Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 645
Filter
1.
Methods Mol Biol ; 2851: 87-95, 2024.
Article in English | MEDLINE | ID: mdl-39210173

ABSTRACT

Tannin, which is an astringent taste in the mouth, is a polyphenol compound contained in some plants. Tannin causes denaturation of proteins of the tongue or oral mucosa. Tannase, a hydrolase that cleaves carboxylic ester bonds specifically, is used in many industrial fields. Some tannase (tannin acyl hydrolase, EC3.1.1.20) is used widely to prevent or reduce creaming of some foods and beverages. Because some tannins are formed of insoluble salts combined with protein, they reduce creaming such as the white hazing of iced tea. Moreover, they can clarify beverages such as fruit juices during wine and beer production. Tannase is produced by microorganisms under conditions with tannic acid present, mainly from plants. Tannase characteristics differ according to its microorganism of origin. Therefore, it is important to study the microbes used as lactic acid bacteria (LAB), evaluate new methods of tannase assay, and apply them in food or other industries. In this chapter, assay of tannase in LAB is demonstrated using methyl gallate as substrate, with color development by rhodanine and potassium hydroxide solution, using a spectrophotometer. Actual data of high tannase-producing LAB, Lactobacillus plantarum, and enzyme characteristics in optimum conditions are presented in this chapter.


Subject(s)
Carboxylic Ester Hydrolases , Lactobacillus plantarum , Carboxylic Ester Hydrolases/metabolism , Lactobacillus plantarum/enzymology , Lactobacillus plantarum/metabolism , Enzyme Assays/methods , Tannins/metabolism , Tannins/chemistry
2.
Food Res Int ; 193: 114854, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39160045

ABSTRACT

In this study, phenolic profile/content was analyzed by high-resolution untargeted metabolomics after short germination (72 h) and seedling growth (144 h), using three sorghum genotypes varying in tannin content (IS 29569, Macia and IS 30400). In vitro antioxidant capacity and phenolic bioaccessibility were determined by microplate-based and INFOGEST methods, respectively. A total of 58 % annotated compounds were found in all genotypes; and phenolic acids and flavonoids represent more than 80 % of sorghum total abundance. PCA analysis showed higher phenolic variability in germination times (72 %) than genotypes (51 %). Germination reduced total ion abundance (-7 %) and free:bound phenolic compounds ratio (2.4-1.1), but antioxidant capacity remained constant. These results indicate the cell matrix-phenolic decomplexation, with the free compounds were quickly consumed after radicle emergence. Germination increased phenolic bioaccessibility (mainly in oral phase) but reduces flavonoids contents in gastric/intestinal digestion steps. This work can stimulate seed germination as a viable option for sorghum-based foods development, with improved nutritional and bioactive properties.


Subject(s)
Antioxidants , Germination , Phenols , Seedlings , Sorghum , Tandem Mass Spectrometry , Sorghum/metabolism , Sorghum/growth & development , Sorghum/chemistry , Seedlings/growth & development , Seedlings/metabolism , Phenols/metabolism , Phenols/analysis , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry/methods , Antioxidants/metabolism , Antioxidants/analysis , Flavonoids/analysis , Flavonoids/metabolism , Seeds/growth & development , Seeds/metabolism , Seeds/chemistry , Biological Availability , Metabolomics/methods , Genotype , Tannins/analysis , Tannins/metabolism , Digestion
3.
Microb Cell Fact ; 23(1): 209, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054459

ABSTRACT

BACKGROUND: The presence of inorganic pollutants and heavy metals in industrial effluents has become a serious threat and environmental issues. Fungi have a remarkable ability to exclude heavy metals from wastewater through biosorption in eco-friendly way. Tannase plays an important role in bioconversion of tannin, a major constituent of tannery effluent, to gallic acid which has great pharmaceutical applications. Therefore, the aim of the current study was to exploit the potential of tannase from Aspergillus glaucus and fungal biomass waste for the bioremediation of heavy metals and tannin. RESULTS: Tannase from A. glaucus was partially purified 4.8-fold by ammonium sulfate precipitation (80%). The enzyme was optimally active at pH 5.0 and 40 °C and stable at this temperature for 1 h. Tannase showed high stability at different physiological conditions, displayed about 50% of its activity at 60 °C and pH range 5.0-6.0. Immobilization of tannase was carried out using methods such. as entrapment in Na-alginate and covalent binding to chitosan. The effects of Na-alginate concentrations on the beads formation and enzyme immobilization revealed that maximum immobilization efficiency (75%) was obtained with 3% Na-alginate. A potential reusability of the immobilized enzyme was showed through keeping 70% of its relative activity up to the fourth cycle. The best bioconversion efficiency of tannic acid to gallic acid by immobilized tannase was at 40 °C with tannic acid concentration up to 50 g/l. Moreover, bioremediation of heavy metal (Cr3+, Pb2+, Cu2+, Fe3+, and Mn2+) from aqueous solution using A. glaucus biomass waste was achieved with uptake percentage of (37.20, 60.30, 55.27, 79.03 and 21.13 respectively). The biomass was successfully used repeatedly for removing Cr3+ after using desorbing agent (0.1 N HCl) for three cycles. CONCLUSION: These results shed the light on the potential use of tannase from locally isolated A. glaucus in the bioremediation of industrial tanneries contained heavy metals and tannin.


Subject(s)
Aspergillus , Biodegradation, Environmental , Biomass , Carboxylic Ester Hydrolases , Enzymes, Immobilized , Metals, Heavy , Tannins , Tannins/metabolism , Tannins/chemistry , Aspergillus/enzymology , Aspergillus/metabolism , Metals, Heavy/metabolism , Carboxylic Ester Hydrolases/metabolism , Enzymes, Immobilized/metabolism , Enzymes, Immobilized/chemistry , Hydrogen-Ion Concentration , Temperature , Enzyme Stability
4.
Environ Sci Technol ; 58(22): 9792-9803, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38780952

ABSTRACT

Anaerobic fermentation is a crucial route to realize effective waste activated sludge (WAS) resource recovery and utilization, while the overall efficiency is commonly restrained by undesirable disruptors (i.e., chemical dewatering agents). This work unveiled the unexpectedly positive effects of biodewatering tannic acid (TA) on the volatile fatty acids (VFAs) biosynthesis during WAS anaerobic fermentation. The total VFAs yield was remarkably increased by 15.6 folds with enriched acetate and butyrate in TA-occurred systems. TA was capable to disintegrate extracellular polymeric substances to promote the overall organics release. However, TA further modulated the soluble proteins structure by hydrogen bonding and hydrophobic interactions, resulting in the decrease of proteins bioavailability and consequential alteration of metabolic substrate feature. These changes reshaped the microbial community and stimulated adaptive regulatory systems in hydrolytic-acidogenic bacteria. The keystone species for carbohydrate metabolism (i.e., Solobacterium and Erysipelotrichaceae) were preferentially enriched. Also, the typical quorum sensing (i.e., enhancing substrate transport) and two-component systems (i.e., sustaining high metabolic activity) were activated to promote the microbial networks connectivity and ecological cooperative behaviors in response to TA stress. Additionally, the metabolic functions responsible for carbohydrate hydrolysis, transmembrane transport, and intracellular metabolism as well as VFA biosynthesis showed increased relative abundance, which maintained high microbial activities for VFAs biosynthesis. This study underscored the advantages of biodewatering TA for WAS treatment in the context of resource recovery and deciphered the interactive mechanisms.


Subject(s)
Fatty Acids, Volatile , Fermentation , Sewage , Tannins , Fatty Acids, Volatile/metabolism , Sewage/microbiology , Tannins/metabolism , Anaerobiosis , Microbiota
5.
PeerJ ; 12: e17438, 2024.
Article in English | MEDLINE | ID: mdl-38818455

ABSTRACT

Background: The identification and analysis of allelic variation are important bases for crop diversity research, trait domestication and molecular marker development. Grain tannin content is a very important quality trait in sorghum. Higher tannin levels in sorghum grains are usually required when breeding varieties resistant to bird damage or those used for brewing liquor. Non-tannin-producing or low-tannin-producing sorghum accessions are commonly used for food and forage. Tan1 and Tan2, two important cloned genes, regulate tannin biosynthesis in sorghum, and mutations in one or two genes will result in low or no tannin content in sorghum grains. Even if sorghum accessions contain dominant Tan1 and Tan2, the tannin contents are distributed from low to high, and there must be other new alleles of the known regulatory genes or new unknown genes contributing to tannin production. Methods: The two parents 8R306 and 8R191 did not have any known recessive alleles for Tan1 and Tan2, and it was speculated that they probably both had dominant Tan1 and Tan2 genotypes. However, the phenotypes of two parents were different; 8R306 had tannins and 8R191 had non-tannins in the grains, so these two parents were constructed as a RIL population. Bulked segregant analysis (BSA) was used to determine other new alleles of Tan1 and Tan2 or new Tannin locus. Tan1 and Tan2 full-length sequences and tannin contents were detected in wild sorghum resources, landraces and cultivars. Results: We identified two novel recessive tan1-d and tan1-e alleles and four recessive Tan2 alleles, named as tan2-d, tan2-e, tan2-f, and tan2-g. These recessive alleles led to loss of function of Tan1 and Tan2, and low or no tannin content in sorghum grains. The loss-of-function alleles of tan1-e and tan2-e were only found in Chinese landraces, and other alleles were found in landraces and cultivars grown all around the world. tan1-a and tan1-b were detected in foreign landraces, Chinese cultivars and foreign cultivars, but not in Chinese landraces. Conclusion: These results implied that Tan1 and Tan2 recessive alleles had different geographically distribution in the worldwide, but not all recessive alleles had been used in breeding. The discovery of these new alleles provided new germplasm resources for breeding sorghum cultivars for food and feed, and for developing molecular markers for low-tannin or non-tannin cultivar-assisted breeding in sorghum.


Subject(s)
Alleles , Sorghum , Tannins , Genes, Plant/genetics , Genes, Recessive/genetics , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism , Sorghum/genetics , Sorghum/metabolism , Tannins/genetics , Tannins/metabolism
6.
J Sci Food Agric ; 104(10): 6186-6195, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38459923

ABSTRACT

BACKGROUND: Solid-state fermentation (SSF) has been widely used in the processing of sorghum grain (SG) because it can produce products with improved sensory characteristics. To clarify the influence of different microbial strains on the SSF of SG, especially on the polyphenols content and composition, Lactiplantibacillus plantarum, Saccharomyces cerevisiae, Rhizopus oryzae, Aspergillus oryzae, and Neurospora sitophila were used separately and together for SSF of SG. Furthermore, the relationship between the dynamic changes in polyphenols and enzyme activity closely related to the metabolism of polyphenols has also been measured and analyzed. Microstructural changes observed after SSF provide a visual representation of the SSF on the SG. RESULTS: After SSF, tannin content (TC) and free phenolic content (FPC) were decreased by 56.36% and 23.48%, respectively. Polyphenol oxidase, ß-glucosidase and cellulase activities were increased 5.25, 3.27, and 45.57 times, respectively. TC and FPC were negatively correlated with cellulase activity. A positive correlation between FPC and xylanase activity after 30 h SSF became negative after 48 h SSF. The SG surface was fragmented and porous, reducing the blocking effect of cortex. CONCLUSION: Cellulase played a crucial role in promoting the degradation of tannin (antinutrient) and phenolic compounds. Xylanase continued to release flavonoids while microbial metabolism consumed them with the extension of SSF time. SSF is an effective way to improve the bioactivity and processing characteristics of SG. © 2024 Society of Chemical Industry.


Subject(s)
Catechol Oxidase , Fermentation , Polyphenols , Saccharomyces cerevisiae , Sorghum , Sorghum/chemistry , Sorghum/metabolism , Polyphenols/metabolism , Polyphenols/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/chemistry , Catechol Oxidase/metabolism , Rhizopus/metabolism , Rhizopus/enzymology , Tannins/metabolism , Tannins/analysis , Tannins/chemistry , Aspergillus oryzae/metabolism , Aspergillus oryzae/enzymology , Cellulase/metabolism , Cellulase/chemistry , Neurospora/metabolism , Food Handling/methods , beta-Glucosidase/metabolism , Seeds/chemistry , Seeds/metabolism , Seeds/microbiology , Bacteria/metabolism , Bacteria/classification , Bacteria/enzymology , Bacteria/isolation & purification , Phenols/metabolism , Phenols/chemistry , Phenols/analysis
7.
Sci Total Environ ; 926: 171943, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38527546

ABSTRACT

Monoculture plantations in China, characterized by the continuous cultivation of a single species, pose challenges to timber accumulation and understory biodiversity, raising concerns about sustainability. This study investigated the impact of continuous monoculture plantings of Chinese fir (Cunninghamia lanceolata [Lamb.] Hook.) on soil properties, dissolved organic matter (DOM), and microorganisms over multiple generations. Soil samples from first to fourth-generation plantations were analyzed for basic chemical properties, DOM composition using Fourier transform ion cyclotron resonance mass spectrometry, and microorganisms via high-throughput sequencing. Results revealed a significant decline in nitrate nitrogen content with successive rotations, accompanied by an increase in easily degradable compounds like carbohydrates, aliphatic/proteins, tannins, Carbon, Hydrogen, Oxygen and Nitrogen- (CHON) and Carbon, Hydrogen, Oxygen and Sulfur- (CHOS) containing compounds. However, the recalcitrant compounds, such as lignin and carboxyl-rich alicyclic molecules (CRAMs), condensed aromatics and Carbon, Hydrogen and Oxygen- (CHO) containing compounds decreased. Microorganism diversity, abundance, and structure decreased with successive plantations, affecting the ecological niche breadth of fungal communities. Bacterial communities were strongly influenced by DOM composition, particularly lignin/CRAMs and tannins. Continuous monoculture led to reduced soil nitrate, lignin/CRAMs, and compromised soil quality, altering chemical properties and DOM composition, influencing microbial community assembly. This shift increased easily degraded DOM, accelerating soil carbon and nitrogen cycling, ultimately reducing soil carbon sequestration. From environmental point of view, the study emphasizes the importance of sustainable soil management practices in continuous monoculture systems. Particularly the findings offer valuable insights for addressing challenges associated with monoculture plantations and promoting long-term ecological sustainability.


Subject(s)
Cunninghamia , Microbiota , Dissolved Organic Matter , Nitrates/analysis , Lignin/metabolism , Tannins/analysis , Tannins/metabolism , Soil/chemistry , Organic Chemicals/analysis , Sulfur Compounds/metabolism , Nitrogen/analysis , Carbon/analysis , Hydrogen/analysis , Oxygen/analysis
8.
BMC Plant Biol ; 24(1): 226, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38539101

ABSTRACT

BACKGROUND: Plant growth and quality are often affected by environmental factors, including geographical location, climate, and soil. In this study, we describe the effect of altitudinal differences on the growth and active ingredients in Rheum tanguticum Maxim. ex Balf. (R. tanguticum), a traditional Chinese medicinal herb known for its laxative properties. RESULTS: The results showed that plants grown at lower altitudes had better growth performances than those in higher altitude areas. The yield varied by 2.45-23.68 times with altitude, reaching a maximum of 102.01 t/ha. In addition, total anthraquinone and total sennoside contents decreased with increasing altitude, whereas total tannins increased with increasing altitude. The total anthraquinone content of the indicator compound reached 5.15% at five experimental sites, which exceeded the Chinese Pharmacopoeia standard by 70.87%. The content of the other two categories of active ingredients reached a maximum value of 0.94% (total sennosides) and 2.65% (total tannins). Redundancy analysis revealed that annual rainfall, annual average temperature, annual sunshine hours, and pH significantly affected growth and active ingredients. Moreover, key metabolites, such as flavonoids, amino acids and their derivatives, phenolic acids, lipids, and terpenes, were differentially expressed between samples from low- and high-altitude cultivation areas. These metabolites were enriched in the flavonoid and flavonol biosynthetic pathway and the monoterpene biosynthetic pathway. CONCLUSIONS: These results suggest that high anthraquinone content was observed in the lowest-latitude cultivation area due to low rainfall and alkaline soil pH. Key metabolites were significantly upregulated in high-latitude cultivation areas. These results provide a scientific basis for quality control and the systematic cultivation of R. tanguticum.


Subject(s)
Rheum , Rheum/chemistry , Tannins/metabolism , Anthraquinones/chemistry , Anthraquinones/metabolism , Soil
9.
Sci Rep ; 14(1): 4335, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38383637

ABSTRACT

Beach-cast seaweed has recently garnered attention for its nutrient-rich composition, including proteins, carbohydrates, vitamins, minerals, and phytochemicals. This study focuses on the phenolic content and antioxidant potential of five Australian beach-cast seaweed species during in vitro digestion and colonic fermentation. The bioaccessibility of the selected phenolic compounds was estimated and short chain fatty acids (SCFAs) production was determined. Cystophora sp., showed a notable increase in phenolic content (23.1 mg GAE/g) and antioxidant capacity (0.42 mg CE/g) during the intestinal and gastric phases of in vitro digestion. Durvillaea sp. demonstrated a significant release of flavonoids (0.35 mg QE/g), while Phyllosphora comosa released high levels of tannins (0.72 mg CE/g) during the intestinal phase. During colonic fermentation, P. comosa released the highest levels of phenolic compounds (4.3 mg GAE/g) after 2 h, followed by an increase in flavonoids (0.15 mg QE/g), tannins (0.07 mg CE/g), and antioxidant activity (DPPH: 0.12 mg CE/g; FRAP: 0.61 mg CE/g) after 4 h. Moreover, P. comosa released a considerable amount of phenolic compounds during both in vitro digestion and colonic fermentation. All species consistently released phenolic compounds throughout the study. Phloroglucinol, gallic acid, and protocatechuic acid were identified as the most bioaccessible phenolic compounds in all five Australian beach-cast seaweeds in the in vitro digestion. Nevertheless, compound levels declined during the colonic fermentation phase due to decomposition and fermentation by gut microbiota. With regard to SCFAs, P. comosa displayed elevated levels of acetic (0.51 mmol/L) and propionic acid (0.36 mmol/L) at 2 h, while Durvillaea sp. showed increased butyric (0.42 mmol/L) and valeric (0.26 mmol/L) production acid after 8 h. These findings suggest that seaweed such as Cystophora sp., Durvillaea sp., and P. comosa are promising candidates for food fortification or nutraceutical applications, given their rich phenolic content and antioxidant properties that potentially offer gut health benefits.


Subject(s)
Antioxidants , Seaweed , Antioxidants/metabolism , Fermentation , Digestion , Tannins/metabolism , Australia , Phenols/analysis , Flavonoids , Vitamins , Fatty Acids, Volatile , Seaweed/metabolism
10.
Vet Med Sci ; 10(1): e31347, 2024 01.
Article in English | MEDLINE | ID: mdl-38227709

ABSTRACT

BACKGROUND: The use of plants and by-products, which are containing a high amount of secondary and anti-nutritional compounds such as tannins, in animal feed is limited. The methods that can reduce these compounds make facilitate their use in animal feed. OBJECTIVES: The aim of this study was to reduce the adverse effects of pomegranate peel (PP) tannin for fattening lambs using the tannase-producing bacteria. METHODS: Twenty-one Arabi male lambs (averagely 35 ± 3.8 kg weight and 8 ± 1.0 months age) were used in a completely randomized design with three treatments and seven replications in the present experiment. The experimental treatments included 1 - control diet (CNT, no PP), 2 - diet containing untreated PP (raw PP, UTPP) and 3 - diet containing PP treated with tannase-producing bacteria (bacteria treating PP, BTPP). RESULTS: Using UTPP decreased nutrient intake compared to the control and treatment with tannase-producing bacteria again significantly increased nutrient intake compared to the UTPP (p < 0.05). The digestibilities of organic matter, neutral detergent fibre and acid detergent fibre in the control treatment were significantly higher than UTPP and BTPP and in the BTPP were significantly higher than the UTPP (p < 0.05). The use of UTPP in the diet significantly decreased the pH, ammonia nitrogen concentration and the total protozoa population of the rumen compared to the control (p < 0.05), and treatment with bacteria increased them again. The lowest total protozoa population was observed in UTPP treatments (p < 0.05). The highest concentration of blood glucose was observed in UTPP; however, the highest concentrations of blood urea nitrogen, cholesterol, triglyceride, high-density lipoprotein (non-significant) and low-density lipoprotein were in the control treatment. The effect of experimental treatments on the dry matter consumption of the whole period was significant; however, there was no significant effect on average daily gain, feed conversion ratio, feed efficiency and longissimus muscle colorimetric systems. CONCLUSIONS: Therefore, considering the positive effects of treatment PP with tannin-degrading bacteria relative to raw PP, using these bacteria is a proper way to reduce tannin, thus improving the nutritional value of PP for ruminants.


Subject(s)
Boron Compounds , Carboxylic Ester Hydrolases , Pomegranate , Porphyrins , Tannins , Animals , Detergents , Digestion , Nutritive Value , Rumen/physiology , Sheep , Sheep, Domestic , Tannins/analysis , Tannins/metabolism , Male
11.
Biophys Chem ; 307: 107178, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38277878

ABSTRACT

Tannins are amphiphilic molecules, often polymeric, which can be generally described as a core containing hydrophobic aromatic rings surrounded by hydroxyl groups. They have been known for millennia and are part of human culture. They are ubiquitous in nature and are best known in the context of wine and tea tasting and food cultures. However, they are also very useful for human health, as they are powerful antioxidants capable of combating the constant aggressions of everyday life. However, their mode of action is only just beginning to be understood. This review, using physicochemical concepts, attempts to summarize current knowledge and present an integrated view of the complex relationship between tannins, proteins and lipids, in the context of wine drinking while eating. There are many thermodynamic equilibria governing the interactions between tannins, saliva proteins, lipid droplets in food, membranes and the taste receptors embedded in them. Taste sensations can be explained using these multiple equilibria: for example, astringency (dry mouth) can be explained by the strong binding of tannin micelles to the proline-rich proteins of saliva, suppressing their lubricating action on the palate. In the presence of lipid droplets in food, the equilibrium is shifted towards tannin-lipid complexes, a situation that reduces the astringency perceived when consuming a tannic wine with fatty foods, the so-called "camembert effect". Tannins bind preferentially to taste receptors located in mouth membranes, but can also fluidify lipids in the non-keratinized mucous membranes of the mouth, which can impair the functioning of taste receptors there. Cholesterol, present in large quantities in keratinized mucous membranes, stiffens them and thus prevents tannins from disrupting the conduction of information through other taste receptors. As tannins assemble and disassemble depending on whether they are in contact with proteins, lipids or taste receptors, a perspective on their potential use in the context of neurodegenerative diseases where fibrillation is a key phenomenon will also be discussed.


Subject(s)
Neurodegenerative Diseases , Wine , Humans , Tannins/chemistry , Tannins/metabolism , Wine/analysis , Taste Perception , Astringents/chemistry , Lipids
12.
Yakugaku Zasshi ; 144(2): 183-195, 2024.
Article in Japanese | MEDLINE | ID: mdl-38296496

ABSTRACT

Tannins are a group of polyphenols that possess the ability to precipitate proteins, causing an undesirable astringent taste by interacting with salivary peptides. This interaction deactivates the digestive enzymes; therefore, tannins are considered as plant defense substances. The health benefits of tannins and related polyphenols in foods and beverages have been demonstrated by biological and epidemiological studies; however, their metabolism in living plants and the chemical changes observed during processing of foods and medicinal herbs raises some questions. This review summarizes our studies concerning dynamic changes observed in tannins. Ellagitannins present in the young leaves of Camellia japonica and Quercus glauca undergo oxidative degradation as the leaves mature. Similar oxidative degradation is also observed in whiskey when it is kept for aging in oak barrels, and in decaying wood caused by fungi in natural forests. In contrast, ellagitannins have been observed to undergo reduction in the leaves of Carpinus, Castanopsis, and Triadica species as the leaves mature. This phenomenon of reductive metabolism in leaves enabled us to propose a new biosynthetic pathway for the most fundamental ellagitannin acyl groups, which was also supported by biomimetic synthetic studies. Polyphenols undergo dynamic changes during the process of food processing. Catechin in tea leaves undergo oxidation upon mechanical crushing to generate black tea polyphenols. Though detailed production mechanisms of catechin dimers have been elucidated, structures of thearubigins (TRs), which are complex mixtures of oligomers, remain ambiguous. Our recent studies suggested that catechin B-ring quinones couple with catechin A-rings during the process of oligomerization.


Subject(s)
Catechin , Tannins , Tannins/chemistry , Tannins/metabolism , Hydrolyzable Tannins/chemistry , Hydrolyzable Tannins/metabolism , Catechin/chemistry , Catechin/metabolism , Polyphenols , Tea/chemistry , Oxidation-Reduction
13.
Food Res Int ; 175: 113809, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38129011

ABSTRACT

The interaction between tannins and salivary proteins might affect intraoral aroma release during wine consumption. In this study, the influence and underlying mechanism of interactions between EGCG and IB5 (salivary proline-rich protein) on wine aroma compounds was analysed by static HS-SPME in vitro and molecular dynamics (MD) simulation. The interaction between IB5 and EGCG could significantly reduce the volatility of most aroma compounds in the model wine by 20 %-70 % (p < 0.05). MD simulations indicated that the energy received by aroma compounds in the mixed system was more pronounced. In addition, the decline rate of rational correlation functions (RCF) of aroma compounds in the mixed system was obviously slower. The analysis of the independent gradient model (IGM) indicated that aroma compounds combined with aggregates of IB5 and EGCG through hydrogen bonds and van der Waals forces. The effect of the interaction between EGCG and IB5 on aroma compounds was confirmed by the volatility and molecular computational simulation. Overall, the results enhance the understanding of the mechanisms affecting retronasal aroma release during wine consumption.


Subject(s)
Odorants , Wine , Odorants/analysis , Molecular Dynamics Simulation , Tannins/metabolism , Wine/analysis , Solid Phase Microextraction , Salivary Proteins and Peptides
14.
Sci Rep ; 13(1): 17394, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833301

ABSTRACT

The NorA efflux pump of Staphylococcus aureus is known to play a major role in the development of resistance against quinolone drugs by reducing their concentration inside target pathogens. The objective of this study was to evaluate the ability of tannic acid to inhibit the gene expression of the NorA efflux pump in Staphylococcus aureus and to evaluate the in silico effect on the pump. Efflux pump inhibition was evaluated by fluorimetry. The checkerboard method evaluates the effect of the test substance in combination with an antimicrobial at different concentrations. To gene expression evaluation NorA the assay was performed using: a sub-inhibitory concentration preparation (MIC/4) of the antibiotic; a sub-inhibitory concentration preparation (MIC/4) of the antibiotic associated with tannic acid at a sub-inhibitory concentration (MIC/4). In this study, docking simulations were performed by the SWISSDOCK webserver. The ability of tannic acid to inhibit the NorA efflux pump can be related to both the ability to inhibit the gene expression of this protein, acting on signaling pathways involving the ArlRS membrane sensor. As well as acting directly through direct interaction with the NorA protein, as seen in the approach and in silico and in vitro per checkerboard method and fluorimetry of bromide accumulated in the cell.


Subject(s)
Ciprofloxacin , Staphylococcal Infections , Humans , Ciprofloxacin/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Staphylococcus aureus , Tannins/pharmacology , Tannins/metabolism , Gene Expression , Bacterial Proteins/metabolism , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Microbial Sensitivity Tests
15.
Ecotoxicol Environ Saf ; 266: 115557, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37820476

ABSTRACT

Pesticide stress on plants is receiving increased scrutiny due to its effect on plant secondary metabolism and nutritional quality. Tannic acid (TA) is a natural polyphenolic compound showing excellent antioxidant properties and is involved in alleviating stress. The present study thoroughly investigated the effects and mechanism of exogenous TA on relieving imidacloprid (IMI) stress in tea plants. Our research found that TA(10 mg/L) activated the antioxidant defense system, enhanced the antioxidant ability, reduced the accumulation of ROS and membrane peroxidation, and notably promoted tea plant tolerance to imidacloprid stress. Additionally, TA boosted photosynthetic capacity, strengthened the accumulation of nutrients. regulated detoxification metabolism, and accelerated the digestion and metabolism of imidacloprid in tea plants. Furthermore, TA induced significant changes in 90 important metabolites in tea, targeting 17 metabolic pathways through extensively targeted metabolomics. Specifically, TA activated the flavonoid biosynthetic pathway, resulting in a 1.3- to 3.1-fold increase in the levels of 17 compounds and a 1.5- to 63.8-fold increase in the transcript level of related genes, such as ANR, LAR and CHS in this pathway. As a potential tea health activator, TA alleviates the oxidative damage caused by imidacloprid and improves the yield and quality of tea under pesticide stress.


Subject(s)
Camellia sinensis , Pesticides , Antioxidants/pharmacology , Antioxidants/metabolism , Trees/metabolism , Flavonoids/pharmacology , Flavonoids/metabolism , Biosynthetic Pathways , Oxidative Stress , Camellia sinensis/genetics , Tannins/pharmacology , Tannins/metabolism , Tea , Pesticides/metabolism
16.
Sci Rep ; 13(1): 16755, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37798429

ABSTRACT

Bioconversion using fungi, as natural factory of many applicable bioactive compounds, as enzymes utilizing agro-residue substrates as a solid, abundant, low-cost growth and enzyme production media. This study characterized and applied a tannase enzyme (308 U/mg) from Aspergillus niger A8 + Trichoderma viride co-cultures utilizing pomegranate peels. The partially purified enzyme showed maximal relative activity at 37-65 °C for 10 min and kinetics of thermal inactivation energy at a high point at 60 °C for 0.040/min. The half-life was 37 °C for 58.6 min, temperature coefficient Q10 of tannase was maximal for 1.38 between 40 and 50 °C, and the activation energy was 17.42 kJ/mol. The enzyme activity peaked in the pH range of 4-8, and the maximum relative activity (100.6%) for tannase was achieved at pH 6. The Km and Vmax values for purified enzymes using tannic acid were 7.3 mg/mL and 3333.33 U/mL, respectively. The enzyme reduced the total tannin content in all tannin-rich substrates after 12h. The gallic acid (GA) had total phenols of 77.75 ppm and antioxidant activity of 82.91%. It was observed that the GA as antimicrobial influencer exhibited the largest inhibitory zone diameter (IZD) of 31 ± 1.0 mm against Pseudomonas aeruginosa ATCC27853. The GA minimum inhibitory concentration value was ranged from 7770.0-121.41 µg/mL. The obtained GA showed a bactericidal effect against all bacterial strains except Shigella sonnei DSM5570 and Salmonella typhi DSM17058, which showed bacteriostatic behavior.


Subject(s)
Aspergillus niger , Gallic Acid , Fermentation , Carboxylic Ester Hydrolases/metabolism , Tannins/metabolism , Hydrogen-Ion Concentration
17.
Sci Rep ; 13(1): 16023, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749362

ABSTRACT

Plant secondary metabolites (PSMs) can potentially reduce ruminal methane formation. However, related to differences in their molecular structures, it is not yet clear what causes an anti-methanogenic effect. In an in vitro system simulating rumen fermentation, we investigated the impact of eight compounds with distinct chemical characteristics (gallic and salicylic acids, tannic acid, catechin, epicatechin, quercetin, rutin, and salicin) when added to a basal feed (maize silage) at a concentration of 12% of the feed dry matter. After 48 h of incubation in buffered rumen fluid, methane production was significantly lowered by quercetin (43%), tannic acid (39%) and salicylic acid (34%) compared to the control (maize silage alone) and without changes in total volatile fatty acid production during fermentation. No other PSM reduced methane formation as compared to control but induced significant differences on total volatile fatty acid production. The observed differences were related to lipophilicity, the presence of double bond and carbonyl group, sugar moieties, and polymerization of the compounds. Our results indicate the importance of distinct molecular structures of PSMs and chemical characteristics for methane lowering properties and volatile fatty acid formation. Further systematic screening studies to establish the structure-function relationship between PSMs and methane reduction are warranted.


Subject(s)
Diet , Quercetin , Animals , Quercetin/pharmacology , Quercetin/metabolism , Molecular Structure , Fermentation , Methane/metabolism , Salicylates/pharmacology , Rumen/metabolism , Fatty Acids, Volatile/metabolism , Zea mays/metabolism , Tannins/pharmacology , Tannins/metabolism , Animal Feed/analysis
18.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37535866

ABSTRACT

Two experiments were conducted to determine digestible energy (DE), metabolizable energy (ME), as well as the standardized ileal digestibility (SID) of crude protein (CP) and amino acids (AA) in 10 sorghum samples fed to pigs. In experiment 1, 22 crossbred barrows (Duroc × Yorkshire × Landrace, Initial body weight [BW]: 70.0 ±â€…1.8 kg) were selected and allotted to a replicated 11 × 3 incomplete Latin square design, including a basal diet and 10 sorghum energy diets and three consecutive periods. Each period had 7 d adaptation and 5 d total feces and urine collection. The DE and ME were determined by the total collection and the difference method. In experiment 2, 22 crossbred barrows (Duroc × Yorkshire × Landrace, Initial BW: 41.3 ±â€…1.2 kg) that had a T-cannula installed in the distal ileum were assigned to a replicated 11 × 3 incomplete Latin square design, including an N-free diet and 10 sorghum diets. Each period had 5 d adaptation and 2 d ileal digesta collection. The basal endogenous N losses were measured by the N-free diet method. All diets in experiment 2 were added 0.30% titanium dioxide as an indigestible marker for calculating the ileal CP and AA digestibility. On an as-fed basis, the DE and ME contents in sorghum were 3,410 kcal/kg (2,826 to 3,794 kcal/kg) and 3,379 kcal/kg (2,785 to 3,709 kcal/kg), respectively. The best-fit prediction equation for DE and ME were DE = 6,267.945 - (1,271.154 × % tannin) - (1,109.720 × % ash) (R2 = 0.803) and ME = 51.263 + (0.976 × DE) (R2 = 0.994), respectively. The SID of CP, Lys, Met, Thr, and Trp (SIDCP, SIDLys, SIDMet, SIDThr, and SIDTrp) in 10 sorghum samples were 78.48% (69.56% to 84.23%), 74.27% (61.11% to 90.60%), 92.07% (85.16% to 95.40%), 75.46% (66.39% to 80.80%) and 87.99% (84.21% to 92.37%), respectively. The best prediction equations for SID of CP and the first four limiting AAs were as following: SIDCP = 93.404 - (21.026 × % tannin) (R2 = 0.593), SIDCP = 42.922 - (4.011 × % EE) + (151.774 × % Met) (R2 = 0.696), SIDLys = 129.947 - (670.760 × % Trp) (R2 = 0.821), SIDMet = 111.347 - (232.298 × % Trp) (R2 = 0.647), SIDThr = 55.187 + (3.851 × % ADF) (R2 = 0.609) and SIDTrp = 95.676 - (10.824 × % tannin) (R2 = 0.523), respectively. Overall, tannin and ash are the first and second predictors of DE and ME values of sorghum, respectively, and the tannin, EE, Trp, ash, CF, and ADF can be used as the key predictors for SID of CP and first four limiting AAs.


In this manuscript, we selected and analyzed the chemical composition of 10 different varieties of Chinese sorghum. Two digestion and metabolism experiments were conducted to measure the concentrations of available energy (digestible energy and metabolizable energy) and ileal amino acid digestibility (apparent or standardized ileal amino acid digestibility) in sorghums fed to pigs. The results showed as following: 1) The available energy values of 10 sorghum samples varied greatly, and the ileal digestibility of some amino acids also differed. 2) The available energy value and the ileal digestibility of crude protein and amino acids can be predicted by the contents of chemical components in sorghum, such as tannin (a substance in sorghum that can bind to biological macromolecules like proteins), ash, tryptophan, and fiber composition, etc. The above findings enrich the ingredient database and assist for feed enterprises to make precise formulations when using the Chinese sorghum.


Subject(s)
Amino Acids , Sorghum , Animals , Amino Acids/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Diet/veterinary , Digestion , Energy Metabolism , Ileum/metabolism , Sorghum/metabolism , Swine , Tannins/metabolism , Zea mays/metabolism , China
19.
J Agric Food Chem ; 71(29): 11069-11079, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37450882

ABSTRACT

Hepatitis B virus (HBV) infection is a serious global health problem that threatens the health of human. Tannic acid (TA), a natural polyphenol in foods, fruits, and plants, exhibits a variety of bioactive functions. In our research, we decide to explore the pharmacological mechanism of TA against HBV replication. Our results showed that TA effectively reduced the content of HBV DNA and viral antigens (HBsAg and HBeAg) in HepG2.2.15 cells. Meanwhile, TA significantly decreased the mRNA expression of HBV RNA, which include total HBV RNA, HBV pregenomic RNA, and HBV precore mRNA. Besides, TA evidently downregulated the activity of HBV promoters in HepG2.2.15 cells. Furthermore, we found that TA upregulated the expression of IL-8, TNF-α, IFN-α, and IFN-α-mediated antiviral effectors in HepG2.2.15 cells. On the contrary, TA downregulated the expression of IL-10 and hepatic nuclear factor 4 (HNF4α). In addition, TA activated the NF-κB and MAPK pathways that contributed to the inhibition of HBV replication. Finally, TA treatment led to the occurrence of autophagy, which accelerated the elimination of HBV components in HepG2.2.15 cells. Taken together, our results elucidated the suppressive effect of TA on HBV replication and provided inspiration for its clinical application in HBV treatment.


Subject(s)
Hepatitis B virus , Hepatitis B , Humans , Hepatitis B virus/genetics , NF-kappa B/genetics , NF-kappa B/metabolism , Virus Replication , Hepatitis B/drug therapy , Hepatitis B/genetics , Hep G2 Cells , Tannins/pharmacology , Tannins/metabolism , RNA/metabolism , RNA, Messenger/metabolism , Autophagy , DNA, Viral/genetics , DNA, Viral/metabolism
20.
Molecules ; 28(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37446686

ABSTRACT

In this study, we investigated in vitro the potential of Trichoderma harzianum to produce bioactive secondary metabolites that can be used as alternatives to synthetic compounds. The study focused on analyzing two extracts of T. harzianum using ethyl acetate and n-butanol solvents with different polarities. The extracts were examined using phytochemical analysis to determine the content of polyphenols, flavonoids, tannins, and alkaloids. Thin-layer chromatography (TLC) and Gas chromatography-mass spectroscopy (GC-MS) analysis were used to profile volatile organic metabolites (VOCs) present in the extracts. Furthermore, the extracts were tested for their antifungal ability using the poison food technique. For measuring antioxidant activity, the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) test was used. Trichoderma harzianum was shown to have a significantly high content of tannins and alkaloids, with a noticeable difference between the two extracts. GC-MS analysis identified 33 potential compounds with numerous benefits that could be used in agriculture and the medicinal industry. Moreover, strong antifungal activity was identified against Sclerotinia sclerotiorum by 94.44%, Alternaria sp. by 77.04%, and Fusarium solani by 51.48; similarly, the IC50 of antioxidant activity was estimated for ethyl acetate extract by 71.47% and n-butanol extract by 56.01%. This leads to the conclusion that Trichoderma harzianum VOCs play a significant role as an antifungal and antioxidant agent when taking into account the advantageous bioactive chemicals noted in the extracts. However, to our knowledge, this is the first study in Algeria presenting detailed phytochemical analysis and GC-MS profiling of Trichoderma harzianum for two extracts, ethyl acetate and n-butanol.


Subject(s)
Antifungal Agents , Trichoderma , Antifungal Agents/chemistry , Antioxidants/pharmacology , Antioxidants/metabolism , Gas Chromatography-Mass Spectrometry , 1-Butanol , Phytochemicals/pharmacology , Phytochemicals/metabolism , Tannins/metabolism , Plant Extracts/chemistry , Trichoderma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL