Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 819
Filter
1.
Card Electrophysiol Clin ; 16(2): 203-210, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749642

ABSTRACT

Bidirectional ventricular tachycardia is a unique arrhythmia that can herald lethal arrhythmia syndromes. Using cases based on real patient stories, this article examines 3 different presentations to help clinicians learn the differential diagnosis associated with this condition. Each associated genetic disorder will be briefly discussed, and valuable tips for distinguishing them from each other will be provided.


Subject(s)
Tachycardia, Ventricular , Humans , Diagnosis, Differential , Male , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/physiopathology , Female , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/physiopathology , Electrocardiography , Child , Long QT Syndrome/genetics , Long QT Syndrome/diagnosis , Long QT Syndrome/physiopathology
3.
Chem Pharm Bull (Tokyo) ; 72(4): 399-407, 2024.
Article in English | MEDLINE | ID: mdl-38644198

ABSTRACT

Ryanodine receptor 2 (RyR2) is a large Ca2+-release channel in the sarcoplasmic reticulum (SR) of cardiac muscle cells. It serves to release Ca2+ from the SR into the cytosol to initiate muscle contraction. RyR2 overactivation is associated with arrhythmogenic cardiac disease, but few specific inhibitors have been reported so far. Here, we identified an RyR2-selective inhibitor 1 from the chemical compound library and synthesized it from glycolic acid. Synthesis of various derivatives to investigate the structure-activity relationship of each substructure afforded another two RyR2-selective inhibitors 6 and 7, among which 6 was the most potent. Notably, compound 6 also inhibited Ca2+ release in cells expressing the RyR2 mutants R2474S, R4497C and K4750Q, which are associated with cardiac arrhythmias such as catecholaminergic polymorphic ventricular tachycardia (CPVT). This inhibitor is expected to be a useful tool for research on the structure and dynamics of RyR2, as well as a lead compound for the development of drug candidates to treat RyR2-related cardiac disease.


Subject(s)
Calcium Channel Blockers , Ryanodine Receptor Calcium Release Channel , Humans , Calcium/metabolism , Dose-Response Relationship, Drug , Drug Discovery , HEK293 Cells , Molecular Structure , Ryanodine Receptor Calcium Release Channel/drug effects , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Structure-Activity Relationship , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/pharmacology , Anti-Arrhythmia Agents/chemistry , Anti-Arrhythmia Agents/pharmacology , Tachycardia, Ventricular/drug therapy , Tachycardia, Ventricular/genetics
4.
Eur J Heart Fail ; 26(3): 581-589, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38404225

ABSTRACT

AIMS: Dilated cardiomyopathy (DCM) with arrhythmic phenotype combines phenotypical aspects of DCM and predisposition to ventricular arrhythmias, typical of arrhythmogenic cardiomyopathy. The definition of DCM with arrhythmic phenotype is not universally accepted, leading to uncertainty in the identification of high-risk patients. This study aimed to assess the prognostic impact of arrhythmic phenotype in risk stratification and the correlation of arrhythmic markers with high-risk arrhythmogenic gene variants in DCM patients. METHODS AND RESULTS: In this multicentre study, DCM patients with available genetic testing were analysed. The following arrhythmic markers, present at baseline or within 1 year of enrolment, were tested: unexplained syncope, rapid non-sustained ventricular tachycardia (NSVT), ≥1000 premature ventricular contractions/24 h or ≥50 ventricular couplets/24 h. LMNA, FLNC, RBM20, and desmosomal pathogenic or likely pathogenic gene variants were considered high-risk arrhythmogenic genes. The study endpoint was a composite of sudden cardiac death and major ventricular arrhythmias (SCD/MVA). We studied 742 DCM patients (45 ± 14 years, 34% female, 410 [55%] with left ventricular ejection fraction [LVEF] <35%). During a median follow-up of 6 years (interquartile range 1.6-12.1), unexplained syncope and NSVT were the only arrhythmic markers associated with SCD/MVA, and the combination of the two markers carried a significant additive risk of SCD/MVA, incremental to LVEF and New York Heart Association class. The probability of identifying an arrhythmogenic genotype rose from 8% to 30% if both early syncope and NSVT were present. CONCLUSION: In DCM patients, the combination of early detected NSVT and unexplained syncope increases the risk of life-threatening arrhythmic outcomes and can aid the identification of carriers of malignant arrhythmogenic genotypes.


Subject(s)
Cardiomyopathy, Dilated , Death, Sudden, Cardiac , Phenotype , Humans , Female , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/physiopathology , Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Dilated/complications , Male , Middle Aged , Prognosis , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/etiology , Adult , Risk Assessment/methods , Syncope/genetics , Syncope/etiology , Syncope/physiopathology , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/diagnosis , Stroke Volume/physiology , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/physiopathology , Tachycardia, Ventricular/diagnosis , Genetic Testing/methods
5.
BMJ Case Rep ; 17(2)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383124

ABSTRACT

Arrhythmogenic cardiomyopathy is a non-ischaemic cardiomyopathy characterised by the presence of myocardial dysfunction and inherited conduction disease that predisposes patients to malignant ventricular arrhythmias and sudden cardiac death. There is a growing awareness of the diverse phenotypic presentation of arrhythmogenic cardiomyopathy, which may demonstrate preferential involvement of the left, right or both ventricles. A subset of arrhythmogenic cardiomyopathy may be due to mutations of desmosomes, intercellular junctions of the myocardium that promote structural and electrical integrity. Mutations of desmoplakin, encoded by the DSP gene and a critical constituent protein of desmosomes, have been implicated in the onset of arrhythmogenic cardiomyopathy. We present a structured case report of desmoplakin arrhythmogenic cardiomyopathy secondary to novel heterozygous DSP mutations (c.1061T>C and c.795G>C) manifesting as early onset non-ischaemic cardiomyopathy and recurrent ventricular tachycardia refractory to multiple modalities of therapy, including oral antiarrhythmics, cardiac ablation and bilateral sympathectomy, as well as frequent implantable cardioverter-defibrillator discharges.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Cardiomyopathies , Tachycardia, Ventricular , Humans , Desmoplakins/genetics , Arrhythmogenic Right Ventricular Dysplasia/complications , Arrhythmogenic Right Ventricular Dysplasia/diagnosis , Arrhythmogenic Right Ventricular Dysplasia/genetics , Cardiomyopathies/complications , Cardiomyopathies/genetics , Cardiomyopathies/therapy , Myocardium/pathology , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/therapy
6.
Pacing Clin Electrophysiol ; 47(4): 503-510, 2024 04.
Article in English | MEDLINE | ID: mdl-38375917

ABSTRACT

INTRODUCTION: Arrhythmogenic cardiomyopathy (AC) is an inherited cardiomyopathy characterized by fibro-fatty replacement of cardiomyocytes, leading to life-threatening ventricular arrhythmia and heart failure. Pathogenic variants of desmoglein2 gene (DSG2) have been reported as genetic etiologies of AC. In contrast, many reported DSG2 variants are benign or variants of uncertain significance. Correct genetic variant classification is crucial for determining the best medical therapy for the patient and family members. METHODS: Pathogenicity of the DSG2 Ser194Leu variant that was identified by whole exome sequencing in a patient, who presented with ventricular tachycardia and was diagnosed with AC, was investigated by electron microscopy and immunohistochemical staining of endomyocardial biopsy sample. RESULTS: Electron microscopy demonstrated a widened gap in the adhering junction and a less well-organized intercalated disk region in the mutated cardiomyocytes compared to the control. Immunohistochemical staining in the proband diagnosed with AC showed reduced expression of desmoglein 2 and connexin 43 and intercalated disc distortion. Reduced expression of DSG2 and Connexin 43 were observed in cellular cytoplasm and gap junctions. Additionally, we detected perinuclear accumulation of DSG2 and Connexin 43 in the proband sample. CONCLUSION: Ser194Leu is a missense pathogenic mutation of DSG2 gene associated with arrhythmogenic left ventricular cardiomyopathy.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Cardiomyopathies , Tachycardia, Ventricular , Humans , Connexin 43/genetics , Connexin 43/metabolism , Arrhythmogenic Right Ventricular Dysplasia/genetics , Cardiomyopathies/complications , Mutation/genetics , Arrhythmias, Cardiac/complications , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/complications , Myocytes, Cardiac/metabolism , Desmoglein 2/genetics , Desmoglein 2/metabolism
7.
J Mol Cell Cardiol ; 188: 15-29, 2024 03.
Article in English | MEDLINE | ID: mdl-38224852

ABSTRACT

FKBP12.6, a binding protein to the immunosuppressant FK506, which also binds the ryanodine receptor (RyR2) in the heart, has been proposed to regulate RyR2 function and to have antiarrhythmic properties. However, the level of FKBP12.6 expression in normal hearts remains elusive and some controversies still persist regarding its effects, both in basal conditions and during ß-adrenergic stimulation. We quantified FKBP12.6 in the left ventricles (LV) of WT (wild-type) mice and in two novel transgenic models expressing distinct levels of FKBP12.6, using a custom-made specific anti-FKBP12.6 antibody and a recombinant protein. FKBP12.6 level in WT LV was very low (0.16 ± 0.02 nmol/g of LV), indicating that <15% RyR2 monomers are bound to the protein. Mice with 14.1 ± 0.2 nmol of FKBP12.6 per g of LV (TG1) had mild cardiac hypertrophy and normal function and were protected against epinephrine/caffeine-evoked arrhythmias. The ventricular myocytes showed higher [Ca2+]i transient amplitudes than WT myocytes and normal SR-Ca2+ load, while fewer myocytes showed Ca2+ sparks. TG1 cardiomyocytes responded to 50 nM Isoproterenol increasing these [Ca2+]i parameters and producing RyR2-Ser2808 phosphorylation. Mice with more than twice the TG1 FKBP12.6 value (TG2) showed marked cardiac hypertrophy with calcineurin activation and more arrhythmias than WT mice during ß-adrenergic stimulation, challenging the protective potential of high FKBP12.6. RyR2R420Q CPVT mice overexpressing FKBP12.6 showed fewer proarrhythmic events and decreased incidence and duration of stress-induced bidirectional ventricular tachycardia. Our study, therefore, quantifies for the first time endogenous FKBP12.6 in the mouse heart, questioning its physiological relevance, at least at rest due its low level. By contrast, our work demonstrates that with caution FKBP12.6 remains an interesting target for the development of new antiarrhythmic therapies.


Subject(s)
Ryanodine Receptor Calcium Release Channel , Tachycardia, Ventricular , Tacrolimus Binding Proteins , Animals , Mice , Adrenergic Agents , Anti-Arrhythmia Agents/pharmacology , Cardiomegaly , Incidence , Myocytes, Cardiac , Tachycardia, Ventricular/genetics
9.
Gene ; 895: 148012, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37995796

ABSTRACT

BACKGROUND: Although structural heart disease is frequently present among patients who experience sudden cardiac death (SCD), inherited arrhythmia syndromes can also play an important role in the occurrence of SCD. CPVT2, which is the second-most prevalent form of CPVT, arises from an abnormality in the CASQ2 gene. OBJECTIVE: We represent a novel CASQ2 variant that causes CPVT2 and conduct a comprehensive review on this topic. METHODS: The proband underwent Whole-exome sequencing (WES) in order to ascertain the etiology of CPVT. Subsequently, the process of segregating the available family members was carried out through the utilization of PCR and Sanger Sequencing. We searched the google scholar and PubMed/Medline for studies reporting CASQ2 variants, published up to May 10,2023. We used the following mesh term "Calsequestrin" and using free-text method with terms including "CASQ2","CASQ2 variants", and "CASQ2 mutation". RESULTS: The CASQ2 gene was found to contain an autosomal recessive nonsense variant c.268_269insTA:p.Gly90ValfsTer4, which was identified by WES. This variant was determined to be the most probable cause of CPVT in the pedigree under investigation. CONCLUSION: CASQ2 variants play an important role in pathogenesis of CPVT2. Notabely, based on results of our study and other findings in the literature the variant in this gene may cause an neurological signs in the patients with CPVT2. Further studies are needed for more details about the role of this gene in CPVT evaluation, diagnosis, and gene therapy.


Subject(s)
Calsequestrin , Tachycardia, Ventricular , Child , Female , Humans , Male , Calsequestrin/genetics , Electrocardiography , Exome Sequencing , Heart/physiopathology , Pedigree , Syncope/genetics , Tachycardia, Ventricular/genetics , Codon, Nonsense/genetics , Mutation
10.
JACC Clin Electrophysiol ; 10(3): 585-603, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38127011

ABSTRACT

Advances in the field of human genetics have led to an accumulating understanding of the genetic basis of distinct nonischemic cardiomyopathies associated with ventricular tachycardias (VTs) and sudden cardiac death. To date, there is an increasing proportion of patients with inherited cardiomyopathies requiring catheter ablation for VTs. This review provides an overview of disease-causing gene mutations frequently encountered and relevant for clinical electrophysiologists. Available data on VT ablation in patients with an inherited etiology and a phenotype of a nondilated left ventricular cardiomyopathy, dilated cardiomyopathy, or hypertrophic cardiomyopathy are summarized. VTs amenable to catheter ablation are related to nonischemic fibrosis. Recent insights into genotype-phenotype relations of subtype and location of fibrosis have important implications for treatment planning. Current strategies to delineate nonischemic fibrosis and related arrhythmogenic substrates using multimodal imaging, image integration, and electroanatomical mapping are provided. The ablation approach depends on substrate location and extension. Related procedural aspects including patient-tailored (enhanced) ablation strategies and outcomes are outlined. Challenging substrates for VT and the underlying inherited etiologies with a high risk for rapid progressive heart failure contribute to poor outcomes after catheter ablation. Electroanatomical data obtained during ablation may allow the identification of patients at particular risk who need to be considered for early work-up for left ventricular assist device implantation or heart transplantation.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Catheter Ablation , Tachycardia, Ventricular , Humans , Treatment Outcome , Cardiomyopathies/complications , Cardiomyopathies/genetics , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/surgery , Cardiomyopathy, Dilated/complications , Fibrosis , Catheter Ablation/methods
11.
Orphanet J Rare Dis ; 18(1): 380, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38053087

ABSTRACT

BACKGROUNDS: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare but lethal cardiac ion channelopathy. Delayed diagnosis and misdiagnosis remain a matter of concern due to its rarity and insufficient recognition of this disorder, particularly in developing countries like China. AIMS AND METHODS: We reported six catecholaminergic polymorphic ventricular tachycardia (CPVT) children diagnosed in our center along with a comprehensive review of Chinese pediatric CPVT patients reported in domestic and overseas literature between January 2013 and December 2021 to provide an essential reference for physicians to deepen their understanding of pediatric CPVT. RESULTS: A total of 95 children with CPVT, including our six patients from 21 medical centers were identified. The median age of symptom onset is 8.7 ± 3.0 years. Diagnosis occurred at a median age of 12.9 ± 6.8 years with a delay of 4.3 ± 6.6 years. Selective beta-blockers (Metoprolol and Bisoprolol) were prescribed for 38 patients (56.7%) and 29 (43.3%) patients received non-selective beta-blocker (Propranolol and Nadolol) treatment. Six patients accepted LCSD and seven received ICD implantation at the subsequent therapy. A total of 13 patients died during the disease course. Of the 67 patients with positive gene test results, variants in RYR2 were 47 (70.1%), CASQ2 were 11 (16.4%), and RYR2 accompanied SCN5A were 7 (10.4%). Patients with CASQ2 gene mutations presented with younger symptom onset age, higher positive family history rate and better prognosis than those with RYR2 mutations. CONCLUSION: Chinese pediatric patients with CPVT had a poorer prognosis than other cohorts, probably due to delayed/missed diagnosis, non-standard usage of beta-blockers, unavailability of flecainide, and a lower rate of LCSD and ICD implantation.


Subject(s)
Ryanodine Receptor Calcium Release Channel , Tachycardia, Ventricular , Adolescent , Child , Child, Preschool , Humans , Young Adult , East Asian People , Genetic Profile , Mutation/genetics , Ryanodine Receptor Calcium Release Channel/genetics , Tachycardia, Ventricular/drug therapy , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/diagnosis
12.
Biomolecules ; 13(12)2023 11 23.
Article in English | MEDLINE | ID: mdl-38136565

ABSTRACT

Calsequestrin (CASQ) is a key intra-sarcoplasmic reticulum Ca2+-handling protein that plays a pivotal role in the contraction of cardiac and skeletal muscles. Its Ca2+-dependent polymerization dynamics shape the translation of electric excitation signals to the Ca2+-induced contraction of the actin-myosin architecture. Mutations in CASQ are linked to life-threatening pathological conditions, including tubular aggregate myopathy, malignant hyperthermia, and Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT). The variability in the penetrance of these phenotypes and the lack of a clear understanding of the disease mechanisms associated with CASQ mutations pose a major challenge to the development of effective therapeutic strategies. In vitro studies have mainly focused on the polymerization and Ca2+-buffering properties of CASQ but have provided little insight into the complex interplay of structural and functional changes that underlie disease. In this review, the biochemical and structural natures of CASQ are explored in-depth, while emphasizing their direct and indirect consequences for muscle Ca2+ physiology. We propose a novel functional classification of CASQ pathological missense mutations based on the structural stability of the monomer, dimer, or linear polymer conformation. We also highlight emerging similarities between polymeric CASQ and polyelectrolyte systems, emphasizing the potential for the use of this paradigm to guide further research.


Subject(s)
Calsequestrin , Tachycardia, Ventricular , Humans , Calsequestrin/genetics , Calsequestrin/metabolism , Heart , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/metabolism , Sarcoplasmic Reticulum/metabolism , Mutation, Missense , Calcium/metabolism
13.
J Med Life ; 16(8): 1294-1296, 2023 Aug.
Article in English | MEDLINE | ID: mdl-38024821

ABSTRACT

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia syndrome characterized by defective cardiac ryanodine receptor (RyR2) calcium release during times of adrenergic stimulation, resulting in bidirectional or polymorphic ventricular tachycardia. Flecainide is a class 1c anti-arrhythmic drug that has demonstrated therapeutic efficacy in treating CPVT. However, its mechanism of action remains disputed. One group proposes a direct effect of flecainide on RyR2-mediated calcium release, while another proposes an indirect effect via sodium channel blockade and modulation of intracellular calcium dynamics. In light of recent studies, this commentary aims to explore and discuss the evidence base for these potential mechanisms.


Subject(s)
Flecainide , Tachycardia, Ventricular , Humans , Flecainide/pharmacology , Flecainide/therapeutic use , Anti-Arrhythmia Agents/therapeutic use , Anti-Arrhythmia Agents/pharmacology , Ryanodine Receptor Calcium Release Channel/genetics , Calcium , Tachycardia, Ventricular/drug therapy , Tachycardia, Ventricular/genetics , Mutation
14.
Elife ; 122023 10 18.
Article in English | MEDLINE | ID: mdl-37851708

ABSTRACT

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetic cardiac disease that leads to ventricular tachycardia (VT), a life-threatening heart rhythm disorder. Treating ARVC remains challenging due to the complex underlying arrhythmogenic mechanisms, which involve structural and electrophysiological (EP) remodeling. Here, we developed a novel genotype-specific heart digital twin (Geno-DT) approach to investigate the role of pathophysiological remodeling in sustaining VT reentrant circuits and to predict the VT circuits in ARVC patients of different genotypes. This approach integrates the patient's disease-induced structural remodeling reconstructed from contrast-enhanced magnetic-resonance imaging and genotype-specific cellular EP properties. In our retrospective study of 16 ARVC patients with two genotypes: plakophilin-2 (PKP2, n = 8) and gene-elusive (GE, n = 8), we found that Geno-DT accurately and non-invasively predicted the VT circuit locations for both genotypes (with 100%, 94%, 96% sensitivity, specificity, and accuracy for GE patient group, and 86%, 90%, 89% sensitivity, specificity, and accuracy for PKP2 patient group), when compared to VT circuit locations identified during clinical EP studies. Moreover, our results revealed that the underlying VT mechanisms differ among ARVC genotypes. We determined that in GE patients, fibrotic remodeling is the primary contributor to VT circuits, while in PKP2 patients, slowed conduction velocity and altered restitution properties of cardiac tissue, in addition to the structural substrate, are directly responsible for the formation of VT circuits. Our novel Geno-DT approach has the potential to augment therapeutic precision in the clinical setting and lead to more personalized treatment strategies in ARVC.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Tachycardia, Ventricular , Humans , Arrhythmogenic Right Ventricular Dysplasia/genetics , Retrospective Studies , Tachycardia, Ventricular/genetics , Arrhythmias, Cardiac , Genotype
16.
Stem Cell Res Ther ; 14(1): 266, 2023 09 23.
Article in English | MEDLINE | ID: mdl-37740238

ABSTRACT

BACKGROUND: Polymorphic ventricular tachycardia (PMVT) is a rare genetic disease associated with structurally normal hearts which in 8% of cases can lead to sudden cardiac death, typically exercise-induced. We previously showed a link between the RyR2-H29D mutation and a clinical phenotype of short-coupled PMVT at rest using patient-specific hiPSC-derived cardiomyocytes (hiPSC-CMs). In the present study, we evaluated the effects of clinical and experimental anti-arrhythmic drugs on the intracellular Ca2+ handling, contractile and molecular properties in PMVT hiPSC-CMs in order to model a personalized medicine approach in vitro. METHODS: Previously, a blood sample from a patient carrying the RyR2-H29D mutation was collected and reprogrammed into several clones of RyR2-H29D hiPSCs, and in addition we generated an isogenic control by reverting the RyR2-H29D mutation using CRIPSR/Cas9 technology. Here, we tested 4 drugs with anti-arrhythmic properties: propranolol, verapamil, flecainide, and the Rycal S107. We performed fluorescence confocal microscopy, video-image-based analyses and biochemical analyses to investigate the impact of these drugs on the functional and molecular features of the PMVT RyR2-H29D hiPSC-CMs. RESULTS: The voltage-dependent Ca2+ channel inhibitor verapamil did not prevent the aberrant release of sarcoplasmic reticulum (SR) Ca2+ in the RyR2-H29D hiPSC-CMs, whereas it was prevented by S107, flecainide or propranolol. Cardiac tissue comprised of RyR2-H29D hiPSC-CMs exhibited aberrant contractile properties that were largely prevented by S107, flecainide and propranolol. These 3 drugs also recovered synchronous contraction in RyR2-H29D cardiac tissue, while verapamil did not. At the biochemical level, S107 was the only drug able to restore calstabin2 binding to RyR2 as observed in the isogenic control. CONCLUSIONS: By testing 4 drugs on patient-specific PMVT hiPSC-CMs, we concluded that S107 and flecainide are the most potent molecules in terms of preventing the abnormal SR Ca2+ release and contractile properties in RyR2-H29D hiPSC-CMs, whereas the effect of propranolol is partial, and verapamil appears ineffective. In contrast with the 3 other drugs, S107 was able to prevent a major post-translational modification of RyR2-H29D mutant channels, the loss of calstabin2 binding to RyR2. Using patient-specific hiPSC and CRISPR/Cas9 technologies, we showed that S107 is the most efficient in vitro candidate for treating the short-coupled PMVT at rest.


Subject(s)
Calcium , Tachycardia, Ventricular , Humans , Myocytes, Cardiac , Flecainide/pharmacology , Propranolol/pharmacology , Propranolol/therapeutic use , Anti-Arrhythmia Agents , Precision Medicine , Ryanodine Receptor Calcium Release Channel/genetics , Tachycardia, Ventricular/drug therapy , Tachycardia, Ventricular/genetics , Verapamil/pharmacology , Verapamil/therapeutic use
17.
J Cardiovasc Electrophysiol ; 34(10): 2112-2121, 2023 10.
Article in English | MEDLINE | ID: mdl-37717241

ABSTRACT

INTRODUCTION: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare inherited disorder usually affecting the right ventricle (RV), characterized by fibro-fatty tissue replacement of the healthy ventricular myocardium. It often predisposes young patients to ventricular tachycardia, heart failure, and/or sudden cardiac death. However, recent studies have suggested predominantly left ventricle (LV) involvement with variable and/or atypical manifestations. Cardiac magnetic resonance (CMR) imaging has emerged as the noninvasive gold standard for the diagnosis of ARVC. CASE SUMMARY: A 21-year-old athletic male with a family history of unknown ventricular arrhythmias, presented with near syncope, chest pain, and exertional palpitations. He had an initial work-up that was grossly unremarkable including an electrocardiogram (ECG), echocardiogram and a CMR study. Six months later, he presented again with recurrent symptoms of presyncope during exercise and his ECG demonstrated new findings of a terminal activation delay in his precordial leads. He had markedly elevated cardiac biomarkers, (troponin I > 100 ng/dl, normal value < 0.04 ng/dl) and demonstrated ventricular tachycardia with a right bundle branch morphology. An endomyocardial biopsy did not reveal any pathology. A follow-up CMR demonstrated the new development and prominent left ventricular epicardial scar in the lateral wall. The patient underwent familial genetic testing, which confirmed the presence of an isolated junction plakoglobin (JUP) gene mutation and showed multiple genes consistent with ARVC in his mother. Thus, he manifested a partial transmission of only one abnormal gene for ARVC and exhibited a markedly different expression in his disease without evidence of typical right-sided heart pathology. A third CMR study was performed, which showed partial improvement in myocardial fibrosis after exercise cessation. CONCLUSION: We present a case of a young athletic male with a newly diagnosed isolated JUP gene mutation and a genetically diagnosed family history of ARVC. During his course, he demonstrated the progression of new, atypical, left ventricular fibrosis. This case demonstrates a complex interplay between genetic penetrance, phenotypical heterogeneity, and lifestyle factors such as exercise in disease progression and provides insight into the natural course of an isolated JUP mutation. Although rare, clinicians should have a high threshold for the clinical suspicion of ARVC or variants of this disorder even in the absence of classic right-sided pathologies.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Tachycardia, Ventricular , Humans , Male , Young Adult , Arrhythmias, Cardiac , Arrhythmogenic Right Ventricular Dysplasia/diagnosis , Arrhythmogenic Right Ventricular Dysplasia/diagnostic imaging , Electrocardiography , Fibrosis , gamma Catenin/genetics , Heart Ventricles , Mutation , Tachycardia, Ventricular/etiology , Tachycardia, Ventricular/genetics
18.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(8): 960-965, 2023 Aug 10.
Article in Chinese | MEDLINE | ID: mdl-37532495

ABSTRACT

OBJECTIVE: To explore the clinical and genetic characteristics of five children with Catecholaminergic polymorphic ventricular tachycardia (CPVT). METHODS: Five children with clinical manifestations consistent with CPVT admitted to the Department of Cardiology of Children's Hospital Affiliated to Zhengzhou University from November 2019 to November 2021 were selected as the study subjects. Their clinical data were collected. Potential variants were detected by whole exome sequencing, and Sanger sequencing was used to verify the candidate variants. All patients were treated with ß-blocker propranolol and followed up. RESULTS: All patients had developed the disease during exercise and presented with syncope as the initial clinical manifestation. Electrocardiogram showed sinus bradycardia. The first onset age of the 5 patients were (10.4 ± 2.19) years, and the time of delayed diagnosis was (1.6 ± 2.19) years. All of the children were found to harbor de novo heterozygous missense variants of the RYR2 gene, including c.6916G>A (p.V2306I), c.527G>C (p.R176P), c.12271G>A (p.A4091T), c.506G>T (p.R169L) and c.6817G>A (p.G2273R). Among these, c.527G>C (p.R176P) and c.6817G>A (p.G2273R) were unreported previously. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the c.527G>C (p.R176P) was classified as a pathogenic variant (PS2+PM1+PM2_Supporting+PM5+PP3+PP4), and the c.6817G>A (p.G2273R) was classified as a likely pathogenic variant (PS2+PM2_Supporting+PP3+PP4). The symptoms of all children were significantly improved with the propranolol treatment, and none has developed syncope during the follow up. CONCLUSION: Discovery of the c.527G>C (p.R176P) and c.6817G>A (p.G2273R) variants has expanded the mutational spectrum of the RYR2 gene. Genetic testing of CPVT patients can clarify the cause of the disease and provide a reference for their genetic counseling.


Subject(s)
Ryanodine Receptor Calcium Release Channel , Tachycardia, Ventricular , Child , Humans , Mutation , Propranolol , Ryanodine Receptor Calcium Release Channel/genetics , Syncope , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/diagnosis , United States
19.
Eur Heart J ; 44(35): 3357-3370, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37528649

ABSTRACT

AIMS: Calmodulinopathy due to mutations in any of the three CALM genes (CALM1-3) causes life-threatening arrhythmia syndromes, especially in young individuals. The International Calmodulinopathy Registry (ICalmR) aims to define and link the increasing complexity of the clinical presentation to the underlying molecular mechanisms. METHODS AND RESULTS: The ICalmR is an international, collaborative, observational study, assembling and analysing clinical and genetic data on CALM-positive patients. The ICalmR has enrolled 140 subjects (median age 10.8 years [interquartile range 5-19]), 97 index cases and 43 family members. CALM-LQTS and CALM-CPVT are the prevalent phenotypes. Primary neurological manifestations, unrelated to post-anoxic sequelae, manifested in 20 patients. Calmodulinopathy remains associated with a high arrhythmic event rate (symptomatic patients, n = 103, 74%). However, compared with the original 2019 cohort, there was a reduced frequency and severity of all cardiac events (61% vs. 85%; P = .001) and sudden death (9% vs. 27%; P = .008). Data on therapy do not allow definitive recommendations. Cardiac structural abnormalities, either cardiomyopathy or congenital heart defects, are present in 30% of patients, mainly CALM-LQTS, and lethal cases of heart failure have occurred. The number of familial cases and of families with strikingly different phenotypes is increasing. CONCLUSION: Calmodulinopathy has pleiotropic presentations, from channelopathy to syndromic forms. Clinical severity ranges from the early onset of life-threatening arrhythmias to the absence of symptoms, and the percentage of milder and familial forms is increasing. There are no hard data to guide therapy, and current management includes pharmacological and surgical antiadrenergic interventions with sodium channel blockers often accompanied by an implantable cardioverter-defibrillator.


Subject(s)
Calmodulin , Long QT Syndrome , Tachycardia, Ventricular , Child , Humans , Calmodulin/genetics , Death, Sudden, Cardiac/etiology , Long QT Syndrome/diagnosis , Long QT Syndrome/genetics , Mutation/genetics , Registries , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/genetics
20.
J Cardiovasc Electrophysiol ; 34(9): 1835-1842, 2023 09.
Article in English | MEDLINE | ID: mdl-37579221

ABSTRACT

INTRODUCTION: Variants of cardiomyopathy genes in patients with nonischemic cardiomyopathy (NICM) generate various phenotypes of cardiac scar and delayed enhancement cardiac magnetic resonance (DE-CMR) imaging which may impact ventricular tachycardia (VT) management. METHODS: The objective was to compare the findings of cardiomyopathy genetic testing on DE-CMR imaging and long-term outcomes among patients with NICM undergoing VT ablation procedures. Image phenotyping and genotyping were performed in a consecutive series of patients referred for VT ablation and correlated to survival free of VT. Scar depth index (SDI) (% of scar at 0-3 mm, 3-5 mm and >5 mm projected on the closest endocardial surface) was determined. RESULTS: Forty-three patients were included (11 women, 55 ± 14 years, ejection fraction (EF) 45 ± 16%) and were followed for 3.4 ± 2.9 years. Pathogenic variants (PV) were identified in 16 patients (37%) in the following genes: LMNA (n = 5), TTN (n = 5), DSP (n = 2), AMLS1 (n = 1), MYBPC3 (n = 1), PLN (n = 1), and SCN5A (n = 1). A ring-like septal scar (RLSS) pattern was more often seen in patients with pathogenic variants (66% vs 15%, p = .001). RLSS was associated with deeper seated scars (SDI >5 mm 30.6 ± 22.6% vs 12.4 ± 16.2%, p = .005), and increased VT recurrence (HR 5.7 95% CI[1.8-18.4], p = .003). After adjustment for age, sex, EF, and total scar burden, the presence of a PV remained independently associated with worse outcomes (HR 4.7 95% CI[1.22-18.0], p = .02). CONCLUSIONS: Preprocedural genotyping and scar phenotyping is beneficial to identify patients with a favorable procedural outcome. Some PVs are associated with an intramural, deeper seated scar phenotype and have an increase of VT recurrence after ablation.


Subject(s)
Cardiomyopathies , Catheter Ablation , Tachycardia, Ventricular , Humans , Female , Cicatrix/diagnosis , Cicatrix/genetics , Cicatrix/pathology , Genotype , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/surgery , Heart Ventricles , Catheter Ablation/adverse effects , Catheter Ablation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...