Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.364
Filter
1.
J Environ Manage ; 362: 121349, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833929

ABSTRACT

The use of Ni-based catalysts is a common method for eliminating tar through catalytic cracking. Carbon deposition is the main cause of deactivation in Ni/ZSM-5 catalysts, with filamentous MWCNTs being the primary form of carbon deposits. This study investigates the formation and evolution of CNTs during the catalytic process of biomass tar to explore the mechanism behind carbon deposition. The effect of the 9Ni/10MWCNTs/81ZSM-5 on toluene reforming was investigated through a vertical furnace. Gases produced by tar catalysis were evaluated through GC analysis. The physicochemical structure, properties and catalytic performance of the catalyst were also tested. TG analysis was used to assess the accumulation and oxidation reactivity of carbon on the catalyst surface. An analysis was conducted on the mechanism of carbon deposition during catalyst deactivation in tar catalysis. The results showed that the 9Ni/91ZSM-5 had a superior toluene conversion of 60.49%, but also experienced rapid and substantial carbon deposition up to 52.69%. Carbon is mainly deposited as curved filaments on both the surface and pore channels of the catalyst. In some cases, tip growth occurs where both carbon deposition and Ni coexist. Furthermore, specific surface area and micropore volume are reduced to varying degrees due to carbon deposition. With the time increased, the amount of carbon deposited on the catalyst surface increased to 62.81%, which gradually approached saturation, and the overall performance of the catalyst was stabilized. This situation causes toluene molecules to detach from the active sites within the catalyst, hindering gas release, which leads to reduced catalytic activity and further carbon deposition. It provides both a basis for the development of new catalysts and an economically feasible solution for practical tar reduction and removal.


Subject(s)
Nanotubes, Carbon , Nickel , Catalysis , Nanotubes, Carbon/chemistry , Nickel/chemistry , Tars/chemistry , Carbon/chemistry , Toluene/chemistry , Oxidation-Reduction
2.
Waste Manag ; 179: 163-174, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38479255

ABSTRACT

Catalytic tar cracking is a promising technique for hot syngas cleaning unit in gasification plants because it can preserve tars chemical energy, so increasing the syngas heating value. The cost associated with catalyst preparation is a key issue, together with its deactivation induced by coke deposition. Iron is a cheap and frequently used catalyst, which can also be found in some industrial wastes. The study aims to assess the catalytic efficiency for tar cracking of two waste-derived materials (red mud and sewage sludge) having high content of iron. The catalysts were supported on spheres of γ-Al2O3, and their efficiency was compared to that of a pure iron catalyst. The role of support was investigated by testing pure red mud, with and without the support. A series of long-term tests using naphthalene as tar model compound were carried out under different values of process temperatures (750 °C-800 °C) and steam concentrations (0 %-7.5 %). The waste derived catalysts showed lower hydrogen yields compared to pure iron catalyst, due to their lower content of iron. On the other hand, the conversion efficiencies of all the tested catalysts resulted rather similar, since the Alkali and Alkaline-Earth Metallic species present on the surface of waste-derived catalyst help in preventing coke deposition. The iron oxidation state appears to play an important role, with reduced iron more active than its oxidised form in the tar cracking reactions. This indicates the importance of tuning steam concentration to keep constant the reduced state of iron while limiting coke deposition.


Subject(s)
Coke , Steam , Hydrogen/analysis , Iron , Tars/chemistry , Biomass , Catalysis
3.
Cell Commun Signal ; 22(1): 41, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38229167

ABSTRACT

BACKGROUND: Tar is the main toxic of cigarettes, and its effect on atherosclerosis progression and the underlying mechanisms remain largely unknown. Vascular smooth muscle cells (VSMCs) play a key role in atherogenesis and plaque vulnerability. The present study sought to investigate the mechanism of atherosclerosis progression through tar-induced VSMC necroptosis, a recently described form of necrosis. METHODS: The effect of tar on atherosclerosis progression and VSMC necroptosis was examined in ApoE-/- mice and cultured VSMCs. The role of necroptosis in tar-induced plaque development was evaluated in RIPK3-deletion mice (ApoE-/-RIPK3-/-). The key proteins of necroptosis in carotid plaques of smokers and non-smokers were also examined. Quantitative proteomics of mice aortas was conducted to further investigate the underlying mechanism. Pharmacological approaches were then applied to modulate the expression of targets to verify the regulatory process of tar-induced necroptosis. RESULTS: Tar administration led to increased atherosclerotic plaque area and reduced collagen and VSMCs in ApoE-/- mice. The expression of RIPK1、RIPK3、and MLKL in VSMCs of plaques were all increased in tar-exposed mice and smokers. RIPK3 deletion protected against VSMC loss and plaque progression stimulated by tar. In mechanistic studies, quantitative proteomics analysis of ApoE-/- mice aortas suggested that tar triggered endoplasmic reticulum (ER) stress. PERK-eIF2α-CHOP axis was activated in tar-treated VSMCs and atherosclerotic plaque. Inhibition of ER stress using 4PBA significantly reduced plaque progression and VSMC necroptosis. Further study revealed that ER stress resulted in calcium (Ca2+) release into mitochondria and cytoplasm. Elevated Ca2+ levels lead to mitochondrial dysfunction and excessive reactive oxygen species (ROS) production, which consequently promote RIPK3-dependent necroptosis. In addition, Ca2+/calmodulin-dependent protein kinase II (CaMKII) activated by cytosolic Ca2+ overload binds to RIPK3, accounting for necroptosis. CONCLUSION: The findings revealed that cigarette tar promoted atherosclerosis progression by inducing RIPK3-dependent VSMC necroptosis and identified novel avenues of ER stress and Ca2+ overload.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Tars , Mice , Animals , Plaque, Atherosclerotic/metabolism , Muscle, Smooth, Vascular , Necroptosis , Atherosclerosis/metabolism , Endoplasmic Reticulum Stress , Apolipoproteins E/metabolism , Myocytes, Smooth Muscle/metabolism
4.
PLoS One ; 18(12): e0295773, 2023.
Article in English | MEDLINE | ID: mdl-38096255

ABSTRACT

Genetic resources of tepary bean (Phaseolus acutifolius A. Gray) germplasm collections are not well characterized due to a lack of dedicated genomic resources. There is a need to assemble genomic resources specific to tepary bean for germplasm characterization, heterotic grouping, and breeding. Therefore, the objectives of this study were to deduce the genetic groups in tepary bean germplasm collection using high-density Diversity Array Technology (DArT) based single nucleotide polymorphism (SNP) markers and select contrasting genotypes for breeding. Seventy-eight tepary bean accessions were genotyped using 10527 SNPs markers, and genetic parameters were estimated. Population structure was delineated using principal component and admixture analyses. A mean polymorphic information content (PIC) of 0.27 was recorded, indicating a relatively low genetic resolution of the developed SNPs markers. Low genetic variation (with a genetic distance [GD] = 0.32) existed in the assessed tepary bean germplasm collection. Population structure analysis identified five sub-populations through sparse non-negative matrix factorization (snmf) with high admixtures. Analysis of molecular variance indicated high genetic differentiation within populations (61.88%) and low between populations (38.12%), indicating high gene exchange. The five sub-populations exhibited variable fixation index (FST). The following genetically distant accessions were selected: Cluster 1:Tars-Tep 112, Tars-Tep 10, Tars-Tep 23, Tars-Tep-86, Tars-Tep-83, and Tars-Tep 85; Cluster 3: G40022, Tars-Tep-93, and Tars-Tep-100; Cluster 5: Zimbabwe landrace, G40017, G40143, and G40150. The distantly related and contrasting accessions are useful to initiate crosses to enhance genetic variation and for the selection of economic traits in tepary bean.


Subject(s)
Phaseolus , Polymorphism, Single Nucleotide , Phaseolus/genetics , Plant Breeding , Genetic Drift , Tars , Genetic Variation
5.
Sci Rep ; 13(1): 14709, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679497

ABSTRACT

Technological processes, reconstructed from the archaeological record, are used to study the evolution of behaviour and cognition of Neanderthals and early modern humans. In comparisons, technologies that are more complex infer more complex behaviour and cognition. The manufacture of birch bark tar adhesives is regarded as particularly telling and often features in debates about Neanderthal cognition. One method of tar production, the 'condensation technique', demonstrates a pathway for Neanderthals to have discovered birch bark tar. However, to improve on the relatively low yield, and to turn tar into a perennial innovation, this method likely needed to be scaled up. Yet, it is currently unknown how scaling Palaeolithic technological processes influences their complexity. We used Petri net models and the Extended Cyclomatic Metric to measure system complexity of birch tar production with a single and three concurrent condensation assemblies. Our results show that changing the number of concurrent tar production assemblies substantially increases the measured complexity. This has potential implications on the behavioural and cognitive capacities required by Neanderthals, such as an increase in cooperation or inhibition control.


Subject(s)
Neanderthals , Humans , Animals , Cognition , Archaeology , Commerce , Food Handling , Tars
6.
Sci Rep ; 13(1): 14727, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679507

ABSTRACT

The intentional production of birch bark tar by European Neanderthals as early as 190,000 years ago plays an important role in discussions about the technological and behavioural complexity of Pleistocene hominins. However, research is hampered because it is currently unknown how Neanderthals were producing birch tar. There are several different techniques that could have been employed, but these differ in their apparent production complexity, time and resource efficiency. Identifying production processes in the archaeological record is therefore paramount for furthering research on the technical behavioural repertoire. Organic biomarkers, identified with Gas Chromatograph-Mass Spectrometry (GC-MS), have been used to identify possible production processes during the Neolithic. Here we test whether these biomarkers can also distinguish Palaeolithic (aceramic) tar production methods. We produced tar using five different methods and analysed their biomolecular composition with GC-MS. Our results show that the biomarkers used to distinguish Neolithic tar production strategies using ceramic technology cannot be reliably used to identify tar production processes using aceramic Palaeolithic techniques. More experimentation is required to produce a larger reference library of different tars for future comparisons. To achieve this, complete GC-MS datasets must also be made publicly available, as we have done with our data.


Subject(s)
Betula , Neanderthals , Animals , Tars , Archaeology , Ceramics
7.
Waste Manag ; 169: 43-51, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37393755

ABSTRACT

Biomass, which is a renewable resource, is regarded as an essential energy source due to its accessibility and abundance. In this study, the gasification of wood-based biomass wastes from the medium density fiberboard (MDF) facility was carried out and investigated utilizing an updraft fixed bed gasifier. The feeding capacity of the upstream gasifier is 2100 kg/h. MDF wastes are loaded into the system with feeding capacities of 1500, 1750 and 2100 kg/h. As a reference, the system has also been tested with oak wood chips at a maximum rate of 2100 kg/h. Produced syngas production rate to biomass waste is approximately 2.5 Nm3/kg. The measured gas compositions are CO, CO2, CH4, H2, O2 and N2. Test results with 2100 kg/hMDF wastes have similar gas composition compared to the test results with oak wood chips. The quality of the syngas produced by gasification is directly related to the fuel. It has been observed that the efficiency of the gasification process can be directly or indirectly impacted by the properties of the fuel, such as the moisture content, chemical compositions, and size. The temperature of the produced gas is approximately 430 °C, and it isdirectly combusted with tars and soot it contains to ensure that no chemical energy is lost. The thermal gasification system converts approximately 88% by weight of MDF residue to syngas. The calorific value of produced syngas is obtained between 6.0 and 7.0 MJ/Nm3. The hot syngas containing tars produced from the gasifier was directly burned in the thermal oil heater retrofitted to vortex syngas burner to recover thermal energy, which was then utilized in the production of energy via an ORC turbine. The thermal oil heater has a thermal capacity of 7MWh and the power generation capacity of the ORC turbine is 955 kW of electricity.


Subject(s)
Gases , Hot Temperature , Gases/analysis , Temperature , Tars , Biomass
8.
Redox Biol ; 63: 102722, 2023 07.
Article in English | MEDLINE | ID: mdl-37167879

ABSTRACT

Aminoacyl-tRNA synthetases (aaRSs) are indispensable players in translation. Usually, two or three genes encode cytoplasmic and mitochondrial threonyl-tRNA synthetases (ThrRSs) in eukaryotes. Here, we reported that Caenorhabditis elegans harbors only one tars-1, generating cytoplasmic and mitochondrial ThrRSs via translational reinitiation. Mitochondrial tars-1 knockdown decreased mitochondrial tRNAThr charging and translation and caused pleotropic phenotypes of delayed development, decreased motor ability and prolonged lifespan, which could be rescued by replenishing mitochondrial tars-1. Mitochondrial tars-1 deficiency leads to compromised mitochondrial functions including the decrease in oxygen consumption rate, complex Ⅰ activity and the activation of the mitochondrial unfolded protein response (UPRmt), which contributes to longevity. Furthermore, deficiency of other eight mitochondrial aaRSs in C. elegans and five in mammal also caused activation of the UPRmt. In summary, we deciphered the mechanism of one tars-1, generating two aaRSs, and elucidated the biochemical features and physiological function of C. elegans tars-1. We further uncovered a conserved connection between mitochondrial translation deficiency and UPRmt.


Subject(s)
Amino Acyl-tRNA Synthetases , Caenorhabditis elegans Proteins , Animals , Caenorhabditis elegans/metabolism , Longevity/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Unfolded Protein Response , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Tars/metabolism , RNA, Transfer/metabolism , Mammals/genetics , Mammals/metabolism
9.
Nature ; 614(7947): 287-293, 2023 02.
Article in English | MEDLINE | ID: mdl-36725928

ABSTRACT

The ability of the ancient Egyptians to preserve the human body through embalming has not only fascinated people since antiquity, but also has always raised the question of how this outstanding chemical and ritual process was practically achieved. Here we integrate archaeological, philological and organic residue analyses, shedding new light on the practice and economy of embalming in ancient Egypt. We analysed the organic contents of 31 ceramic vessels recovered from a 26th Dynasty embalming workshop at Saqqara1,2. These vessels were labelled according to their content and/or use, enabling us to correlate organic substances with their Egyptian names and specific embalming practices. We identified specific mixtures of fragrant or antiseptic oils, tars and resins that were used to embalm the head and treat the wrappings using gas chromatography-mass spectrometry analyses. Our study of the Saqqara workshop extends interpretations from a micro-level analysis highlighting the socio-economic status of a tomb owner3-7 to macro-level interpretations of the society. The identification of non-local organic substances enables the reconstruction of trade networks that provided ancient Egyptian embalmers with the substances required for mummification. This extensive demand for foreign products promoted trade both within the Mediterranean8-10 (for example, Pistacia and conifer by-products) and with tropical forest regions (for example, dammar and elemi). Additionally, we show that at Saqqara, antiu and sefet-well known from ancient texts and usually translated as 'myrrh' or 'incense'11-13 and 'a sacred oil'13,14-refer to a coniferous oils-or-tars-based mixture and an unguent with plant additives, respectively.


Subject(s)
Embalming , Mummies , Humans , Egypt, Ancient , Embalming/economics , Embalming/history , Embalming/methods , Gas Chromatography-Mass Spectrometry , History, Ancient , Mummies/history , Resins, Plant/analysis , Resins, Plant/history , Ceramics/chemistry , Ceramics/history , Tars/analysis , Tars/history , Plant Oils/analysis , Plant Oils/history , Mediterranean Region , Tropical Climate , Forests , Tracheophyta/chemistry , Commerce/history
10.
Int J Dermatol ; 62(3): 290-301, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35398899

ABSTRACT

Tars are one of the most effective, unknown, and oldest therapies for psoriasis. They include coal tar (CT) and biomass-derived products. These treatments, particularly the CT, have proven to be cost-effective with long remission times compared to other systemic or topical treatments. However, they have hardly evolved in recent years, as they are not well-embraced by clinicians or patients because of concerns regarding cosmesis and safety. This review summarizes current knowledge about the chemical characterization, mechanism of action, toxicity, and clinical studies supporting the use of tars for psoriasis over the last decade. Trends within these above aspects are reviewed, and avenues of research are identified. CT is rich in polycyclic aromatic hydrocarbons, whereas biomass-derived tars are rich in phenols. While the activation of the aryl hydrocarbon receptor is involved in the antipsoriatic effect of CT, the mechanism of action of biomass-derived products remains to be elucidated. No conclusive evidence exists about the risk of cancer in psoriasis patients under CT treatment. Large, randomized, double-blind, controlled clinical trials are necessary to promote the inclusion of tars as part of modern therapies for psoriasis.


Subject(s)
Coal Tar , Cosmetics , Dermatologic Agents , Psoriasis , Humans , Tars/adverse effects , Psoriasis/drug therapy , Coal Tar/adverse effects , Coal Tar/chemistry , Dermatologic Agents/therapeutic use , Randomized Controlled Trials as Topic
11.
J Hazard Mater ; 439: 129696, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36104917

ABSTRACT

The aim of this study was to investigate the pyrolysis products of polyhydroxyalkanoates (PHAs), polyethylene terephthalate (PET), carbon fiber reinforced composite (CFRC), and block co-polymers (PS-b-P2VP and PS-b-P4VP). The studied PHA samples were produced at temperatures of 15 and 50 oC (PHA15 and PHA50), and commercially obtained from GlasPort Bio (PHAc). Initially, PHA samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy and size exclusion chromatography (SEC) to determine the molecular weight, and structure of the polymers. Thermal techniques such as thermogravimetry (TG) and differential scanning calorimetry (DSC) analyses were performed for PHA, CFRC, and block co-polymers to investigate the degradation temperature range and thermal stability of samples. Fast pyrolysis (500 oC, ∼102 °C s-1) experiments were conducted for all samples in a wire mesh reactor to investigate tar products and char yields. The tar compositions were investigated by gas chromatography-mass spectrometry (GC-MS), and statistical modeling was performed. The char yields of block co-polymers and PHA samples (<2 wt. %) were unequivocally less than that of the PET sample (~10.7 wt. %). All PHA compounds contained a large fraction of ethyl cyclopropane carboxylate (~ 38-58 %), whereas PAH15 and PHA50 additionally showed a large quantity of 2-butenoic acid (~8-12 %). The PHAc sample indicated the presence of considerably high amount of methyl ester (~15 %), butyl citrate (~12.9 %), and tributyl ester (~17 %). The compositional analyses of the liquid fraction of the PET and block co-polymers have shown carcinogenic and toxic properties. Pyrolysis removed matrices in the CRFC composites which is an indication of potential recovery of the original fibers.


Subject(s)
Plastics , Pyrolysis , Esters , Recycling , Tars
12.
Bioengineered ; 13(3): 5190-5204, 2022 03.
Article in English | MEDLINE | ID: mdl-35184682

ABSTRACT

Lung cancer is a significant global burden. Aminoacyl-tRNA synthetases (aaRSs) can be reliably identified by the occurrence and improvement of tumors. Threonyl-tRNA synthetase (TARS) and mitochondrial threonyl-tRNA synthetase 2 (TARS2) are both aaRSs. Many studies have shown that TARS are involved in tumor angiogenesis and metastasis. However, TARS2 has not yet been reported in tumors. This study explored the role of TARS2 in the proliferation and apoptosis of lung adenocarcinoma (LUAD). TARS2 expression in lung adenocarcinoma and non-cancerous lung tissues was detected via immunohistochemistry. Cell proliferation was detected using MTS, clone formation, and EdU staining assays. Flow cytometry was used to detect cell cycle, mitochondria reactive oxygen species (mROS) production, and apoptosis. Mitochondrial membrane potential (MMP ΔΨm) was detected using JC-1 fluorescent probes. Cell cycle, apoptosis-related pathway, and mitochondrial DNA (mtDNA) -encoded protein expression was detected via Western blotting. Finally, the effect of TARS2 on tumor growth was examined using a xenotransplanted tumor model in nude mice. We found that TARS2 was highly expressed in lung adenocarcinoma tissues and associated with poor overall survival (OS). Mechanistic analysis showed that knockdown of TARS2 inhibited proliferation through the retinoblastoma protein (RB) pathway and promoted mROS-induced apoptosis. Knockdown of TARS2 inhibits tumor growth in a xenotransplanted tumor model. TARS2 plays an important role in LUAD cell proliferation and apoptosis and may be a new therapeutic target.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Threonine-tRNA Ligase , Adenocarcinoma of Lung/metabolism , Animals , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Lung Neoplasms/pathology , Mice , Mice, Nude , Tars , Threonine-tRNA Ligase/genetics , Threonine-tRNA Ligase/metabolism
13.
J Bone Joint Surg Am ; 104(8): 684-692, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35030113

ABSTRACT

BACKGROUND: Studies of survivorship of primary total ankle replacements (TARs) beyond 5 years have shown varying results among early and modern designs. National cohorts give valuable insights about TAR outcomes, revision risk factors, and specific designs. The purpose of this study was to investigate implant survivorship and risk factors for revision of contemporary TARs using our national database. METHODS: This observational study included patients identified in the national PMSI (Programme médicalisé des systèmes d'information) database as having undergone TAR from 2010 to 2019. Demographics, discharge data, concomitant procedures, and type of implant were extracted. Kaplan-Meier estimations were performed to determine time to revision using metal component revision for implant failure and revision for deep infection as end points. Weighted Cox models were used for risk factor analysis, including risks of early revision (within the first 2 years). The adjusted hazard ratios (HRadj) were reported with 95% confidence intervals. RESULTS: A cohort of 4,748 patients was extracted. The mean age at surgery was 63 years; 43% of the patients were female. The mean follow-up was 5 years (range, 1 to 10 years). Revisions were noted in 817 cases (17%), including 734 with metal component revision and 83 with revision due to deep infection. The 1-year, 2-year, 5-year, and 10-year survivorship free of metal component revision was 95%, 90%, 84%, and 78%, respectively. Younger age, implants derived from second-generation designs, and an institutional volume of ≤10 TARs per year were found to be independent predictors of revision for any cause. In addition to the above factors (except for implant generation), male sex and concomitant osteotomies and/or fusion were found to be significant predictors for any early revision. CONCLUSIONS: The 10-year survivorship free of metal component revision after TAR was 78%, which was consistent with other national registries. Revisions were associated with young age, associated arthritis or deformities requiring concomitant fusion or osteotomy, and implants derived from second-generation designs. Institutions where >10 procedures were performed per year were associated with better TAR survivorship. LEVEL OF EVIDENCE: Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.


Subject(s)
Arthroplasty, Replacement, Ankle , Arthroplasty, Replacement, Ankle/adverse effects , Female , Humans , Male , Patient Discharge , Prosthesis Design , Prosthesis Failure , Registries , Reoperation , Survivorship , Tars , Treatment Outcome
14.
Int J Mol Sci ; 22(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34638570

ABSTRACT

The microbial biodegradation of new PLA and PCL materials containing birch tar (1-10% v/v) was investigated. Product of dry distillation of birch bark (Betula pendula Roth) was added to polymeric materials to obtain films with antimicrobial properties. The subject of the study was the course of enzymatic degradation of a biodegradable polymer with antibacterial properties. The results show that the type of the material, tar concentration, and the environment influenced the hydrolytic activity of potential biofilm degraders. In the presence of PCL films, the enzyme activities were higher (except for α-D-glucosidase) compared to PLA films. The highest concentration of birch tar (10% v/v) decreased the activity of hydrolases produced by microorganisms to the most significant extent; however, SEM analysis showed the presence of a biofilm even on plastics with the highest tar content. Based on the results of the biological oxygen demand (BOD), the new materials can be classified as biodegradable but, the biodegradation process was less efficient when compared to plastics without the addition of birch tar.


Subject(s)
Anti-Infective Agents/chemistry , Betula/chemistry , Biodegradable Plastics/chemistry , Polyesters/chemistry , Tars/chemistry , Aminopeptidases/metabolism , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Bacteria/enzymology , Betula/microbiology , Biodegradable Plastics/pharmacology , Biofilms , Biological Oxygen Demand Analysis , Distillation , Enzyme Assays , Esterases/metabolism , Lipase/metabolism , Plant Bark/chemistry , Plant Bark/microbiology , Polyesters/metabolism , Tars/pharmacology , alpha-Glucosidases/metabolism , beta-Glucosidase/metabolism
15.
Chem Res Toxicol ; 34(7): 1713-1717, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34228438

ABSTRACT

Two-tail t test statistical analyses of International Organization for Standardization nonintense and Canadian Intense mainstream smoke yields of total particulate matter, tar, nicotine, and carbon monoxide from cigarettes show that mean quantities are generally higher for a linear smoking machine at a 95% confidence level but a rotary smoking machine has better precision. A novel "super pad" analysis concept combines four smaller filter pads from a linear smoking machine, resulting in increased mean constituent yields and reduced variability. Although measurement variability is still greater than that of rotary machines, super padding may be useful to reduce the variance caused by linear smoking machines.


Subject(s)
Smoke/analysis , Canada , Carbon Monoxide/analysis , Environmental Exposure/analysis , Environmental Monitoring/methods , Humans , Nicotine/analysis , Particulate Matter/analysis , Smoking , Tars/analysis
16.
J Cell Mol Med ; 25(15): 7122-7134, 2021 08.
Article in English | MEDLINE | ID: mdl-34160882

ABSTRACT

Traumatic brain injury (TBI) is a major reason of cerebrovascular and neurological damage. Premorbid conditions such as tobacco smoking (TS) can worsen post-TBI injuries by promoting vascular endothelial impairments. Indeed, TS-induced oxidative stress (OS) and inflammation can hamper the blood-brain barrier (BBB) endothelium. This study evaluated the subsequence of chronic TS exposure on BBB endothelial cells in an established in vitro model of traumatic cell injury. Experiments were conducted on confluent TS-exposed mouse brain microvascular endothelial cells (mBMEC-P5) following scratch injury. The expression of BBB integrity-associated tight junction (TJ) proteins was assessed by immunofluorescence imaging (IF), Western blotting (WB) and quantitative RT-PCR. We evaluated reactive oxygen species (ROS) generation, the nuclear factor 2-related (Nrf2) with its downstream effectors and several inflammatory markers. Thrombomodulin expression was used to assess the endothelial haemostatic response to injury and TS exposure. Our results show that TS significantly decreased Nrf2, thrombomodulin and TJ expression in the BBB endothelium injury models while increased OS and inflammation compared to parallel TS-free cultures. These data suggest that chronic TS exposure exacerbates traumatic endothelial injury and abrogates the protective antioxidative cell responses. The downstream effect was a more significant decline of BBB endothelial viability, which could aggravate subsequent neurological impairments.


Subject(s)
Blood-Brain Barrier/drug effects , Brain Injuries, Traumatic/metabolism , Tars/toxicity , Tobacco Smoke Pollution/adverse effects , Animals , Blood-Brain Barrier/cytology , Blood-Brain Barrier/metabolism , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Tars/pharmacology , Thrombomodulin/genetics , Thrombomodulin/metabolism , Tight Junction Proteins/genetics , Tight Junction Proteins/metabolism
17.
Chem Res Toxicol ; 34(6): 1588-1603, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34033466

ABSTRACT

Widespread smoke from wildfires and biomass burning contributes to air pollution and the deterioration of air quality and human health. A common and major emission of biomass burning, often found in collected smoke particles, is spherical wood tar particles, also known as "tar balls". However, the toxicity of wood tar particles and the mechanisms that govern their health impacts and the impact of their complicated chemical matrix are not fully elucidated. To address these questions, we generated wood tar material from wood pyrolysis and isolated two main subfractions: water-soluble and organic-soluble fractions. The chemical characteristics as well as the cytotoxicity, oxidative damage, and DNA damage mechanisms were investigated after exposure of A549 and BEAS-2B lung epithelial cells to wood tar. Our results suggest that both wood tar subfractions reduce cell viability in exposed lung cells; however, these fractions have different modes of action that are related to their physicochemical properties. Exposure to the water-soluble wood tar fraction increased total reactive oxygen species production in the cells, decreased mitochondrial membrane potential (MMP), and induced oxidative damage and cell death, probably through apoptosis. Exposure to the organic-soluble fraction increased superoxide anion production, with a sharp decrease in MMP. DNA damage is a significant process that may explain the course of toxicity of the organic-soluble fraction. For both subfractions, exposure caused cell cycle alterations in the G2/M phase that were induced by upregulation of p21 and p16. Collectively, both subfractions of wood tar are toxic. The water-soluble fraction contains chemicals (such as phenolic compounds) that induce a strong oxidative stress response and penetrate living cells more easily. The organic-soluble fraction contained more polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs and induced genotoxic processes, such as DNA damage.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Epithelial Cells/drug effects , Lung/drug effects , Plant Extracts/pharmacology , Tars/pharmacology , Wood/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Biomass , Cell Death/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Solubility , Tars/chemistry , Tars/isolation & purification , Tumor Cells, Cultured , Water/chemistry
18.
Curr Opin Struct Biol ; 68: 166-174, 2021 06.
Article in English | MEDLINE | ID: mdl-33540375

ABSTRACT

Peptidoglycan (PG) is the major structural polymer of the bacterial cell wall. The PG layer of gram-positive bacterial pathogens such as Staphylococcus aureus (S. aureus) is permeated with anionic glycopolymers known as wall teichoic acids (WTAs) and lipoteichoic acids (LTAs). In S. aureus, the WTA backbone typically consists of repeating ribitol-5-phosphate units, which are modified by enzymes that introduce glycosylation as well as amino acids at different locations. These modifications are key determinants of phage adhesion, bacterial biofilm formation and virulence of S. aureus. In this review, we examine differences in WTA structures in gram-positive bacteria, focusing in particular on three enzymes, TarM, TarS, and TarP that glycosylate the WTA of S. aureus at different locations. Infections with S. aureus pose an increasing threat to human health, particularly through the emergence of multidrug-resistant strains. Recently obtained structural information on TarM, TarS and TarP has helped to better understand the strategies used by S. aureus to establish resistance and to evade host defense mechanisms. Moreover, structures of complexes with poly-RboP and its analogs can serve as a platform for the development of new inhibitors that could form a basis for the development of antibiotic agents.


Subject(s)
Glycosyltransferases , Staphylococcus aureus , Cell Wall/metabolism , Glycosylation , Glycosyltransferases/metabolism , Humans , Staphylococcus aureus/metabolism , Tars/metabolism
19.
Appl Spectrosc ; 75(6): 690-697, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33599525

ABSTRACT

Online measurements of the raw gas composition, including tars and water, during biomass gasification provide valuable information in fundamental investigations and for process control. Mainly consisting of hydrocarbons, tars can, in principle, be measured using Fourier transform infrared (FT-IR) spectroscopy. However, an instrument subjected to raw gas runs the risk of condensation of tars on optical components and subsequent malfunction. Therefore, an external cell, heated to at least 400 ℃, has been designed to ensure that tars remain in the gas phase during FT-IR measurements. The cell was used for on-line FT-IR measurements of permanent gases (CO, CO2, CH4), water, and tars during the operation of a lab-scale downdraft gasifier using wood pellets, bark pellets, and char chips. Based on calibration, the measurement error of permanent gases was estimated to be 0.2%. Concentrations evaluated from spectral signatures of hydrocarbons in tar are in good agreement with results from solid-phase adsorption measurements and correlated well with operational changes in the gasifier.


Subject(s)
Gases , Tars , Biomass , Spectroscopy, Fourier Transform Infrared , Water
20.
Int J Mol Sci ; 23(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35008694

ABSTRACT

The objective of this study was to produce bactericidal polymer films containing birch tar (BT). The produced polymer films contain PLA, plasticiser PEG (5% wt.) and birch tar (1, 5 and 10% wt.). Compared to plasticised PLA, films with BT were characterised by reduced elongation at break and reduced water vapour permeability, which was the lowest in the case of film with 10% wt. BT content. Changes in the morphology of the produced materials were observed by performing scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis; the addition of BT caused the surface of the film to be non-uniform and to contain recesses. FTIR analysis of plasticised PLA/BT films showed that the addition of birch tar did not change the crystallinity of the obtained materials. According to ISO 22196: 2011, the PLA film with 10% wt. BT content showed the highest antibacterial effect against the plant pathogens A. tumefaciens, X. campestris, P. brassicacearum, P. corrugata, P. syringae. It was found that the introduction of birch tar to plasticised PLA leads to a material with biocidal effect and favourable physicochemical and structural properties, which classifies this material for agricultural and horticultural applications.


Subject(s)
Betula/chemistry , Chemical Phenomena , Disinfectants/pharmacology , Polyesters/pharmacology , Tars/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Calcium Chloride/chemistry , Microbial Sensitivity Tests , Permeability , Plastics/chemistry , Spectroscopy, Fourier Transform Infrared , Steam , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...