Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Cell Mol Life Sci ; 79(3): 175, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35244772

ABSTRACT

FK506-binding protein 51 (encoded by Fkpb51, also known as Fkbp5) has been associated with stress-related mental illness. To investigate its function, we studied the morphological consequences of Fkbp51 deletion. Artificial Intelligence-assisted morphological analysis revealed that male Fkbp51 knock-out (KO) mice possess more elongated dentate gyrus (DG) but shorter hippocampal height in coronal sections when compared to WT. Primary cultured Fkbp51 KO hippocampal neurons were shown to exhibit larger dendritic outgrowth than wild-type (WT) controls and pharmacological manipulation experiments suggest that this may occur through the regulation of microtubule-associated protein. Both in vitro primary culture and in vivo labeling support a role for FKBP51 in the regulation of microtubule-associated protein expression. Furthermore, Fkbp51 KO hippocampi exhibited decreases in ßIII-tubulin, MAP2, and Tau protein levels, but a greater than 2.5-fold increase in Parkin protein. Overexpression and knock-down FKBP51 demonstrated that FKBP51 negatively regulates Parkin in a dose-dependent and ubiquitin-mediated manner. These results indicate a potential novel post-translational regulatory mechanism of Parkin by FKBP51 and the significance of their interaction on disease onset. KO has more flattened hippocampus using AI-assisted measurement Both pyramidal cell layer (PCL) of CA and granular cell layer (GCL) of DG distinguishable as two layers: deep cell layer and superficial layer. Distinct MAP2 expression between deep and superficial layer between KO and WT, Higher Parkin expression in KO brain Mechanism of FKBP51 inhibition resulting in Parkin, MAP2, Tau, and Tubulin expression differences between KO and WT mice, and resulting neurite outgrowth differences.


Subject(s)
Hippocampus/metabolism , Tacrolimus Binding Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Animals , Brain/anatomy & histology , Cells, Cultured , Hippocampus/anatomy & histology , Mice , Mice, Knockout , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Neurons/cytology , Neurons/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Tacrolimus Binding Proteins/antagonists & inhibitors , Tacrolimus Binding Proteins/deficiency , Tacrolimus Binding Proteins/metabolism , Tubulin/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Up-Regulation , tau Proteins/metabolism
2.
Autophagy ; 17(11): 3491-3510, 2021 11.
Article in English | MEDLINE | ID: mdl-33459145

ABSTRACT

Defects of autophagy-lysosomal protein degradation are thought to contribute to the pathogenesis of several neurodegenerative diseases, and the accumulation of aggregation prone proteins such as MAPT/Tau in Alzheimer disease (AD). We previously showed the localization of the immunophilin FKBP4/FKBP52 in the lysosomal system of healthy human neurons suggesting its possible role in lysosome function. We also showed that decreased FKBP4 levels in AD brain neurons correlate with abnormal MAPT accumulation and aggregation. In this study, we demonstrate that FKBP4 decrease in a human neuronal cell line (SH-SY5Y) and in dorsal root ganglion (DRG) neurons from human MAPTP301S transgenic mice affected the function of the autophagy-lysosomal system under MAPT induced proteotoxic stress conditions. We show that acute MAPT accumulation in SH-SY5Y cells induced perinuclear clustering of lysosomes, triggered FKBP4 localization around the clusters and its colocalization with MAPT and MAP1LC3/LC3-positive autophagic vesicles; a similar FKBP4 localization was detected in some AD brain neurons. We demonstrate that FKBP4 decrease altered lysosomal clustering along with MAPT and MAP1LC3 secretion increase. Although ectopic FKBP4 expression could not induce autophagy under our experimental conditions, it prevented MAPT secretion after MAPT accumulation in SH-SY5Y cells implying a regulatory role of FKBP4 on MAPT secretion. Finally, we observe that FKBP4 deficiency decreased MAP1LC3-II expression and provoked MAPT accumulation during long-term stress in mouse DRG neurons. We hypothesize that the abnormal FKBP4 decrease observed in AD brain neurons might hinder autophagy efficiency and contribute to the progression of the tauopathy by modulating MAPT secretion and accumulation during MAPT pathogenesis.Abbreviations: AD: Alzheimer disease; AKT/protein kinase B: AKT serine/threonine kinase; ALP: Autophagy-lysosomal pathway; ATG: autophagy-related; BafA1: bafilomycin A1; CQ: chloroquine; CTSD: cathepsin D; DIV: days in vitro; DRG: dorsal root ganglion neurons; Dox: doxycycline; DNAJC5: DnaJ heat shock protein family (Hsp40) member C5; EL: empty lentiviral vectors; ENO2/NSE: enolase 2, gamma neuronal; FKBP4/FKBP52: FKBP prolyl isomerase 4; FTLD-Tau: frontotemporal lobar degeneration with Tau pathology; GFP: green fluorescent protein; LAMP1: lysosomal associated membrane protein 1; LDH: lactate dehydrogenase; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPT/Tau: microtubule associated protein tau; MTT: tetrazolium salt; NFTs: neurofibrillary tangles; RPE-1: retinal pigment epithelial cells; shRNA: small-hairpin ribonucleic acid; SQSTM1/p62: sequestosome 1; SD: standard deviation; SEM: standard error of the mean; SH-SY5Y: human neuroblastoma cells; Sh1 or Sh2: Lentiviral shRNA vectors inducing FKBP4 decrease; SH-52GFP: MAPT/Tau-inducible SH-SY5Y cell line constitutively expressing FKBP4-GFP; TUBB3/ßIII tubulin: tubulin beta 3 class III; UPS: ubiquitin-proteasome system.


Subject(s)
Autophagy/physiology , Neurons/metabolism , Tacrolimus Binding Proteins/metabolism , tau Proteins/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Brain/metabolism , Brain/pathology , Cell Line , Cells, Cultured , Female , Humans , Lysosomes/metabolism , Male , Mice , Mice, Transgenic , Microtubule-Associated Proteins/metabolism , Middle Aged , Models, Neurological , Neurons/pathology , Sequestosome-1 Protein/metabolism , Stress, Physiological , Tacrolimus Binding Proteins/deficiency , tau Proteins/genetics
3.
Mol Brain ; 13(1): 35, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32151269

ABSTRACT

Calstabin2, also named FK506 binding protein 12.6 (FKBP12.6), is a subunit of ryanodine receptor subtype 2 (RyR2) macromolecular complex, an intracellular calcium channel. Studies from our and other's lab have shown that hippocampal calstabin2 regulates spatial memory. Calstabin2 and RyR2 are widely distributed in the brain, including the amygdala, a key brain area involved in the regulation of emotion including fear. Little is known about the role of calstabin2 in fear memory. Here, we found that genetic deletion of calstabin2 impaired long-term memory in cued fear conditioning test. Knockdown calstabin2 in the lateral amygdala (LA) by viral vector also impaired long-term cued fear memory expression. Furthermore, calstabin2 knockout reduced long-term potentiation (LTP) at both cortical and thalamic inputs to the LA. In conclusion, our present data indicate that calstabin2 in the LA plays a crucial role in the regulating of emotional memory.


Subject(s)
Amygdala/physiology , Fear/physiology , Memory/physiology , Tacrolimus Binding Proteins/metabolism , Animals , Cues , Long-Term Potentiation , Mice, Inbred C57BL , Mice, Knockout , Tacrolimus Binding Proteins/deficiency
4.
Mol Brain ; 12(1): 99, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31775900

ABSTRACT

FKBP5 encodes the FK506 binding protein 5, a glucocorticoid receptor (GR) binding protein known to play an important role in the physiological stress response. However, results from previous studies examining the association between common variants of FKBP5 and stress have been inconsistent. To investigate whether the loss of FKBP5 affects the stress response, we examined the behavior of mice following the induction of chronic restraint stress between homozygous wild-type and Fkbp5 knock-out mice. After 21 days of exposure to restraint stress, WT mice showed anhedonia, a core symptom of depression, which could be measured by a sucrose preference test. However, Fkbp5-deficient mice did not exhibit significant depressive-like behavior compared to the WT after exposure to chronic restraint stress. To investigate the molecular mechanism underlying stress resilience, we performed RNA sequencing analysis. The differentially expressed gene (DEG) analysis showed that chronic stress induced changes in various biological processes involved in cell-cell adhesion and inflammatory response. Weighted gene co-expression network analysis identified 60 characteristic modules that correlated with stress or the FKBP5 genotype. Among them, M55 showed a gene expression pattern consistent with behavioral changes after stress exposure, and the gene ontology analysis revealed that this was involved in nervous system development, gland morphogenesis, and inflammatory response. These results suggest that FKBP5 may be a crucial factor for the stress response, and that transcriptomic data can provide insight into stress-related pathophysiology.


Subject(s)
Gene Expression Regulation , Gene Regulatory Networks , Resilience, Psychological , Stress, Psychological/genetics , Tacrolimus Binding Proteins/deficiency , Animals , Brain/metabolism , Mice, Knockout , Prefrontal Cortex/metabolism , Tacrolimus Binding Proteins/metabolism , Transcriptome/genetics
5.
Cell Rep ; 25(9): 2537-2551.e8, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30485818

ABSTRACT

Fkbp5 is a widely expressed peptidyl prolyl isomerase that serves as a molecular chaperone through conformational changes of binding partners. Although it regulates diverse protein functions, little is known about its roles in myogenesis. We found here that Fkbp5 plays critical roles in myoblast differentiation through two mechanisms. First, it sequesters Cdk4 within the Hsp90 storage complex and prevents the formation of the cyclin D1-Cdk4 complex, which is a major inhibitor of differentiation. Second, Fkbp5 promotes cis-trans isomerization of the Thr172-Pro173 peptide bond in Cdk4 and inhibits phosphorylation of Thr172, an essential step for Cdk4 activation. Consistent with these in vitro findings, muscle regeneration is delayed in Fkbp5-/- mice. The related protein Fkbp4 also sequesters Cdk4 within the Hsp90 complex but does not isomerize Cdk4 or induce Thr173 phosphorylation despite its highly similar sequence. This study demonstrates protein isomerization as a critical regulatory mechanism of myogenesis by targeting Cdk4.


Subject(s)
Cell Differentiation , Cyclin-Dependent Kinase 4/metabolism , Myoblasts/cytology , Myoblasts/metabolism , Tacrolimus Binding Proteins/metabolism , Animals , Cell Line , Cell Proliferation , HSP90 Heat-Shock Proteins/metabolism , Isomerism , Male , Mice, Knockout , Muscles/physiology , Peptides/metabolism , Proline/metabolism , Protein Binding , Regeneration , Tacrolimus Binding Proteins/deficiency
6.
Respir Res ; 19(1): 67, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29673351

ABSTRACT

BACKGROUND: In idiopathic pulmonary fibrosis (IPF), fibroblasts gain a more migratory phenotype and excessively secrete extracellular matrix (ECM), ultimately leading to alveolar scarring and progressive dyspnea. Here, we analyzed the effects of deficiency of FK506-binding protein 10 (FKBP10), a potential IPF drug target, on primary human lung fibroblast (phLF) adhesion and migration. METHODS: Using siRNA, FKBP10 expression was inhibited in phLF in absence or presence of 2ng/ml transforming growth factor-ß1 (TGF-ß1) and 0.1mM 2-phosphoascorbate. Effects on cell adhesion and migration were monitored by an immunofluorescence (IF)-based attachment assay, a conventional scratch assay, and single cell tracking by time-lapse microscopy. Effects on expression of key players in adhesion dynamics and migration were analyzed by qPCR and Western Blot. Colocalization was evaluated by IF microscopy and by proximity ligation assays. RESULTS: FKBP10 knockdown significantly attenuated adhesion and migration of phLF. Expression of collagen VI was decreased, while expression of key components of the focal adhesion complex was mostly upregulated. The effects on migration were 2-phosphoascorbate-dependent, suggesting collagen synthesis as the underlying mechanism. FKBP10 colocalized with collagen VI and coating culture dishes with collagen VI, and to a lesser extent with collagen I, abolished the effect of FKBP10 deficiency on migration. CONCLUSIONS: These findings show, to our knowledge for the first time, that FKBP10 interacts with collagen VI and that deficiency of FKBP10 reduces phLF migration mainly by downregulation of collagen VI synthesis. The results strengthen FKBP10 as an important intracellular regulator of ECM remodeling and support the concept of FKBP10 as drug target in IPF.


Subject(s)
Cell Movement/physiology , Collagen Type VI/biosynthesis , Fibroblasts/metabolism , Lung/metabolism , Tacrolimus Binding Proteins/metabolism , Cells, Cultured , Gene Knockout Techniques , Humans , Lung/cytology , Tacrolimus Binding Proteins/deficiency
7.
J Mol Cell Cardiol ; 114: 93-104, 2018 01.
Article in English | MEDLINE | ID: mdl-29129702

ABSTRACT

Protein quality control in cardiomyocytes is crucial to maintain cellular homeostasis. The accumulation of damaged organelles, such as mitochondria and misfolded proteins in the heart is associated with heart failure. During the process to identify novel mitochondria-specific autophagy (mitophagy) receptors, we found FK506-binding protein 8 (FKBP8), also known as FKBP38, shares similar structural characteristics with a yeast mitophagy receptor, autophagy-related 32 protein. However, knockdown of FKBP8 had no effect on mitophagy in HEK293 cells or H9c2 myocytes. Since the role of FKBP8 in the heart has not been fully elucidated, the aim of this study is to determine the functional role of FKBP8 in the heart. Cardiac-specific FKBP8-deficient (Fkbp8-/-) mice were generated. Fkbp8-/- mice showed no cardiac phenotypes under baseline conditions. The Fkbp8-/- and control wild type littermates (Fkbp8+/+) mice were subjected to pressure overload by means of transverse aortic constriction (TAC). Fkbp8-/- mice showed left ventricular dysfunction and chamber dilatation with lung congestion 1week after TAC. The number of apoptotic cardiomyocytes was dramatically elevated in TAC-operated Fkbp8-/- hearts, accompanied with an increase in protein levels of cleaved caspase-12 and endoplasmic reticulum (ER) stress markers. Caspase-12 inhibition resulted in the attenuation of hydrogen peroxide-induced apoptotic cell death in FKBP8 knockdown H9c2 myocytes. Immunocytological and immunoprecipitation analyses indicate that FKBP8 is localized to the ER and mitochondria in the isolated cardiomyocytes, interacting with heat shock protein 90. Furthermore, there was accumulation of misfolded protein aggregates in FKBP8 knockdown H9c2 myocytes and electron dense deposits in perinuclear region in TAC-operated Fkbp8-/- hearts. The data suggest that FKBP8 plays a protective role against hemodynamic stress in the heart mediated via inhibition of the accumulation of misfolded proteins and ER-associated apoptosis.


Subject(s)
Apoptosis , Cardiotonic Agents/metabolism , Endoplasmic Reticulum/metabolism , Heart/physiopathology , Hemodynamics , Stress, Physiological , Tacrolimus Binding Proteins/metabolism , Animals , Aorta/pathology , Apoptosis/drug effects , Caspase 12/metabolism , Constriction, Pathologic , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/ultrastructure , Endoplasmic Reticulum Stress/drug effects , HSP90 Heat-Shock Proteins/metabolism , Heart/drug effects , Heart Failure/pathology , Heart Failure/physiopathology , Hemodynamics/drug effects , Humans , Hydrogen Peroxide/toxicity , Mice , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitophagy/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Organ Specificity , Pressure , Protein Binding/drug effects , Protein Folding/drug effects , Rats, Sprague-Dawley , Signal Transduction , Stress, Physiological/drug effects , TOR Serine-Threonine Kinases/metabolism , Tacrolimus Binding Proteins/deficiency , Ventricular Remodeling/drug effects
8.
Nat Commun ; 8(1): 1725, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29170369

ABSTRACT

The co-chaperone FKBP5 is a stress-responsive protein-regulating stress reactivity, and its genetic variants are associated with T2D related traits and other stress-related disorders. Here we show that FKBP51 plays a role in energy and glucose homeostasis. Fkbp5 knockout (51KO) mice are protected from high-fat diet-induced weight gain, show improved glucose tolerance and increased insulin signaling in skeletal muscle. Chronic treatment with a novel FKBP51 antagonist, SAFit2, recapitulates the effects of FKBP51 deletion on both body weight regulation and glucose tolerance. Using shorter SAFit2 treatment, we show that glucose tolerance improvement precedes the reduction in body weight. Mechanistically, we identify a novel association between FKBP51 and AS160, a substrate of AKT2 that is involved in glucose uptake. FKBP51 antagonism increases the phosphorylation of AS160, increases glucose transporter 4 expression at the plasma membrane, and ultimately enhances glucose uptake in skeletal myotubes. We propose FKBP51 as a mediator between stress and T2D development, and potential target for therapeutic approaches.


Subject(s)
GTPase-Activating Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Tacrolimus Binding Proteins/metabolism , Animals , Biological Transport, Active , Diet, High-Fat , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Biological , Muscle Fibers, Skeletal/metabolism , Phosphorylation , Signal Transduction , Stress, Physiological , Tacrolimus Binding Proteins/deficiency , Tacrolimus Binding Proteins/genetics , Weight Gain
9.
J Bone Miner Res ; 32(6): 1354-1367, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28206698

ABSTRACT

Osteogenesis imperfecta (OI), also known as brittle bone disease, displays a spectrum of clinical severity from mild (OI type I) to severe early lethality (OI type II), with clinical features including low bone mass, fractures, and deformities. Mutations in the FK506 Binding Protein 10 (FKBP10), gene encoding the 65-kDa protein FKBP65, cause a recessive form of OI and Bruck syndrome, the latter being characterized by joint contractures in addition to low bone mass. We previously showed that Fkbp10 expression is limited to bone, tendon, and ligaments in postnatal tissues. Furthermore, in both patients and Fkbp10 knockout mice, collagen telopeptide hydroxylysine crosslinking is dramatically reduced. To further characterize the bone specific contributions of Fkbp10, we conditionally ablated FKBP65 in Fkbp10fl/fl mice (Mus musculus; C57BL/6) using the osteoblast-specific Col1a1 2.3-kb Cre recombinase. Using µCT, histomorphometry and quantitative backscattered electron imaging, we found minimal alterations in the quantity of bone and no differences in the degree of bone matrix mineralization in this model. However, mass spectroscopy (MS) of bone collagen demonstrated a decrease in mature, hydroxylysine-aldehyde crosslinking. Furthermore, bone of mutant mice exhibits a reduction in mineral-to-matrix ratio and in crystal size as shown by Raman spectroscopy and small-angle X-ray scattering, respectively. Importantly, abnormalities in bone quality were associated with impaired bone biomechanical strength in mutant femurs compared with those of wild-type littermates. Taken together, these data suggest that the altered collagen crosslinking through Fkbp10 ablation in osteoblasts primarily leads to a qualitative defect in the skeleton. © 2017 American Society for Bone and Mineral Research.


Subject(s)
Bone and Bones/pathology , Gene Deletion , Osteoblasts/metabolism , Tacrolimus Binding Proteins/deficiency , Amino Acid Sequence , Animals , Animals, Newborn , Biomechanical Phenomena , Bone Density , Bone and Bones/diagnostic imaging , Calcification, Physiologic , Collagen/metabolism , Cross-Linking Reagents/metabolism , Crystallization , Female , Male , Mice, Inbred C57BL , Mice, Knockout , Organ Size , Spectrum Analysis, Raman , Tacrolimus Binding Proteins/metabolism , X-Ray Microtomography
10.
Cardiovasc Res ; 113(3): 332-342, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28077437

ABSTRACT

Aims: The heart contraction is controlled by the Ca2+-induced Ca2+ release (CICR) between L-type Ca2+ channels and ryanodine receptors (RyRs). The FK506-binding protein FKBP12.6 binds to RyR subunits, but its role in stabilizing RyR function has been debated for long. Recent reports of high-resolution RyR structure show that the HD2 domain that binds to the SPRY2 domain of neighbouring subunit in FKBP-bound RyR1 is detached and invisible in FKBP-null RyR2. The present study was to test the consequence of FKBP12.6 absence on the in situ activation of RyR2. Methods and results: Using whole-cell patch-clamp combined with confocal imaging, we applied a near threshold depolarization to activate a very small fraction of LCCs, which in turn activated RyR Ca2+ sparks stochastically. FKBP12.6-knockout and FK506/rapamycin treatments increased spark frequency and LCC-RyR coupling fidelity without altering LCC open probability. Neither FK506 nor rapamycin further altered LCC-RyR coupling fidelity in FKBP12.6-knockout cells. In loose-seal patch-clamp experiments, the LCC-RyR signalling kinetics, indexed by the delay for a LCC sparklet to trigger a RyR spark, was accelerated after FKBP12.6 knockout and FK506/rapamycin treatments. These results demonstrated that RyRs became more sensitive to Ca2+ triggers without FKBP12.6. Isoproterenol (1 µM) further accelerated the LCC-RyR signalling in FKBP12.6-knockout cells. The synergistic sensitization of RyRs by catecholaminergic signalling and FKBP12.6 dysfunction destabilized the CICR system, leading to chaotic Ca2+ waves and ventricular arrhythmias. Conclusion: FKBP12.6 keeps the RyRs from over-sensitization, stabilizes the potentially regenerative CICR system, and thus may suppress the life-threatening arrhythmogenesis.


Subject(s)
Arrhythmias, Cardiac/metabolism , Calcium Channels, L-Type/metabolism , Calcium Signaling , Myocytes, Cardiac/metabolism , Receptor Cross-Talk , Ryanodine Receptor Calcium Release Channel/metabolism , Tacrolimus Binding Proteins/deficiency , Animals , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/prevention & control , Calcium Channels, L-Type/chemistry , Calcium Channels, L-Type/drug effects , Calcium Signaling/drug effects , Genotype , Isoproterenol/pharmacology , Kinetics , Male , Membrane Potentials , Mice, Knockout , Microscopy, Confocal , Models, Molecular , Myocytes, Cardiac/drug effects , Patch-Clamp Techniques , Phenotype , Protein Binding , Protein Interaction Domains and Motifs , Receptor Cross-Talk/drug effects , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/drug effects , Sirolimus/pharmacology , Stochastic Processes , Tacrolimus/pharmacology , Tacrolimus Binding Proteins/antagonists & inhibitors , Tacrolimus Binding Proteins/chemistry , Tacrolimus Binding Proteins/genetics
11.
Int J Mol Sci ; 17(8)2016 Aug 05.
Article in English | MEDLINE | ID: mdl-27527158

ABSTRACT

FKBP5 encodes FK506-binding protein 5, a glucocorticoid receptor (GR)-binding protein implicated in various psychiatric disorders and alcohol withdrawal severity. The purpose of this study is to characterize alcohol preference and related phenotypes in Fkbp5 knockout (KO) mice and to examine the role of FKBP5 in human alcohol consumption. The following experiments were performed to characterize Fkpb5 KO mice. (1) Fkbp5 KO and wild-type (WT) EtOH consumption was tested using a two-bottle choice paradigm; (2) The EtOH elimination rate was measured after intraperitoneal (IP) injection of 2.0 g/kg EtOH; (3) Blood alcohol concentration (BAC) was measured after 3 h limited access of alcohol; (4) Brain region expression of Fkbp5 was identified using LacZ staining; (5) Baseline corticosterone (CORT) was assessed. Additionally, two SNPs, rs1360780 (C/T) and rs3800373 (T/G), were selected to study the association of FKBP5 with alcohol consumption in humans. Participants were college students (n = 1162) from 21-26 years of age with Chinese, Korean or Caucasian ethnicity. The results, compared to WT mice, for KO mice exhibited an increase in alcohol consumption that was not due to differences in taste sensitivity or alcohol metabolism. Higher BAC was found in KO mice after 3 h of EtOH access. Fkbp5 was highly expressed in brain regions involved in the regulation of the stress response, such as the hippocampus, amygdala, dorsal raphe and locus coeruleus. Both genotypes exhibited similar basal levels of plasma corticosterone (CORT). Finally, single nucleotide polymorphisms (SNPs) in FKBP5 were found to be associated with alcohol drinking in humans. These results suggest that the association between FKBP5 and alcohol consumption is conserved in both mice and humans.


Subject(s)
Alcohol Drinking/genetics , Tacrolimus Binding Proteins/genetics , Adult , Alcohol Drinking/blood , Alcohol Drinking/psychology , Animals , Asian People/genetics , Brain/metabolism , Corticosterone/metabolism , Ethanol/blood , Female , Gene Expression Regulation , Genetic Predisposition to Disease , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Polymorphism, Single Nucleotide/genetics , Stress, Psychological/genetics , Tacrolimus Binding Proteins/deficiency , White People/genetics , Young Adult
12.
Childs Nerv Syst ; 30(8): 1343-53, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24817375

ABSTRACT

PURPOSE: Maternal folate intake has reduced the incidence of human neural tube defects by 60-70 %. However, 30-40 % of cases remain nonresponsive to folate intake. The main purpose of this study was to understand the molecular mechanism of folate nonresponsiveness in a mouse model of neural tube defect. METHODS: We used a folate-nonresponsive Fkbp8 knockout mouse model to elucidate the molecular mechanism(s) of folate nonresponsiveness. Neurospheres were grown from neural stem cells isolated from the lumbar neural tube of E9.5 Fkbp8 (-/-) and wild-type embryos. Immunostaining was used to determine the protein levels of oligodendrocyte transcription factor 2 (Olig2), Nkx6.1, class III beta-tubulin (TuJ1), O4, glial fibrillary acidic protein (GFAP), histone H3 Lys27 trimethylation (H3K27me3), ubiquitously transcribed tetratricopeptide repeat (UTX), and Msx2, and quantitative real-time (RT)-PCR was used to determine the message levels of Olig2, Nkx6.1, Msx2, and noggin in neural stem cells differentiated in the presence and absence of folic acid. RESULTS: Fkbp8 (-/-)-derived neural stem cells showed (i) increased noggin expression; (ii) decreased Msx2 expression; (iii) premature differentiation--neurogenesis, oligodendrogenesis (Olig2 expression), and gliogenesis (GFAP expression); and (iv) increased UTX expression and decreased H3K27me3 polycomb modification. Exogenous folic acid did not reverse these markers. CONCLUSIONS: Folate nonresponsiveness could be attributed in part to increased noggin expression in Fkbp8 (-/-) embryos, resulting in decreased Msx2 expression. Folate treatment further increases Olig2 and noggin expression, thereby exacerbating ventralization.


Subject(s)
Carrier Proteins/metabolism , Folic Acid/adverse effects , Gene Expression Regulation, Developmental/genetics , Neural Tube Defects , Tacrolimus Binding Proteins/deficiency , Animals , Carrier Proteins/genetics , Cell Proliferation/drug effects , Cell Proliferation/physiology , Disease Models, Animal , Embryo, Mammalian , Female , Gene Expression Regulation, Developmental/drug effects , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases , Mice , Mice, Inbred C57BL , Mice, Knockout , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neural Tube Defects/chemically induced , Neural Tube Defects/genetics , Neural Tube Defects/metabolism , Pregnancy , Tacrolimus Binding Proteins/genetics
13.
J Sleep Res ; 23(2): 176-85, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24354785

ABSTRACT

FK506-binding protein 51 (FKBP51) is a co-chaperone of the glucocorticoid receptor, functionally linked to its activity via an ultra-short negative feedback loop. Thus, FKBP51 plays an important regulatory role in the hypothalamic-pituitary-adrenocortical (HPA) axis necessary for stress adaptation and recovery. Previous investigations illustrated that HPA functionality is influenced by polymorphisms in the gene encoding FKBP51, which are associated with both increased protein levels and depressive episodes. Because FKBP51 is a key molecule in stress responses, we hypothesized that its deletion impacts sleep. To study FKBP51-involved changes in sleep, polysomnograms of FKBP51 knockout (KO) mice and wild-type (WT) littermates were compared at baseline and in the recovery phase after 6-h sleep deprivation (SD) and 1-h restraint stress (RS). Using another set of animals, the 24-h profiles of hippocampal free corticosterone levels were also determined. The most dominant effect of FKBP51 deletion appeared as increased nocturnal wake, where the bout length was significantly extended while non-rapid eye movement sleep (NREMS) and rapid eye movement sleep were rather suppressed. After both SD and RS, FKBP51KO mice exhibited less recovery or rebound sleep than WTs, although slow-wave activity during NREMS was higher in KOs, particularly after SD. Sleep compositions of KOs were nearly opposite to sleep profiles observed in human depression. This might result from lower levels of free corticosterone in FKBP51KO mice, confirming reduced HPA reactivity. The results indicate that an FKBP51 deletion yields a pro-resilience sleep phenotype. FKBP51 could therefore be a therapeutic target for stress-induced mood and sleep disorders.


Subject(s)
Sleep Deprivation/metabolism , Sleep Deprivation/physiopathology , Sleep , Tacrolimus Binding Proteins/metabolism , Animals , Corticosterone/blood , Depressive Disorder/metabolism , Humans , Hypothalamo-Hypophyseal System/metabolism , Male , Mice , Mice, Knockout , Pituitary-Adrenal System/metabolism , Polymorphism, Genetic , Polysomnography , Sleep Deprivation/blood , Sleep Wake Disorders/metabolism , Sleep Wake Disorders/physiopathology , Sleep, REM , Tacrolimus Binding Proteins/deficiency , Tacrolimus Binding Proteins/genetics
14.
Eur J Pharmacol ; 739: 74-82, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24291098

ABSTRACT

It has been recognized for some time that the Ca(2+)-dependent slow afterhyperpolarization (sAHP) is larger in hippocampal neurons of aged compared with young animals. In addition, extensive studies since have shown that other Ca(2+)-mediated electrophysiological responses are increased in hippocampus with aging, including Ca(2+) transients, L-type voltage-gated Ca(2+) channel activity, Ca(2+) spike duration and action potential accommodation. Elevated Ca(2+)-induced Ca(2+) release from ryanodine receptors (RyRs) appears to drive amplification of the Ca(2+) responses. Components of this Ca(2+) dysregulation phenotype correlate with deficits in cognitive function and plasticity, indicating they may play critical roles in aging-related impairment of brain function. However, the molecular mechanisms underlying aging-related Ca(2+) dysregulation are not well understood. FK506-binding proteins 1a and 1b (FKBP1a/1b, also known as FKBP12/12.6) are immunophilin proteins that bind the immunosuppressant drugs FK506 and rapamycin. In muscle cells, FKBP1a/1b also bind RyRs and inhibits Ca(2+)-induced Ca(2+) release, but it is not clear whether FKBPs act similarly in brain cells. Recently, we found that selectively disrupting hippocampal FKBP1b function in young rats, either by microinjecting adeno-associated viral vectors expressing siRNA, or by treatment with rapamycin, increases the sAHP and recapitulates much of the hippocampal Ca(2+) dysregulation phenotype. Moreover, in microarray studies, we found FKBP1b gene expression was downregulated in hippocampus of aging rats and early-stage Alzheimer's disease subjects. These results suggest the novel hypothesis that declining FKBP function is a key factor in aging-related Ca(2+) dysregulation in the brain and point to potential new therapeutic targets for counteracting unhealthy brain aging.


Subject(s)
Aging/metabolism , Calcium/metabolism , Hippocampus/metabolism , Tacrolimus Binding Proteins/metabolism , Animals , Hippocampus/cytology , Hippocampus/physiology , Humans , Neurons/metabolism , Tacrolimus Binding Proteins/deficiency , Tacrolimus Binding Proteins/genetics
15.
G3 (Bethesda) ; 3(8): 1311-3, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23733890

ABSTRACT

Fkbp5 is genetically linked to stress-related diseases. Fkbp5 knockout mice are available and widely used to explore the role of Fkbp5 in health and disease. We found that these mice carry a gene duplication of glyoxylase-1, which explains why glyoxylase-1 levels are increased in the Fkbp5 knockout mice.


Subject(s)
Lactoylglutathione Lyase/genetics , Tacrolimus Binding Proteins/genetics , Animals , Gene Duplication , HEK293 Cells , Hippocampus/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Tacrolimus Binding Proteins/deficiency , Tacrolimus Binding Proteins/metabolism
16.
Steroids ; 78(6): 548-54, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23380368

ABSTRACT

Androgen ablation therapy is the most common treatment for advanced prostate cancer (PCa), but most patients will develop castration-resistant prostate cancer (CRPC), which has no cure. CRPC is androgen-depletion resistant but androgen receptor (AR) dependent. AR is a nuclear receptor whose transcriptional activity is regulated by hormone binding to the ligand-binding domain (LBD). Constitutively active AR splice variants that lack LBDs often are expressed in CRPC. The expression of these variants indicates that methods to inhibit AR activity that do not rely on inactivating the LBD are needed. Heat shock protein 90 (Hsp90), a potential therapeutic target in PCa, is an AR chaperone crucial for proper folding, hormone binding and transcriptional activity of AR. We generated LNCaP cell lines with regulated expression of the AR-V7 variant as well as a cell line expressing artificially truncated AR (termed AR-NTD) to characterize splice variant function. Using an Hsp90 inhibitor, Geldanamycin (GA), and an AR-Hsp90-FKBP52 specific inhibitor, MJC13, we sought to determine if the AR variants also require Hsp90 and associated co-chaperone, FKBP52, for their activity. GA inhibits AR transcriptional activity but has little effect on AR-V7 activity. Moreover, GA decreases the stability of AR protein, with no effect on AR-V7 levels. Full-length AR activity is strongly inhibited by MJC13 while AR-V7 is unaffected. Thus, the variants are resistant to inhibitors of the Hsp90-AR heterocomplex. Although Hsp90 inhibitors will continue to inhibit growth promoting kinases and signaling through activated full-length AR in CRPC, AR signaling through variants will be retained.


Subject(s)
Alternative Splicing/genetics , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Tacrolimus Binding Proteins/antagonists & inhibitors , Animals , Benzoquinones/pharmacology , HSP90 Heat-Shock Proteins/metabolism , HeLa Cells , Humans , Lactams, Macrocyclic/pharmacology , Mice , Mice, Knockout , Structure-Activity Relationship , Tacrolimus Binding Proteins/deficiency , Tacrolimus Binding Proteins/metabolism , Tumor Cells, Cultured
17.
Chem Biol ; 20(3): 403-15, 2013 Mar 21.
Article in English | MEDLINE | ID: mdl-23434032

ABSTRACT

Lysosomal storage diseases (LSDs) are often caused by mutations compromising lysosomal enzyme folding in the endoplasmic reticulum (ER), leading to degradation and loss of function. Mass spectrometry analysis of Gaucher fibroblasts treated with mechanistically distinct molecules that increase LSD enzyme folding, trafficking, and function resulted in the identification of nine commonly downregulated and two jointly upregulated proteins, which we hypothesized would be critical proteostasis network components for ameliorating loss-of-function diseases. LIMP-2 and FK506 binding protein 10 (FKBP10) were validated as such herein. Increased FKBP10 levels accelerated mutant glucocerebrosidase degradation over folding and trafficking, whereas decreased ER FKBP10 concentration led to more LSD enzyme partitioning into the calnexin profolding pathway, enhancing folding and activity to levels thought to ameliorate LSDs. Thus, targeting FKBP10 appears to be a heretofore unrecognized therapeutic strategy to ameliorate LSDs.


Subject(s)
Fibroblasts/metabolism , Gaucher Disease/pathology , Glucosylceramidase/metabolism , Homeostasis , Tacrolimus Binding Proteins/deficiency , Amino Acid Sequence , Cell Line , Endoplasmic Reticulum/metabolism , Fibroblasts/enzymology , Fibroblasts/pathology , Glucosylceramidase/chemistry , Humans , Lectins/metabolism , Molecular Sequence Data , Muramidase/metabolism , Neoplasm Proteins/metabolism , Protein Folding , Protein Transport , Proteolysis , Proteomics , Reproducibility of Results , Tacrolimus Binding Proteins/chemistry , Tacrolimus Binding Proteins/metabolism , alpha-Mannosidase/metabolism
18.
Mol Cell ; 47(6): 970-9, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-22902560

ABSTRACT

Epigenetic silencing of transposons by Piwi-interacting RNAs (piRNAs) constitutes an RNA-based genome defense mechanism. Piwi endonuclease action amplifies the piRNA pool by generating new piRNAs from target transcripts by a poorly understood mechanism. Here, we identified mouse Fkbp6 as a factor in this biogenesis pathway delivering piRNAs to the Piwi protein Miwi2. Mice lacking Fkbp6 derepress LINE1 (L1) retrotransposon and display reduced DNA methylation due to deficient nuclear accumulation of Miwi2. Like other cochaperones, Fkbp6 associates with the molecular chaperone Hsp90 via its tetratricopeptide repeat (TPR) domain. Inhibition of the ATP-dependent Hsp90 activity in an insect cell culture model results in the accumulation of short antisense RNAs in Piwi complexes. We identify these to be byproducts of piRNA amplification that accumulate only in nuage-localized Piwi proteins. We propose that the chaperone machinery normally ejects these inhibitory RNAs, allowing turnover of Piwi complexes for their continued participation in piRNA amplification.


Subject(s)
Long Interspersed Nucleotide Elements , RNA Interference , RNA, Small Interfering/genetics , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism , Animals , Argonaute Proteins/biosynthesis , Argonaute Proteins/metabolism , Cell Line , DNA Methylation , HSP90 Heat-Shock Proteins/metabolism , Humans , Mice , Mice, Knockout , RNA, Small Interfering/metabolism , RNA-Binding Proteins/metabolism , Tacrolimus Binding Proteins/deficiency
19.
Hum Mutat ; 33(11): 1589-98, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22718341

ABSTRACT

Recessive osteogenesis imperfecta (OI) is caused by defects in genes whose products interact with type I collagen for modification and/or folding. We identified a Palestinian pedigree with moderate and lethal forms of recessive OI caused by mutations in FKBP10 or PPIB, which encode endoplasmic reticulum resident chaperone/isomerases FKBP65 and CyPB, respectively. In one pedigree branch, both parents carry a deletion in PPIB (c.563_566delACAG), causing lethal type IX OI in their two children. In another branch, a child with moderate type XI OI has a homozygous FKBP10 mutation (c.1271_1272delCCinsA). Proband FKBP10 transcripts are 4% of control and FKBP65 protein is absent from proband cells. Proband collagen electrophoresis reveals slight band broadening, compatible with ≈10% over-modification. Normal chain incorporation, helix folding, and collagen T(m) support a minimal general collagen chaperone role for FKBP65. However, there is a dramatic decrease in collagen deposited in culture despite normal collagen secretion. Mass spectrometry reveals absence of hydroxylation of the collagen telopeptide lysine involved in cross-linking, suggesting that FKBP65 is required for lysyl hydroxylase activity or access to type I collagen telopeptide lysines, perhaps through its function as a peptidylprolyl isomerase. Proband collagen to organics ratio in matrix is approximately 30% of normal in Raman spectra. Immunofluorescence shows sparse, disorganized collagen fibrils in proband matrix.


Subject(s)
Collagen/metabolism , Mutation , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/metabolism , Tacrolimus Binding Proteins/deficiency , Tacrolimus Binding Proteins/genetics , Base Sequence , Child , Collagen/chemistry , Consanguinity , Cyclophilins/deficiency , Cyclophilins/genetics , DNA Mutational Analysis , Extracellular Matrix/metabolism , Female , Genes, Recessive , Humans , Infant, Newborn , Male , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Osteogenesis Imperfecta/classification , Osteogenesis Imperfecta/diagnostic imaging , Pakistan , Pedigree , Radiography
20.
Neuropharmacology ; 62(1): 332-9, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21839098

ABSTRACT

Chronic stress is increasingly considered to be a main risk factor for the development of a variety of psychiatric diseases such as depression. This is further supported by an impaired negative feedback of the hypothalamic-pituitary-adrenal (HPA) axis, which has been observed in the majority of depressed patients. The effects of glucocorticoids, the main hormonal endpoint of the HPA axis, are mediated via the glucocorticoid receptor (GR) and the mineralocorticoid receptor. The FK506-binding protein 51 (FKBP5), a co-chaperone of the Hsp90 and component of the chaperone-receptor heterocomplex, has been shown to reduce ligand sensitivity of the GR. This study aimed to investigate the function of FKBP5 as a possible mediator of the stress response system and its potential role in the development of stress-related diseases. Therefore, we assessed whether mice lacking the gene encoding FKBP5 (51KO mice) were less vulnerable to the adverse effects of three weeks of chronic social defeat stress. Mice were subsequently analyzed with regards to physiological, neuroendocrine, behavioral and mRNA expression alterations. Our results show a less vulnerable phenotype of 51KO mice with respect to physiological and neuroendocrine parameters compared to wild-type animals. 51KO mice demonstrated lower adrenal weights and basal corticosterone levels, a diminished response to a novel acute stimulus and an enhanced recovery, as well as more active stress-coping behavior. These results suggest an enhanced negative glucocorticoid feedback within the HPA axis of 51KO mice, possibly modulated by an increased sensitivity of the GR. This article is part of a Special Issue entitled 'Anxiety and Depression'.


Subject(s)
Neurosecretory Systems/metabolism , Neurosecretory Systems/physiopathology , Receptors, Glucocorticoid/metabolism , Receptors, Mineralocorticoid/metabolism , Stress, Psychological , Tacrolimus Binding Proteins/metabolism , Analysis of Variance , Animals , Corticosterone/metabolism , Disease Models, Animal , Exploratory Behavior/physiology , Gene Expression Regulation/genetics , HSP90 Heat-Shock Proteins/metabolism , Locomotion/genetics , Male , Maze Learning/physiology , Mice , Mice, Knockout , Receptors, Glucocorticoid/genetics , Receptors, Mineralocorticoid/genetics , Stress, Psychological/metabolism , Stress, Psychological/pathology , Stress, Psychological/physiopathology , Swimming/psychology , Tacrolimus Binding Proteins/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL