Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 296
Filter
1.
Neuromolecular Med ; 26(1): 19, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703217

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder associated with mitochondrial dysfunctions and oxidative stress. However, to date, therapeutics targeting these pathological events have not managed to translate from bench to bedside for clinical use. One of the major reasons for the lack of translational success has been the use of classical model systems that do not replicate the disease pathology and progression with the same degree of robustness. Therefore, we employed a more physiologically relevant model involving alpha-synuclein-preformed fibrils (PFF) exposure to SH-SY5Y cells and Sprague Dawley rats. We further explored the possible involvement of transient receptor potential canonical 5 (TRPC5) channels in PD-like pathology induced by these alpha-synuclein-preformed fibrils with emphasis on amelioration of oxidative stress and mitochondrial health. We observed that alpha-synuclein PFF exposure produced neurobehavioural deficits that were positively ameliorated after treatment with the TRPC5 inhibitor clemizole. Furthermore, Clemizole also reduced p-alpha-synuclein and diminished oxidative stress levels which resulted in overall improvements in mitochondrial biogenesis and functions. Finally, the results of the pharmacological modulation were further validated using siRNA-mediated knockdown of TRPC5 channels, which also decreased p-alpha-synuclein expression. Together, the results of this study could be superimposed in the future for exploring the beneficial effects of TRPC5 channel modulation for other neurodegenerative disorders and synucleopathies.


Subject(s)
Mitochondria , Oxidative Stress , Rats, Sprague-Dawley , TRPC Cation Channels , alpha-Synuclein , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Animals , Rats , Oxidative Stress/drug effects , Humans , TRPC Cation Channels/genetics , TRPC Cation Channels/antagonists & inhibitors , Mitochondria/drug effects , Mitochondria/metabolism , Cell Line, Tumor , Male , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/chemically induced , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , RNA, Small Interfering/therapeutic use , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/drug therapy
2.
Nucleic Acids Res ; 52(9): 4784-4798, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38621757

ABSTRACT

Antisense oligonucleotide (ASO) therapy is a novel therapeutic approach in which ASO specifically binds target mRNA, resulting in mRNA degradation; however, cellular uptake of ASOs remains critically low, warranting improvement. Transient receptor potential canonical (TRPC) channels regulate Ca2+ influx and are activated upon stimulation by phospholipase C-generated diacylglycerol. Herein, we report that a novel TRPC3/C6/C7 activator, L687, can induce cellular ASO uptake. L687-induced ASO uptake was enhanced in a dose- and incubation-time-dependent manner. L687 enhanced the knockdown activity of various ASOs both in vitro and in vivo. Notably, suppression of TRPC3/C6 by specific siRNAs reduced ASO uptake in A549 cells. Application of BAPTA-AM, a Ca2+ chelator, and SKF96365, a TRPC3/C6 inhibitor, suppressed Ca2+ influx via TRPC3/C6, resulting in reduced ASO uptake, thereby suggesting that Ca2+ influx via TRPC3/C6 is critical for L687-mediated increased ASO uptake. L687 also induced dextran uptake, indicating that L687 increased endocytosis. Adding ASO to L687 resulted in endosome accumulation; however, the endosomal membrane disruptor UNC7938 facilitated endosomal escape and enhanced knockdown activity. We discovered a new function for TRPC activators regarding ASO trafficking in target cells. Our findings provide an opportunity to formulate an innovative drug delivery system for the therapeutic development of ASO.


Subject(s)
Calcium , Oligonucleotides, Antisense , TRPC Cation Channels , Humans , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/metabolism , TRPC Cation Channels/metabolism , TRPC Cation Channels/genetics , TRPC Cation Channels/antagonists & inhibitors , Calcium/metabolism , A549 Cells , Animals , Mice , Imidazoles/pharmacology , TRPC6 Cation Channel/metabolism , TRPC6 Cation Channel/genetics , TRPC6 Cation Channel/antagonists & inhibitors , Egtazic Acid/pharmacology , Egtazic Acid/analogs & derivatives , Endosomes/metabolism , Endosomes/drug effects , Cell Line, Tumor
3.
Biomed Pharmacother ; 168: 115672, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37857250

ABSTRACT

In intestinal smooth muscle cells, receptor-operated TRPC4 are responsible for the majority of muscarinic receptor cation current (mICAT), which initiates cholinergic excitation-contraction coupling. Our aim was to examine the effects of the TRPC4 inhibitor Pico145 on mICAT and Ca2+ signalling in mouse ileal myocytes, and on intestinal motility. Ileal myocytes freshly isolated from two month-old male BALB/c mice were used for patch-clamp recordings of whole-cell currents and for intracellular Ca2+ imaging using Fura-2. Functional assessment of Pico145's effects was carried out by standard in vitro tensiometry, ex vivo video recordings and in vivo postprandial intestinal transit measurements using carmine red. Carbachol (50 µM)-induced mICAT was strongly inhibited by Pico145 starting from 1 pM. The IC50 value for the inhibitory effect of Pico145 on this current evoked by intracellularly applied GTPγS (200 µM), and thus lacking desensitisation, was found to be 3.1 pM, while carbachol-induced intracellular Ca2+ rises were inhibited with IC50 of 2.7 pM. In contrast, the current activated by direct TRPC4 agonist (-)-englerin A was less sensitive to the action of Pico145 that caused only ∼43 % current inhibition at 100 pM. The inhibitory effect developed rather slowly and it was potentiated by membrane depolarisation. In functional assays, Pico145 produced concentration-dependent suppression of both spontaneous and carbachol-evoked intestinal smooth muscle contractions and delayed postprandial intestinal transit. Thus, Pico145 is a potent GI-active small-molecule which completely inhibits mICAT at picomolar concentrations and which is as effective as trpc4 gene deficiency in in vivo intestinal motility tests.


Subject(s)
Receptors, Muscarinic , TRPC Cation Channels , Animals , Male , Mice , Carbachol/pharmacology , Gastrointestinal Motility , Myocytes, Smooth Muscle/metabolism , Receptors, Muscarinic/metabolism , TRPC Cation Channels/antagonists & inhibitors , TRPC Cation Channels/metabolism
4.
Bioorg Med Chem ; 68: 116853, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35653869

ABSTRACT

Transient receptor potential canonical (TRPC) channels are a class of non-selective cation channels expressed in a variety of tissues and organ systems where they functionally regulate physiological and pathological processes. TRPC5 has been shown to be a promising target for focal segmental glomerulosclerosis treatment. In this study, we report the synthesis and biological evaluation of a novel series of benzimidazole-based TRPC5 inhibitors. One compound, 8b, is 100-fold more potent than the parent compound, AC1903, in the suppression of TRPC5 channel activity. Interestingly, both AC1903 and 8b also suppressed TRPC4 channel activity with similar potency. Compound 8b also significantly blunts protamine sulfate-induced reorganization of podocyte cytoskeleton, interleukin (IL)-17-induced cell proliferation, and the expression of proinflammatory mediators in human keratinocyte HaCaT cells.


Subject(s)
Indazoles , TRPC Cation Channels , Humans , Indazoles/pharmacology , TRPC Cation Channels/antagonists & inhibitors , TRPC Cation Channels/metabolism
5.
Bioorg Med Chem Lett ; 61: 128612, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35143983

ABSTRACT

A deepening understanding of the relationship between transient receptor potential canonical channel 5 (TRPC5) and chronic kidney disease (CKD), has led to the emergence of several types of TRPC5 inhibitors displaying clear therapeutic effect. Herein, we report the synthesis and biological evaluation of a series of pyrroledione TRPC5 inhibitors, culminating in the discovery of compound 16g with subtype selectivity. Compared with GFB-8438, a potent TRPC5 inhibitor (Goldfinch Bio), compound 16g showed improved inhibition of TRPC5 and enhanced protective effect against protamine sulfates (PS)-induced podocyte injury in vitro. In addition, compound 16g did not induce cell death in primary cultured hepatocytes and immortalized podocytes in a preliminary toxicity assessment, indicating its utility as a potent and safe inhibitor for studying the function of TRPC5.


Subject(s)
Drug Discovery , Pyrroles/pharmacology , TRPC Cation Channels/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Molecular Structure , Podocytes/drug effects , Podocytes/metabolism , Podocytes/pathology , Protamines , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship , TRPC Cation Channels/metabolism
6.
Behav Brain Res ; 423: 113765, 2022 04 09.
Article in English | MEDLINE | ID: mdl-35063497

ABSTRACT

The roles of ion channels, miRNAs and, neurotransmitters in the pathophysiology of major depressive disorder (MDD) are not yet fully elucidated. The current study aims to investigate ion channel gene expressions in the brain, the therapeutic efficacies of TRPC1, TRPM4, and CHRNA6 inhibitors, miRNAs specific to these ion channels and, neurotransmitter interactions in a chronic unpredictable mild stress (CUMS) induced MDD rat model. 48 two-month-old male albino Wistar rats were divided into Control, CUMS, Sham, CUMS+Pico145 (TRPC1 inhibitor), CUMS+ 9-Phe (TRPM4 inhibitor), and CUMS+BPiDl (CHRNA6 inhibitor) groups. Seven-week CUMS was used to induce MDD. Inhibitors were administered subacutely on the final of CUMS. Rats were subjected to behavioral tests. Gene expression levels were analyzed using qRT-PCR and neurotransmitter levels using ELISA. CUMS lead to a significant upregulation in the expression of channels in the hippocampus, and channels in the prefrontal cortex. Behavioral experiments determined the antidepressant effects as follows: Pico145 > BPiDl > 9-Phe. Compared to the Control, serotonin and noradrenaline levels remained unchanged, whereas dopamine levels increased. Acetylcholine levels decreased in CUMS and CUMS+Pico145 groups. CUMS significantly altered the expression of 6 miRNAs in the brain. BPiDl upregulated the expression of miR-6334 and Pico145 upregulated the expression of miR-135b-5p and miR-875 in the prefrontal cortex. The interactions of ion channels, miRNAs, and disruptions of neurotransmitter networks can play an important role in the pathophysiology of MDD. Moreover, as shown in this study, ion channel inhibitors have significant potential in the treatment of this disease.


Subject(s)
Brain/drug effects , Depression/drug therapy , Ion Channels/drug effects , MicroRNAs/drug effects , Nicotinic Antagonists/pharmacology , Receptors, Nicotinic/drug effects , Stress, Psychological/drug therapy , TRPC Cation Channels/antagonists & inhibitors , TRPM Cation Channels/antagonists & inhibitors , Animals , Behavior, Animal/drug effects , Brain/metabolism , Depression/metabolism , Disease Models, Animal , Male , MicroRNAs/metabolism , Rats , Rats, Wistar , Stress, Psychological/metabolism , TRPC Cation Channels/metabolism , TRPM Cation Channels/metabolism
7.
J Biol Chem ; 298(2): 101546, 2022 02.
Article in English | MEDLINE | ID: mdl-34999117

ABSTRACT

Nonsense mutations, which occur in ∼11% of patients with genetic disorders, introduce premature termination codons (PTCs) that lead to truncated proteins and promote nonsense-mediated mRNA decay. Aminoglycosides such as G418 permit PTC readthrough and so may be used to address this problem. However, their effects are variable between patients, making clinical use of aminoglycosides challenging. In this study, we tested whether TRPC nonselective cation channels contribute to the variable PTC readthrough effect of aminoglycosides by controlling their cellular uptake. Indeed, a recently reported selective TRPC5 inhibitor, AC1903, consistently suppressed G418 uptake and G418-induced PTC readthrough in the DMS-114 cancer cell line and junctional epidermolysis bullosa (JEB) patient-derived keratinocytes. Interestingly, the effect of AC1903 in DMS-114 cells was mimicked by nonselective TRPC inhibitors, but not by well-characterized inhibitors of TRPC1/4/5 (Pico145, GFB-8438) or TRPC3/6/7 (SAR7334), suggesting that AC1903 may work through additional or undefined targets. Indeed, in our experiments, AC1903 inhibited multiple TRPC channels including TRPC3, TRPC4, TRPC5, TRPC6, TRPC4-C1, and TRPC5-C1, as well as endogenous TRPC1:C4 channels in A498 renal cancer cells, all with low micromolar IC50 values (1.8-18 µM). We also show that AC1903 inhibited TRPV4 channels, but had weak or no effects on TRPV1 and no effect on the nonselective cation channel PIEZO1. Our study reveals that AC1903 has previously unrecognized targets, which need to be considered when interpreting results from experiments with this compound. In addition, our data strengthen the hypothesis that nonselective calcium channels are involved in aminoglycoside uptake.


Subject(s)
Aminoglycosides , Codon, Nonsense , Indazoles , TRPC Cation Channels , Aminoglycosides/pharmacology , Codon, Nonsense/drug effects , Humans , Indazoles/pharmacology , Protein Synthesis Inhibitors , TRPC Cation Channels/antagonists & inhibitors , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism
8.
Elife ; 102021 03 08.
Article in English | MEDLINE | ID: mdl-33683200

ABSTRACT

TRPC5 channel is a nonselective cation channel that participates in diverse physiological processes. TRPC5 inhibitors show promise in the treatment of anxiety disorder, depression, and kidney disease. However, the binding sites and inhibitory mechanism of TRPC5 inhibitors remain elusive. Here, we present the cryo-EM structures of human TRPC5 in complex with two distinct inhibitors, namely clemizole and HC-070, to the resolution of 2.7 Å. The structures reveal that clemizole binds inside the voltage sensor-like domain of each subunit. In contrast, HC-070 is wedged between adjacent subunits and replaces the glycerol group of a putative diacylglycerol molecule near the extracellular side. Moreover, we found mutations in the inhibitor binding pockets altered the potency of inhibitors. These structures suggest that both clemizole and HC-070 exert the inhibitory functions by stabilizing the ion channel in a nonconductive closed state. These results pave the way for further design and optimization of inhibitors targeting human TRPC5.


Subject(s)
Benzimidazoles/chemistry , Heterocyclic Compounds, 4 or More Rings/chemistry , TRPC Cation Channels/antagonists & inhibitors , TRPC Cation Channels/chemistry , Benzimidazoles/metabolism , Binding Sites , Heterocyclic Compounds, 4 or More Rings/metabolism , Humans , Models, Molecular , TRPC Cation Channels/metabolism
9.
Cell Calcium ; 95: 102361, 2021 05.
Article in English | MEDLINE | ID: mdl-33578200

ABSTRACT

TRPC4 ion channel was reported to be regulated by small molecular inhibitors and calmodulin. We discuss these findings in the context of other members of TRPC subfamily modulated by different stimulants.


Subject(s)
Calmodulin/metabolism , TRPC Cation Channels/antagonists & inhibitors , TRPC Cation Channels/metabolism , Animals , Binding Sites/drug effects , Binding Sites/physiology , Calmodulin/pharmacology , Humans , Protein Structure, Secondary , TRPC Cation Channels/chemistry
10.
Cell Mol Neurobiol ; 41(6): 1245-1255, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32514827

ABSTRACT

Regulation of Ca2+ homeostasis is essential for neuronal function and its survival. Recent data suggest that TRPC1 function as the endogenous store-mediated Ca2+ entry channel in dopaminergic cells, and loss of TRPC1 function leads to neurodegeneration; however, its regulation is not fully identified. Here we provide evidence that the sigma 1 receptor contributes to the loss of dopaminergic cells by blocking TRPC1-mediated Ca2+ entry. Importantly, downregulation of sigma 1 receptor expression significantly decreased neurotoxin-induced loss of dopaminergic cells as measured by MTT assays and caspase activity was also inhibited. Importantly, sigma 1 receptor inhibited TRPC1-mediated Ca2+ entry and silencing of sigma 1 receptor significantly restored store-dependent Ca2+ influx. Although co-immunoprecipitation failed to show an interaction between the TRPC1 and sigma 1 receptor, store depletion promoted a decrease in the sigma 1 receptor-STIM1 association. Neurotoxin-induced loss of Ca2+ entry was significantly restored in cells that had decreased sigma 1 receptor expression. Furthermore, TRPC1 or STIM1 silencing inhibited store-mediated Ca2+ entry, which was further increased upon the downregulation of the sigma 1 receptor expression. TRPC1 silencing prevented the increased neuroprotection and caspase activity observed upon the downregulation of sigma 1 receptor. Finally, sigma 1 receptor activation also significantly decreased TRPC1-mediated Ca2+ entry and lead to an increase in neurodegeneration. In contrast, addition of sigma 1 receptor antagonist prevented neurotoxin-induced neurodegeneration and facilitated TRPC1-mediated Ca2+ influx. Together these results suggest that the sigma 1 receptor is involved in the inhibition of TRPC1- mediated Ca2+ entry, which leads to the degeneration in the dopaminergic cells, and prevention of sigma 1 receptor function could protect neuronal cell death as observed in Parkinson's disease.


Subject(s)
Calcium/metabolism , Cell Death/physiology , Dopaminergic Neurons/metabolism , Receptors, sigma/metabolism , TRPC Cation Channels/metabolism , Animals , Boron Compounds/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Dopaminergic Neurons/drug effects , Humans , Mice , Mice, Inbred C57BL , TRPC Cation Channels/antagonists & inhibitors , Sigma-1 Receptor
11.
Cell Prolif ; 54(2): e12969, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33332682

ABSTRACT

OBJECTIVES: Various factors could interfere the biological performance of DPSCs during post-thawed process. Yet, little has been known about optimization of the recovery medium for DPSCs. Thus, our study aimed to explore the effects of adding recombinant bFGF on DPSCs after 3-month cryopreservation as well as the underlying mechanisms. MATERIALS AND METHODS: DPSCs were extracted from impacted third molars and purified by MACS. The properties of CD146+ DPSCs (P3) were identified by CCK-8 and flow cytometry. After cryopreservation for 3 months, recovered DPSCs (P4) were immediately supplied with a series of bFGF and analysed cellular proliferation by CCK-8. Then, the optimal dosage of bFGF was determined to further identify apoptosis and TRPC1 channel through Western blot. The succeeding passage (P5) from bFGF pre-treated DPSCs was cultivated in bFGF-free culture medium, cellular proliferation and stemness were verified, and pluripotency was analysed by neurogenic, osteogenic and adipogenic differentiation. RESULTS: It is found that adding 20 ng/mL bFGF in culture medium could significantly promote the proliferation of freshly thawed DPSCs (P4) through suppressing apoptosis, activating ERK pathway and up-regulating TRPC1. Such proliferative superiority could be inherited to the succeeding passage (P5) from bFGF pre-stimulated DPSCs, meanwhile, stemness and pluripotency have not been compromised. CONCLUSIONS: This study illustrated a safe and feasible cell culture technique to rapidly amplify post-thawed DPSCs with robust regenerative potency, which brightening the future of stem cells banking and tissue engineering.


Subject(s)
Cell Proliferation/drug effects , Dental Pulp/metabolism , Fibroblast Growth Factor 2/pharmacology , Adipogenesis/drug effects , Apoptosis/drug effects , CD146 Antigen/metabolism , Cell Differentiation/drug effects , Cryopreservation , Culture Media/chemistry , Dental Pulp/cytology , Humans , MAP Kinase Signaling System/drug effects , Nanog Homeobox Protein/metabolism , Osteogenesis/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Stem Cells/cytology , Stem Cells/metabolism , TRPC Cation Channels/antagonists & inhibitors , TRPC Cation Channels/metabolism , Time Factors , Up-Regulation/drug effects
12.
Commun Biol ; 3(1): 704, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33230284

ABSTRACT

TRPC1/4/5 channels are non-specific cation channels implicated in a wide variety of diseases, and TRPC1/4/5 inhibitors have recently entered clinical trials. However, fundamental and translational studies require a better understanding of TRPC1/4/5 channel regulation by endogenous and exogenous factors. Although several potent and selective TRPC1/4/5 modulators have been reported, the paucity of mechanistic insights into their modes-of-action remains a barrier to the development of new chemical probes and drug candidates. Xanthine-based modulators include the most potent and selective TRPC1/4/5 inhibitors described to date, as well as TRPC5 activators. Our previous studies suggest that xanthines interact with a, so far, elusive pocket of TRPC1/4/5 channels that is essential to channel gating. Here we report the structure of a small-molecule-bound TRPC1/4/5 channel-human TRPC5 in complex with the xanthine Pico145-to 3.0 Å. We found that Pico145 binds to a conserved lipid binding site of TRPC5, where it displaces a bound phospholipid. Our findings explain the mode-of-action of xanthine-based TRPC1/4/5 modulators, and suggest a structural basis for TRPC1/4/5 modulation by endogenous factors such as (phospho)lipids and Zn2+ ions. These studies lay the foundations for the structure-based design of new generations of TRPC1/4/5 modulators.


Subject(s)
TRPC Cation Channels , Xanthines , Humans , Lipids/chemistry , Molecular Docking Simulation , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , TRPC Cation Channels/antagonists & inhibitors , TRPC Cation Channels/chemistry , TRPC Cation Channels/metabolism , Xanthines/chemistry , Xanthines/metabolism
13.
Int J Mol Sci ; 21(21)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158109

ABSTRACT

Traumatic brain injury (TBI) can cause physical, cognitive, social, and behavioral changes that can lead to permanent disability or death. After primary brain injury, translocated free zinc can accumulate in neurons and lead to secondary events such as oxidative stress, inflammation, edema, swelling, and cognitive impairment. Under pathological conditions, such as ischemia and TBI, excessive zinc release, and accumulation occurs in neurons. Based on previous research, it hypothesized that calcium as well as zinc would be influx into the TRPC5 channel. Therefore, we hypothesized that the suppression of TRPC5 would prevent neuronal cell death by reducing the influx of zinc and calcium. To test our hypothesis, we used a TBI animal model. After the TBI, we immediately injected NU6027 (1 mg/kg, intraperitoneal), TRPC5 inhibitor, and then sacrificed animals 24 h later. We conducted Fluoro-Jade B (FJB) staining to confirm the presence of degenerating neurons in the hippocampal cornus ammonis 3 (CA3). After the TBI, the degenerating neuronal cell count was decreased in the NU6027-treated group compared with the vehicle-treated group. Our findings suggest that the suppression of TRPC5 can open a new therapeutic window for a reduction of the neuronal death that may occur after TBI.


Subject(s)
Brain Injuries, Traumatic/pathology , Cell Death/drug effects , Hippocampus/drug effects , Neurons/drug effects , Nitroso Compounds/pharmacology , Pyrimidines/pharmacology , Animals , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/physiopathology , Cell Count , Disease Models, Animal , Hippocampus/metabolism , Hippocampus/pathology , Male , Neurons/pathology , Neurons/physiology , Nitroso Compounds/therapeutic use , Oxidative Stress/drug effects , Pyrimidines/therapeutic use , Rats , Rats, Sprague-Dawley , TRPC Cation Channels/antagonists & inhibitors , Zinc/metabolism
14.
Heart Vessels ; 35(12): 1755-1765, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32844288

ABSTRACT

Increased blood pressure variability (BPV) has been proved to be associated with cardiovascular morbidity and mortality. It is of great significance to elucidate the mechanism of BPV increase. The cation channel transient receptor potential canonical 6 (TRPC6) is involved in a series of cardiovascular disease. Our experiment aimed to explore the role of TRPC6 in the development of BPV increase. Sino-aortic denervation (SAD) operation was applied to establish the model of BPV increase in rats. The BPV was presented as the standard deviation to the mean of systolic or diastolic blood pressure every 1 h during 12 h of the light period. SAD was performed in male Sprague Dawley (SD) rats at the age of 10 weeks. At 8 weeks after SAD operation, the hemodynamic parameters were determined non-invasively via a Rodent Blood Pressure Analysis System. The TRPC6 expressions in myocardial and thoracic aortic tissue was determined utilizing Western Blot, immunofluorescence and quantitative RT-PCR. The expression of TRPC3 was detected as well. To investigate whether TRPC6 was a causative factor of BPV increase in SAD rats, TRPC6 activator and inhibitor with three progressively increasing doses were intraperitoneally injected to the SAD rats. We found that SAD rats presented significant augmentation of systolic and diastolic BPV with no change of BP level and heart rate. The mRNA and protein expression levels of TRPC6 in myocardial and thoracic aortic tissue in SAD rats were substantially increased, but there was no obvious change in TRPC3 expression. The systolic and diastolic BPV increase were dose-dependently exacerbated after TRPC6 activation with GSK1702934A but were dose-dependently attenuated after TRPC6 inhibition with SAR7334. In Conclusion, the TRPC6 (but not TRPC3) expressions in myocardial and thoracic aortic tissue were substantially increased in SAD rats, and TRPC6 probably played an important role in the development of BPV elevation.


Subject(s)
Aorta, Thoracic/metabolism , Arterial Pressure , Baroreflex , Heart Rate , Myocardium/metabolism , TRPC Cation Channels/metabolism , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/innervation , Arterial Pressure/drug effects , Autonomic Denervation , Baroreflex/drug effects , Carotid Sinus/innervation , Heart Rate/drug effects , Indans/pharmacology , Male , Rats, Sprague-Dawley , Signal Transduction , TRPC Cation Channels/agonists , TRPC Cation Channels/antagonists & inhibitors , TRPC Cation Channels/genetics , Up-Regulation
15.
Anesthesiology ; 133(2): 364-376, 2020 08.
Article in English | MEDLINE | ID: mdl-32665491

ABSTRACT

BACKGROUND: Until recently, the mechanism for the malignant hyperthermia crisis has been attributed solely to sustained massive Ca release from the sarcoplasmic reticulum on exposure to triggering agents. This study tested the hypothesis that transient receptor potential cation (TRPC) channels are important contributors to the Ca dyshomeostasis in a mouse model relevant to malignant hyperthermia. METHODS: This study examined the mechanisms responsible for Ca dyshomeostasis in RYR1-p.G2435R mouse muscles and muscle cells using calcium and sodium ion selective microelectrodes, manganese quench of Fura2 fluorescence, and Western blots. RESULTS: RYR1-p.G2435R mouse muscle cells have chronically elevated intracellular resting calcium and sodium and rate of manganese quench (homozygous greater than heterozygous) compared with wild-type muscles. After exposure to 1-oleoyl-2-acetyl-sn-glycerol, a TRPC3/6 activator, increases in intracellular resting calcium/sodium were significantly greater in RYR1-p.G2435R muscles (from 153 ± 11 nM/10 ± 0.5 mM to 304 ± 45 nM/14.2 ± 0.7 mM in heterozygotes P < 0.001] and from 251 ± 25 nM/13.9 ± 0.5 mM to 534 ± 64 nM/20.9 ± 1.5 mM in homozygotes [P < 0.001] compared with 123 ± 3 nM/8 ± 0.1 mM to 196 ± 27 nM/9.4 ± 0.7 mM in wild type). These increases were inhibited both by simply removing extracellular Ca and by exposure to either a nonspecific (gadolinium) or a newly available, more specific pharmacologic agent (SAR7334) to block TRPC6- and TRPC3-mediated cation influx into cells. Furthermore, local pretreatment with SAR7334 partially decreased the elevation of intracellular resting calcium that is seen in RYR1-p.G2435R muscles during exposure to halothane. Western blot analysis showed that expression of TRPC3 and TRPC6 were significantly increased in RYR1-p.G2435R muscles in a gene-dose-dependent manner, supporting their being a primary molecular basis for increased sarcolemmal cation influx. CONCLUSIONS: Muscle cells in knock-in mice expressing the RYR1-p.G2435R mutation are hypersensitive to TRPC3/6 activators. This hypersensitivity can be negated with pharmacologic agents that block TRPC3/6 activity. This reinforces the working hypothesis that transient receptor potential cation channels play a critical role in causing intracellular calcium and sodium overload in malignant hyperthermia-susceptible muscle, both at rest and during the malignant hyperthermia crisis.


Subject(s)
Calcium/metabolism , Disease Models, Animal , Malignant Hyperthermia/metabolism , TRPC Cation Channels/metabolism , TRPC6 Cation Channel/metabolism , Animals , Female , Homeostasis/drug effects , Homeostasis/physiology , Indans/pharmacology , Male , Malignant Hyperthermia/genetics , Malignant Hyperthermia/pathology , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Ryanodine Receptor Calcium Release Channel/biosynthesis , Ryanodine Receptor Calcium Release Channel/genetics , TRPC Cation Channels/antagonists & inhibitors , TRPC Cation Channels/genetics , TRPC6 Cation Channel/antagonists & inhibitors , TRPC6 Cation Channel/genetics
16.
ChemMedChem ; 15(19): 1854-1860, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32717096

ABSTRACT

The nonselective Ca2+ -permeable transient receptor potential channel subfamily member 5 (TRPC5) belongs to the transient receptor potential canonical (TRPC) superfamily and is widely expressed in the brain. Compelling evidence reveals that TRPC5 plays crucial roles in depression and other psychiatric disorders. To develop a TRPC5 radioligand, following up on our previous effort, we synthesized the iodine compound TZ66127 and its iodine-125-labeled counterpart [125 I]TZ66127. The synthesis of TZ66127 was achieved by replacing chloride with iodide in the structure of HC608, and the [125 I]TZ66127 was radiosynthesized using its corresponding tributylstannylated precursor. We established a stable human TRPC5-overexpressed HEK293-hTRPC5 cell line and performed Ca2+ imaging and a cell-binding assay study of TZ66127; these indicated that TZ66127 had good inhibition activity for TRPC5, and the inhibitory efficiency of TZ66127 toward TRPC5 presented in a dose-dependent manner. An in vitro autoradiography and immunohistochemistry study of rat brain sections suggested that [125 I]TZ66127 had binding specificity toward TRPC5. Altogether, [125 I]TZ66127 has high potential to serve as a radioligand for screening the binding activity of other new compounds toward TRPC5. The availability of [125 I]TZ66127 might facilitate the development of therapeutic drugs and PET imaging agents that target TRPC5.


Subject(s)
Radioligand Assay , Radiopharmaceuticals/pharmacology , TRPC Cation Channels/antagonists & inhibitors , Animals , Brain/metabolism , Calcium/analysis , Calcium/metabolism , Cells, Cultured , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Iodine Radioisotopes , Molecular Structure , Positron-Emission Tomography , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry , Rats , TRPC Cation Channels/chemistry , TRPC Cation Channels/metabolism
17.
Peptides ; 131: 170297, 2020 09.
Article in English | MEDLINE | ID: mdl-32380199

ABSTRACT

CGA1-78 (Vasostatin-1, VS-1) a N-terminal Chromogranin A (CGA)-derived peptide, has been shown to have a protective effect against TNF-α-induced impairment of endothelial cell integrity. However, the mechanisms of this effect have not yet been clarified. CGA47-66 (Chromofungin, CHR) is an important bioactive fragment of CGA1-78. The present study aims to explore the protective effects of CHR on the vascular endothelial cell barrier response to TNF-α and its related Ca2+ signaling mechanisms. EA.hy926 cells were used as a vascular endothelial culture model. The synthetic peptides CHR and CGA4-16 were assessed for their ability to suppress TNF-α-induced EA.hy926 cells hyper-permeability through Transwell® and TEER assays. Changes in [Ca2+]i were measured through confocal laser scanning microscopy. SOC channel currents (Isoc) were measured via patch-clamp analysis. RT-PCR and western blot were used to analyze mRNA and protein expression of the transient receptor potential channels TRPC1 and TRPC4, respectively. FITC and rhodamine-phalloidin fluorescence were used to assess cell morphology and the distribution of MyPT-1 and F-actin. Compared to untreated cells, TNF-α increased the permeability of EA.hy926 cells that was inhibited by pre-treatment with CHR (10-1000 nM) in concentration-dependent manner, and the effect was most obvious at 100 nM, but CGA4-16 (100 nM) had no effect. TNF-α treatment increased the phosphorylation of MyPT-1 and stress fiber formation. CHR (10-1000 nM) pretreatment inhibited the cytoskeletal rearrangements and increased [Ca2+]i in response to TNF-α treatment. CHR also reduced TRPC1 expression following TNF-α induction. Similar to SOC inhibitor 2-APB, CHR suppressed IP3 mediated SOC activation. These findings suggest that CHR inhibits TNF-α-induced Ca2+ influx and protects the barrier function of vascular endothelial cells, and that these effects are related to the inhibition of SOC and Ca2+ signaling by CHR.


Subject(s)
Calcium Signaling/drug effects , Chromogranin A/pharmacology , Endothelial Cells/drug effects , Peptide Fragments/pharmacology , TRPC Cation Channels/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/ultrastructure , Actins/genetics , Actins/metabolism , Calcium/metabolism , Cell Line, Transformed , Cell Membrane Permeability/drug effects , Diffusion Chambers, Culture , Dose-Response Relationship, Drug , Endothelial Cells/cytology , Endothelial Cells/metabolism , Gene Expression Regulation , Humans , Inositol 1,4,5-Trisphosphate/metabolism , Myosin-Light-Chain Phosphatase/genetics , Myosin-Light-Chain Phosphatase/metabolism , Patch-Clamp Techniques , Phosphorylation , TRPC Cation Channels/antagonists & inhibitors , TRPC Cation Channels/genetics , Tumor Necrosis Factor-alpha/pharmacology
18.
J Neuroinflammation ; 17(1): 118, 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32299452

ABSTRACT

BACKGROUND: Neuropathic pain is a debilitating status that is insusceptible to the existing analgesics. It is important to explore the underlying pathophysiological changes and search for new pharmacological approaches. Transient receptor potential canonical 6 (TRPC6) is a mechanosensitive channel that is expressed by dorsal root ganglia and glial cells. It has been demonstrated that this channel in dorsal root ganglia plays essential roles in the formation of mechanical hyperalgesia in neuropathic pain. Recent pharmacological screening suggests that larixyl acetate (LA), a main constituent of larch resin, is able to selectively inhibit TRPC6 function. But whether LA is effective in treating neuropathic pain remains unknown. We investigated the efficacy of LA in rat neuropathic pain model, examined its effects on central neuroinflammation, and explored the possible molecular mechanisms by targeting the spinal dorsal horn. METHODS: Spared nerve injury (SNI) was conducted in Sprague-Dawley rats. Mechanical hypersensitivity and cold allodynia before and after single and multiple i.t. applications of LA at the dose of 3, 10, and 30 µM were evaluated by von Frey filament and acetone tests, respectively. Western blot, immunohistochemical, and immunocytochemical stainings were employed to examine the level and expression feature of ionized calcium-binding adaptor molecule 1 (Iba-1), glial fibrillary acidic protein (GFAP), TRPC6, and phosphorylated p38 kinase. The changes of cytokine concentrations, including that of TNF-α, IL-1ß, IL-6, and IL-10, were also assessed by multiplex analysis. TRPC6 antisense strategy was finally adopted to investigate the action mechanisms of LA. RESULTS: Single application of LA on day 5 post injury caused dose-dependent inhibition of mechanical allodynia with the ED50 value of 13.43 µM. Multiple applications of LA at 30 µM not only enhanced the analgesic efficacy but also elongated the effective duration without obvious influences on animal locomotor activities. Single and multiple administrations of LA at 30 µM played similar but weaker inhibitory effects on cold allodynia. In addition to behavioral improvements, multiple applications of LA for 6 days dose-dependently inhibited the upregulation of Iba-1, TNF-α, IL-1ß, and IL-6, whereas had no obvious effects on the levels of GFAP and IL-10. Combined Western blot and immunostaining assays revealed that the expression of TRPC6 was significantly increased in both spinal dorsal horn after nerve injury and the cultured microglia challenged by LPS, which was however suppressed by the addition of LA at 30 µM or 10 µM, respectively. Further knockdown of TRPC6 with antisense oligodeoxynucleotide produced prominent analgesic effects in rats with SNI, accompanied by the reduced phosphorylation level of p38 in the microglia. CONCLUSIONS: These data demonstrate that i.t. applied LA exhibits analgesic and anti-inflammatory action in neuropathic pain. The action of LA involves the suppression of TRPC6 and p38 signaling in the microglia. LA may be thus a promising pharmacological candidate for the treatment of intractable chronic pain.


Subject(s)
Acetates/therapeutic use , Analgesics/therapeutic use , Naphthalenes/therapeutic use , Neuralgia/drug therapy , Neuralgia/metabolism , TRPC Cation Channels/antagonists & inhibitors , TRPC Cation Channels/metabolism , Acetates/pharmacology , Analgesics/pharmacology , Animals , Animals, Newborn , Cells, Cultured , Dose-Response Relationship, Drug , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Hyperalgesia/pathology , Male , Mice , Naphthalenes/pharmacology , Neuralgia/pathology , Pain Threshold/drug effects , Pain Threshold/physiology , Rats , Rats, Sprague-Dawley
19.
J Invest Dermatol ; 140(11): 2221-2229.e6, 2020 11.
Article in English | MEDLINE | ID: mdl-32289348

ABSTRACT

Psoriasis is an inflammatory skin disease associated with itch, which is a troublesome symptom with a few therapeutic options. TRPC4 is highly expressed in dorsal root ganglia (DRGs). Recently, we have revealed itch signaling in DRG neurons by which TRPC4 mediates itch to serotonergic antidepressants and demonstrated the antipruritic effect of the TRPC4 inhibitor ML204. However, the role of TRPC4 in acute and chronic itch is still largely unknown. Here, we have characterized the expression of TRPC4 in peptidergic DRG neurons and showed that acute itch induced by serotonin and histamine was attenuated in Trpc4-knockout mice and ML204-treated mice. We have also shown that silencing TRPC4 in DRG and its inhibition by intradermal injections were also effective in decreasing psoriatic itch after the repeated application of imiquimod, which is a preclinical model of psoriasis. Of clinical relevance, intradermal injections of ML204 in psoriasiform skin significantly reversed imiquimod-established chronic itch and cutaneous inflammation. Given that TRPC4 is expressed in human DRGs and a specific inhibitor is in clinical trials, our data not only expand our understanding of itch and psoriasis, but also reveal TRPC4 as a potential therapeutic target with considerable translational benefits.


Subject(s)
Dermatitis/etiology , Ganglia, Spinal/physiology , Pruritus/etiology , Psoriasis/etiology , TRPC Cation Channels/physiology , Animals , Dermatitis/drug therapy , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Pruritus/drug therapy , Psoriasis/drug therapy , Serotonin/pharmacology , TRPC Cation Channels/antagonists & inhibitors
20.
Cardiovasc Ther ; 2020: 1926249, 2020.
Article in English | MEDLINE | ID: mdl-32328171

ABSTRACT

Isoliquiritigenin (ISL) is a flavonoid isolated mainly from the licorice plant, a traditional Chinese herb. ISL has shown anticancer, anti-inflammatory, antioxidant, and antidiabetic activities. However, the pharmaceutical effects of ISL on atherosclerosis are seldom explored. In this study, we used apolipoprotein E (ApoE) knockout mouse model and angiotensin II- (Ang II-) stimulated vascular smooth muscle cells (VSMCs) to elucidate the pharmacological mechanism of ISL to inhibit atherosclerosis. We found that in ApoE-/- mice ISL could attenuate atherosclerotic lesion, reduce serum lipid levels, and inhibit TRPC5 expression. In vitro, ISL inhibited Ang II-stimulated proliferation of VSMCs and suppressed Ang II-induced TRPC5 and PCNA expressions in a dose-dependent fashion. In conclusion, our findings provide novel insight into the pharmacological effects of ISL on atherosclerosis and suggest that ISL is beneficial for cardiovascular protection.


Subject(s)
Aorta/drug effects , Aortic Diseases/prevention & control , Atherosclerosis/prevention & control , Chalcones/pharmacology , Plaque, Atherosclerotic , TRPC Cation Channels/antagonists & inhibitors , Animals , Aorta/metabolism , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/metabolism , Aortic Diseases/pathology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cell Proliferation/drug effects , Cells, Cultured , Disease Models, Animal , Lipids/blood , Mice, Inbred C57BL , Mice, Knockout, ApoE , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Signal Transduction , TRPC Cation Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...