14B, a rat pancreatic islet tumor cell line. In dorsal root ganglion (DRG) neurons innervated inflammatory side, [Ca2+]i increases induced by 15 mM KCl (15K) were enhanced in neurons responded to AITC. This enhancement was not observed in genetically TRPA1-deficient neurons. The T-type and AITC-induced currents were larger in neurons of the inflammatory side than in those of the control one. In DRGs of the inflammatory side, the protein expression of Cav3.2, but not TRPA1, was increased. In RIN-14B, 15K-induced [Ca2+]i increases were decreased by blockers of T-type Ca2+ channel and TRPA1, and by TRPA1-silencing. Immunoprecipitation suggested the coexistent of these channels in sensory neurons and RIN-14B. In mice with inflammation, mechanical hypersensitivity was suppressed by blockers of both channels. These data suggest that the interaction of Cav3.2 with TRPA1 in sensory neurons is enhanced via the augmentation of the activities of both channels under inflammatory conditions, indicating that both channels are therapeutic targets for inflammatory pain.


Subject(s)
Calcium , Isothiocyanates , Nociception , Animals , Mice , Rats , Calcium/metabolism , Ganglia, Spinal/metabolism , Pain/genetics , Pain/metabolism , Sensory Receptor Cells/metabolism , TRPA1 Cation Channel/genetics
20.
J Ethnopharmacol ; 324: 117741, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38224794

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Zhisou Powder (ZSP), a traditional Chinese medicine (TCM) prescription, has been widely used in the clinic for the treatment of post-infectious cough (PIC). However, the exact mechanism is not clear. AIM OF THE STUDY: The aim of this study was to investigate the ameliorative effect of ZSP on PIC in mice. The possible mechanisms of action were screened based on network pharmacology, and the potential mechanisms were explored through molecular docking and in vivo experimental validation. MATERIALS AND METHODS: Lipopolysaccharide (LPS) (80µg/50 µL) was used to induce PIC in mice, followed by daily exposure to cigarette smoke (CS) for 30 min for 30 d to establish PIC model. The effects of ZSP on PIC mice were observed by detecting the number of coughs and cough latency, peripheral blood and bronchoalveolar lavage fluid (BALF) inflammatory cell counts, enzyme-linked immunosorbent assay (ELISA), and histological analysis. The core targets and key pathways of ZSP on PIC were analyzed using network pharmacology, and TRPA1 and TRPV1 were validated using RT-qPCR and western blotting assays. RESULTS: ZSP effectively reduced the number of coughs and prolonged the cough latency in PIC mice. Airway inflammation was alleviated by reducing the expression levels of the inflammatory mediators TNF-α and IL-1ß. ZSP modulated the expression of Substance P, Calcitonin gene-related peptide (CGRP), and nerve growth factor (NGF) in BALF. Based on the results of network pharmacology, the mechanism of action of ZSP may exert anti-neurogenic airway-derived inflammation by regulating the expression of TRPA1 and TRPV1 through the natural active ingredients α-spinastero, shionone and didehydrotuberostemonine. CONCLUSION: ZSP exerts anti-airway inflammatory effects through inhibition of TRPA1/TRPV1 channels regulating neuropeptides to alleviate cough hypersensitivity and has a favorable therapeutic effect on PIC model mice. It provides theoretical evidence for the clinical application of ZSP.


Subject(s)
Lipopolysaccharides , TRPV Cation Channels , Mice , Animals , TRPA1 Cation Channel/metabolism , Lipopolysaccharides/toxicity , Powders/therapeutic use , Molecular Docking Simulation , TRPV Cation Channels/metabolism , Cough/chemically induced , Cough/drug therapy , Cough/metabolism , Inflammation/pathology , Anti-Inflammatory Agents/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...