Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.602
Filter
1.
Commun Biol ; 7(1): 951, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107459

ABSTRACT

Intense environmental pressures can yield both regressive and constructive traits through complex evolutionary mechanisms. Although regression is well-studied, the biological bases of constructive features are less well understood. Cave-dwelling Astyanax fish harbor prolific extraoral taste buds on their heads, which are absent in conspecific surface-dwellers. Here, we present novel ontogenetic data demonstrating extraoral taste buds appear gradually and late in life history. This appearance is similar but non-identical in different cavefish populations, where patterning has evolved to permit taste bud re-specification across the endoderm-ectoderm germ layer boundary. Quantitative genetic analyses revealed that spatially distinct taste buds on the head are primarily mediated by two different cave-dominant loci. While the precise function of this late expansion on to the head is unknown, the appearance of extraoral taste buds coincides with a dietary shift from live-foods to bat guano, suggesting an adaptive mechanism to detect nutrition in food-starved caves. This work provides fundamental insight to a constructive evolutionary feature, arising late in life history, promising a new window into unresolved features of vertebrate sensory organ development.


Subject(s)
Caves , Characidae , Taste Buds , Animals , Taste Buds/physiology , Characidae/genetics , Characidae/physiology , Biological Evolution
2.
J Agric Food Chem ; 72(28): 15854-15864, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38951504

ABSTRACT

A microfluidic tongue-on-a-chip platform has been evaluated relative to the known sensory properties of various sweeteners. Analogous metrics of typical sensory features reported by human panels such as sweet taste thresholds, onset, and lingering, as well as bitter off-flavor and blocking interactions were deduced from the taste receptor activation curves and then compared. To this end, a flow cell containing a receptor cell array bearing the sweet and six bitter taste receptors was transiently exposed to pure and mixed sweetener samples. The sample concentration gradient across time was separately characterized by the injection of fluorescein dye. Subsequently, cellular calcium responses to different doses of advantame, aspartame, saccharine, and sucrose were overlaid with the concentration gradient. Parameters describing the response kinetics compared to the gradient were quantified. Advantame at 15 µM recorded a significantly faster sweetness onset of 5 ± 2 s and a longer lingering time of 39 s relative to sucrose at 100 mM with an onset of 13 ± 2 s and a lingering time of 6 s. Saccharine was shown to activate the bitter receptors TAS2R8, TAS2R31, and TAS2R43, confirming its known off-flavor, whereas addition of cyclamate reduced or blocked this saccharine bitter response. The potential of using this tongue-on-a-chip to bridge the gap with in vitro assays and taste panels is discussed.


Subject(s)
Receptors, G-Protein-Coupled , Sweetening Agents , Taste , Humans , Sweetening Agents/metabolism , Receptors, G-Protein-Coupled/metabolism , Tongue/metabolism , Tongue/drug effects , Sucrose/metabolism , Saccharin/metabolism , Taste Buds/metabolism , Taste Buds/drug effects , Lab-On-A-Chip Devices , Aspartame/metabolism
3.
Front Cell Infect Microbiol ; 14: 1394721, 2024.
Article in English | MEDLINE | ID: mdl-38975331

ABSTRACT

Since 2019, Coronavirus Disease 2019(COVID-19) has affected millions of people worldwide. Except for acute respiratory distress syndrome, dysgeusis is also a common symptom of COVID-19 that burdens patients for weeks or permanently. However, the mechanisms underlying taste dysfunctions remain unclear. Here, we performed complete autopsies of five patients who died of COVID-19. Integrated tongue samples, including numerous taste buds, salivary glands, vessels, and nerves were collected to map the pathology, distribution, cell tropism, and receptor distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the tongue. Our results revealed that all patients had moderate lymphocyte infiltration around the salivary glands and in the lamina propria adjacent to the mucosa, and pyknosis in the epithelia of taste buds and salivary glands. This may be because the serous acini, salivary gland ducts, and taste buds are the primary sites of SARS-CoV-2 infection. Multicolor immunofluorescence showed that SARS-CoV-2 readily infects Keratin (KRT)7+ taste receptor cells in taste buds, secretory cells in serous acini, and inner epithelial cells in the ducts. The major receptors, angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine subtype 2 (TMPRSS2), were both abundantly expressed in these cells. Viral antigens and receptor were both rarely detected in vessels and nerves. This indicates that SARS-CoV-2 infection triggers pathological injury in the tongue, and that dysgeusis may be directly related to viral infection and cellular damage.


Subject(s)
Angiotensin-Converting Enzyme 2 , Autopsy , COVID-19 , SARS-CoV-2 , Serine Endopeptidases , Tongue , Viral Tropism , Humans , COVID-19/pathology , COVID-19/virology , SARS-CoV-2/pathogenicity , Tongue/virology , Tongue/pathology , Male , Angiotensin-Converting Enzyme 2/metabolism , Female , Middle Aged , Serine Endopeptidases/metabolism , Salivary Glands/virology , Salivary Glands/pathology , Aged , Taste Buds/virology , Taste Buds/pathology , Receptors, Virus/metabolism
4.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000511

ABSTRACT

The ion channels Piezo 1 and Piezo 2 have been identified as membrane mechano-proteins. Studying mechanosensitive channels in chemosensory organs could help in understanding the mechanisms by which these channels operate, offering new therapeutic targets for various disorders. This study investigates the expression patterns of Piezo proteins in zebrafish chemosensory organs. For the first time, Piezo protein expression in adult zebrafish chemosensory organs is reported. In the olfactory epithelium, Piezo 1 immunolabels kappe neurons, microvillous cells, and crypt neurons, while Calretinin is expressed in ciliated sensory cells. The lack of overlap between Piezo 1 and Calretinin confirms Piezo 1's specificity for kappe neurons, microvillous cells, and crypt neurons. Piezo 2 shows intense immunoreactivity in kappe neurons, one-ciliated sensory cells, and multi-ciliated sensory cells, with overlapping Calretinin expression, indicating its olfactory neuron nature. In taste buds, Piezo 1 immunolabels Merkel-like cells at the bases of cutaneous and pharyngeal taste buds and the light and dark cells of cutaneous and oral taste buds. It also marks the dark cells of pharyngeal taste buds and support cells in oral taste buds. Piezo 2 is found in the light and dark cells of cutaneous and oral taste buds and isolated chemosensory cells. These findings provide new insights into the distribution of Piezo channels in zebrafish chemosensory organs, enhancing our understanding of their sensory processing and potential therapeutic applications.


Subject(s)
Ion Channels , Zebrafish Proteins , Zebrafish , Animals , Zebrafish/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Ion Channels/metabolism , Ion Channels/genetics , Taste Buds/metabolism , Calbindin 2/metabolism , Olfactory Mucosa/metabolism
5.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000505

ABSTRACT

The oral detection of sugars relies on two types of receptor systems. The first is the G-protein-coupled receptor TAS1R2/TAS1R3. When activated, this receptor triggers a downstream signaling cascade involving gustducin, phospholipase Cß2 (PLCß2), and transient receptor potential channel M5 (TRPM5). The second type of receptor is the glucose transporter. When glucose enters the cell via this transporter, it is metabolized to produce ATP. This ATP inhibits the opening of KATP channels, leading to cell depolarization. Beside these receptor systems, sweet-sensitive taste cells have mechanisms to regulate their sensitivity to sweet substances based on internal and external states of the body. Sweet taste receptors are not limited to the oral cavity; they are also present in extraoral organs such as the gastrointestinal tract, pancreas, and brain. These extraoral sweet receptors are involved in various functions, including glucose absorption, insulin release, sugar preference, and food intake, contributing to the maintenance of energy homeostasis. Additionally, sweet receptors may have unique roles in certain organs like the trachea and bone. This review summarizes past and recent studies on sweet receptor systems, exploring the molecular mechanisms and physiological functions of sweet (sugar) detection in both oral and extraoral organs.


Subject(s)
Receptors, G-Protein-Coupled , Humans , Animals , Receptors, G-Protein-Coupled/metabolism , Taste/physiology , Taste Buds/metabolism , Mouth/metabolism , Gastrointestinal Tract/metabolism , Signal Transduction , TRPM Cation Channels/metabolism , Glucose/metabolism , Pancreas/metabolism , Brain/metabolism
6.
Sci Rep ; 14(1): 15408, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965271

ABSTRACT

Chemosensory impairment is an outstanding symptom of SARS-CoV-2 infections. We hypothesized that measured sensory impairments are accompanied by transcriptomic changes in the foliate papillae area of the tongue. Hospital personnel with known SARS-CoV-2 immunoglobulin G (IgG) status completed questionnaires on sensory perception (n = 158). A subcohort of n = 141 participated in forced choice taste tests, and n = 43 participants consented to donate tongue swabs of the foliate papillae area for whole transcriptome analysis. The study included four groups of participants differing in IgG levels (≥ 10 AU/mL = IgG+; < 10 AU/mL = IgG-) and self-reported sensory impairment (SSI±). IgG+ subjects not detecting metallic taste had higher IgG+ levels than IgG+ participants detecting iron gluconate (p = 0.03). Smell perception was the most impaired biological process in the transcriptome data from IgG+/SSI+ participants subjected to gene ontology enrichment. IgG+/SSI+ subjects demonstrated lower expression levels of 166 olfactory receptors (OR) and 9 taste associated receptors (TAS) of which OR1A2, OR2J2, OR1A1, OR5K1 and OR1G1, as well as TAS2R7 are linked to metallic perception. The question raised by this study is whether odorant receptors on the tongue (i) might play a role in metal sensation, and (ii) are potential targets for virus-initiated sensory impairments, which needs to be investigated in future functional studies.


Subject(s)
COVID-19 , SARS-CoV-2 , Tongue , Transcriptome , Humans , COVID-19/virology , COVID-19/genetics , COVID-19/metabolism , Male , Female , Adult , Middle Aged , Tongue/metabolism , Tongue/virology , Tongue/pathology , Immunoglobulin G , Metals/metabolism , Taste Buds/metabolism , Taste Perception/genetics , Taste , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Olfactory Perception
7.
Chem Senses ; 492024 Jan 01.
Article in English | MEDLINE | ID: mdl-39078723

ABSTRACT

Mammalian taste buds are highly regenerative and can restore themselves after normal wear and tear of the lingual epithelium or following physical and chemical insults, including burns, chemotherapy, and nerve injury. This is due to the continual proliferation, differentiation, and maturation of taste progenitor cells, which then must reconnect with peripheral gustatory neurons to relay taste signals to the brain. The turnover and re-establishment of peripheral taste synapses are vital to maintain this complex sensory system. Over the past several decades, the signal transduction and neurotransmitter release mechanisms within taste cells have been well delineated. However, the complex dynamics between synaptic partners in the tongue (taste cell and gustatory neuron) are only partially understood. In this review, we highlight recent findings that have improved our understanding of the mechanisms governing connectivity and signaling within the taste bud and the still-unresolved questions regarding the complex interactions between taste cells and gustatory neurons.


Subject(s)
Taste Buds , Taste , Taste Buds/cytology , Taste Buds/physiology , Animals , Humans , Taste/physiology , Neurons/physiology , Neurons/metabolism , Signal Transduction
8.
Mol Cells ; 47(7): 100078, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38825187

ABSTRACT

The sense of taste arises from the detection of chemicals in food by taste buds, the peripheral cellular detectors for taste. Although numerous studies have extensively investigated taste buds, research on neural circuits from primary taste neurons innervating taste buds to the central nervous system has only recently begun owing to recent advancements in neuroscience research tools. This minireview focuses primarily on recent reports utilizing advanced neurogenetic tools across relevant brain regions.


Subject(s)
Taste Buds , Taste , Animals , Humans , Taste Buds/physiology , Taste/physiology , Taste Perception/physiology
9.
J Agric Food Chem ; 72(26): 14530-14534, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38914424

ABSTRACT

Human bitter perception is important for the identification of potentially harmful substances in food. For quite some years, research focused on the identification of activators for ∼25 human bitter taste receptors. The discovery of antagonists as well as increasing knowledge about agonists of different efficacies has substantially added to the intricacy of bitter taste perception. This article seeks to raise awareness for an underestimated new level of complexity when compound mixtures or even whole food items are assessed for their bitter taste.


Subject(s)
Receptors, G-Protein-Coupled , Taste Perception , Taste , Humans , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Taste Buds/physiology , Taste Buds/drug effects
10.
J Biophotonics ; 17(7): e202400095, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850248

ABSTRACT

Prevention and treatment protocols for taste changes observed during hematopoietic cell transplantation (HCT) are not well-established. The purpose of this study was to assess the efficacy of photobiomodulation (PBM) in relieving taste changes and preventing lingual papillae atrophy. HCT patients received PBM (n = 42) on the tongue dorsum using an InGaAIP laser (660 nm, 100 mW, 1.1 W/cm2, 8.8 J/cm2). During the HCT conditioning (T0), severe neutropenia (T1), and after neutrophil engraftment (T2), taste acuity for sweet, bitter, sour, and salty solutions, and clinical appearance of lingual papillae were compared with those of a placebo group (n = 43). PBM significantly reduced hypogeusia, ageusia, and parageusia at T1 and T2, and also successfully prevented papillae atrophy during all the analyzed HCT periods. In conclusion, PBM enhanced taste acuity during HCT. The decrease in papillae atrophy indicated a potential regenerative effect of this therapy on tongue mucosa.


Subject(s)
Hematopoietic Stem Cell Transplantation , Low-Level Light Therapy , Taste , Humans , Female , Male , Middle Aged , Adult , Taste/radiation effects , Tongue/radiation effects , Tongue/pathology , Atrophy , Taste Disorders/etiology , Young Adult , Aged , Taste Buds/radiation effects
11.
Food Chem ; 457: 140131, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38917565

ABSTRACT

N-Succinyl amino acids (N-Suc-AAs) are garnering attention for their potential as taste-active compounds. The intricate variety of N-Suc-AAs presented considerable challenges in identifying those with taste-active properties. Consequently, we employed structure-based virtual screening to pinpoint taste-active N-Suc-AAs, revealing N-succinyl-L-tryptophan (ST) as a compound with high affinity for different taste receptors. Following this discovery, ST was synthesized through an enzymatic process, achieving a yield of 40.2%, with its structure verified via NMR spectroscopy. Sensory evaluation alongside electronic tongue assessments indicated that ST at a concentration of 1 mg/L significantly enhances umami, kokumi, and saltiness intensities, while concurrently mitigating bitterness from various bitter compounds, whilst itself remaining tasteless. Additionally, time-intensity (TI) results elucidated a marked augmentation in umami duration and a notable diminution in bitterness duration for solutions imbued with 1 mg/L ST. Molecular docking study suggested ST interacted with diverse taste receptors as an agonist or antagonist, primarily through hydrogen bonds and hydrophobic interactions. This study marked the inaugural report on the enzymatic synthesis of ST and its efficacy in improving taste characteristics, underscoring the importance of ST in improving sensory qualities of food products and fostering innovation within the seasoning industry.


Subject(s)
Molecular Docking Simulation , Taste , Tryptophan , Humans , Tryptophan/chemistry , Flavoring Agents/chemistry , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Adult , Male , Taste Buds/chemistry , Female
12.
J Morphol ; 285(6): e21743, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825877

ABSTRACT

The aim of this study was to describe the morphology of the tongue of the okapi, and to compare the results with other ruminants including browsers, intermediates and grazers. The material was collected post-mortem from two animals from a Zoological Garden. The structure of the okapi tongue, focusing of the shape of the tongue, lingual surface, its papillae and lingual glands, was examined using gross morphology, light and polarized microscopy, and by scanning electron microscopy. The okapi tongue was characterized by dark pigmentation on the lingual dorsum (except lingual torus) and on the whole ventral surface. Two types of filiform papillae were observed, with additional, even 6-8 projections at their base. The round fungiform papillae were present at a higher density, up to 16/cm2, on the ventro-lateral area of the lingual apex. Round and elongate vallate papillae were arranged in two parallel lines between the body and root of the tongue. Numerous taste buds were detected within the epithelium of their vallum, while fungiform papillae had sparse taste buds. A lack of foliate papillae was noted. Very small conical papillae, some lenticular in shape, were present on the lingual torus. Thick collagen type I fibers were dominant over collagen type III fibers in the connective tissue of the lingual papillae. The mucous acini units were dominant among lingual glands, indicating that the secretion of okapi lingual glands was mostly mucous. In many aspects, the tongue of okapi resembles the tongue of other ruminants. The specific lingual shape and lingual surface, together with the lingual glands, support the processing of plant food, such as young and soft leaves. Although okapi tongue is characterized by smaller conical papillae compared to other ruminants, its high number of vallate papillae is similar that found in other browsers, intermediate and grazers. Thus the number of gustatory papillae rather indicates that this feature is not related to the type of feeding.


Subject(s)
Taste Buds , Tongue , Animals , Tongue/ultrastructure , Tongue/anatomy & histology , Taste Buds/ultrastructure , Taste Buds/anatomy & histology , Microscopy, Electron, Scanning , Giraffes/anatomy & histology , Artiodactyla/anatomy & histology , Adaptation, Physiological
13.
PLoS One ; 19(6): e0294835, 2024.
Article in English | MEDLINE | ID: mdl-38848388

ABSTRACT

The Hedgehog (HH) pathway regulates embryonic development of anterior tongue taste fungiform papilla (FP) and the posterior circumvallate (CVP) and foliate (FOP) taste papillae. HH signaling also mediates taste organ maintenance and regeneration in adults. However, there are knowledge gaps in HH pathway component expression during postnatal taste organ differentiation and maturation. Importantly, the HH transcriptional effectors GLI1, GLI2 and GLI3 have not been investigated in early postnatal stages; the HH receptors PTCH1, GAS1, CDON and HHIP, required to either drive HH pathway activation or antagonism, also remain unexplored. Using lacZ reporter mouse models, we mapped expression of the HH ligand SHH, HH receptors, and GLI transcription factors in FP, CVP and FOP in early and late postnatal and adult stages. In adults we also studied the soft palate, and the geniculate and trigeminal ganglia, which extend afferent fibers to the anterior tongue. Shh and Gas1 are the only components that were consistently expressed within taste buds of all three papillae and the soft palate. In the first postnatal week, we observed broad expression of HH signaling components in FP and adjacent, non-taste filiform (FILIF) papillae in epithelium or stroma and tongue muscles. Notably, we observed elimination of Gli1 in FILIF and Gas1 in muscles, and downregulation of Ptch1 in lingual epithelium and of Cdon, Gas1 and Hhip in stroma from late postnatal stages. Further, HH receptor expression patterns in CVP and FOP epithelium differed from anterior FP. Among all the components, only known positive regulators of HH signaling, SHH, Ptch1, Gli1 and Gli2, were expressed in the ganglia. Our studies emphasize differential regulation of HH signaling in distinct postnatal developmental periods and in anterior versus posterior taste organs, and lay the foundation for functional studies to understand the roles of numerous HH signaling components in postnatal tongue development.


Subject(s)
Hedgehog Proteins , Signal Transduction , Taste Buds , Tongue , Animals , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Tongue/metabolism , Tongue/growth & development , Mice , Taste Buds/metabolism , Taste Buds/growth & development , Gene Expression Regulation, Developmental , Homeostasis , Patched-1 Receptor/metabolism , Patched-1 Receptor/genetics , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Zinc Finger Protein Gli2/metabolism , Zinc Finger Protein Gli2/genetics , Zinc Finger Protein Gli3/metabolism , Zinc Finger Protein Gli3/genetics , Nerve Tissue Proteins , Cell Cycle Proteins , GPI-Linked Proteins
15.
Chem Senses ; 492024 Jan 01.
Article in English | MEDLINE | ID: mdl-38761122

ABSTRACT

Taste receptor cells are morphologically classified as types II and III. Type II cells form a unique type of synapses referred to as channel synapses where calcium homeostasis modulator 1 (CALHM1) together with CALHM3 forms voltage-gated channels that release the neurotransmitter, adenosine triphosphate (ATP). To validate the proposed structural model of channel synapses, the ultrastructural localization of CALHM1 in type II cells of both fungiform and circumvallate taste buds was examined. A monoclonal antibody against CALHM1 was developed and its localization was evaluated via immunofluorescence and immunoelectron microscopy using the immunogold-silver labeling technique. CALHM1 was detected as puncta using immunofluorescence and along the presynaptic membrane of channel synapses facing atypical mitochondria, which provide ATP, by immunoelectron microscopy. In addition, it was detected along the plasma membrane lined by subsurface cisternae at sites apposed to afferent nerve fibers. Our results support the validity of a previously proposed structural model for channel synapses and provide insights into the function of subsurface cisternae whose function in taste receptor cells is unknown. We also examined the localization of CALHM1 in hybrid synapses of type III cells, which are conventional chemical synapses accompanied by mitochondria similar to atypical mitochondria of channel synapses. CALHM1 was not detected in the six hybrid synapses examined using immunoelectron microscopy. We further performed double immunolabeling for CALHM1 and Bassoon, which is detected as puncta corresponding to conventional vesicular synapses in type III cells. Our observations suggest that at least some, and probably most, hybrid synapses are not accompanied by CALHM1.


Subject(s)
Calcium Channels , Taste Buds , Animals , Taste Buds/metabolism , Taste Buds/ultrastructure , Mice , Calcium Channels/metabolism , Synapses/metabolism , Synapses/ultrastructure , Microscopy, Immunoelectron , Mice, Inbred C57BL , Antibodies, Monoclonal/metabolism
16.
Nutrients ; 16(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732551

ABSTRACT

The salivary protein, Gustin/carbonic anhydrase VI, has been described as a trophic factor responsible for the growth of taste buds. We found, in a genetically homogeneous population, that the polymorphism rs2274333 (A/G) of the Gustin gene is crucial for the full functionality of the protein and is associated with taste sensitivity. However, other studies have failed to find this evidence. Here, we verified if Gustin gene methylation can affect the salivary levels of the protein, also concerning the polymorphism rs2274333 and PROP bitter responsiveness. The Gustin gene methylation profiling and the quantification of the Gustin salivary levels were determined in sixty-six volunteers genotyped for the polymorphism rs2274333 (A/G) (Ser90Gly in the protein sequence). The fungiform papillae density was also determined. The results confirm our earlier observations by showing that AA genotypes had a greater density of fungiform taste papillae, whereas the GG genotypes showed a lower density. We also found variations in the protein levels in the three genotype groups and an inverse relationship between Gustin gene methylation and the salivary levels of the protein, mostly evident in AA and ST volunteers, i.e., in volunteers who would be carriers of the functional isoform of the protein. These findings could justify the conflicting data in the literature.


Subject(s)
Carbonic Anhydrases , Saliva , Taste Buds , Adult , Female , Humans , Male , Young Adult , Carbonic Anhydrases/genetics , Carbonic Anhydrases/metabolism , DNA Methylation , Genotype , Polymorphism, Single Nucleotide , Saliva/metabolism , Taste/genetics , Taste Buds/metabolism
17.
Tissue Cell ; 88: 102366, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640599

ABSTRACT

Our research aims to conduct a comprehensive ultrastructural, histochemical, and immunohistochemical examination of Tarentola annularis' tongue, utilizing various techniques such as light, scanning electron microscopy, and morphometric analysis. The complex papillary system consisted of four conical subtypes and one filiform type. The apex carried three conical subtypes (elongated, quadrilateral, and round); the midtongue carried two papillary types (quadrilateral conical and rectangular pointed filiform); and the hindtongue carried two conical subtypes (quadrilateral and elongated serrated). The dorsal papillary surface carried little taste pores on the foretongue and taste buds on the midtongue. The foretongue had a slightly stratum corneum that spread to coat the papillae, while the mid- and hindtongue did not. The glands are absent from the foretongue but are found in the interpapillary spaces of the mid- and hindtongue. Histochemical analysis reveals the presence of collagen fibers in the muscle bundles and the papillary core. The midtongue glands exhibited a strong reaction to AB and PAS, while the hindtongue showed moderate AB positivity and strong positive PAS. The cytokeratin expression in the foretongue papilla was positive, whereas the papillae in other regions were negative. The Tarentola annularis exhibits distinctive lingual structural characteristics due to its varied feeding habits influenced by available food particles.


Subject(s)
Immunohistochemistry , Tongue , Animals , Tongue/ultrastructure , Tongue/metabolism , Taste Buds/ultrastructure , Taste Buds/metabolism , Adaptation, Physiological
18.
J Agric Food Chem ; 72(18): 10531-10536, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38663860

ABSTRACT

In the past, taste interactions between sodium chloride (NaCl) and bitter tastants were investigated in human sensory studies, and the suppression of bitterness by sodium was observed. It is currently not clear if this phenomenon occurs predominantly peripherally or centrally and if the effect is general or only particular bitter compounds are blocked. Therefore, the influence of NaCl at the receptor level was tested by functional expression assays using four out of ∼25 human bitter taste receptors together with prototypical agonists. It was observed that NaCl affected only the responses of particular bitter taste receptor-compound pairs, whereas other bitter responses remained unchanged upon variations of the sodium concentrations. Among the tested receptors, TAS2R16 showed a reduction in signaling in the presence of NaCl. This demonstrates that for some receptor-agonist pairs, NaCl reduces the activation at the receptor level, whereas central effects may dominate the NaCl-induced bitter taste inhibition for other substances.


Subject(s)
Receptors, G-Protein-Coupled , Sodium Chloride , Humans , HEK293 Cells , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Taste , Taste Buds/metabolism , Taste Buds/drug effects
19.
Diabetes Obes Metab ; 26(6): 2054-2068, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38618969

ABSTRACT

AIMS: Taste modifies eating behaviour, impacting body weight and potentially obesity development. The Obese Taste Bud (OTB) Study is a prospective cohort study launched in 2020 at the University of Leipzig Obesity Centre in cooperation with the HI-MAG Institute. OTB will test the hypothesis that taste cell homeostasis and taste perception are linked to obesity. Here, we provide the study design, data collection process and baseline characteristics. MATERIALS AND METHODS: Participants presenting overweight, obesity or normal weight undergo taste and smell tests, anthropometric, and taste bud density (TBD) assessment on Day 1. Information on physical and mental health, eating behaviour, physical activity, and dental hygiene are obtained, while biomaterial (saliva, tongue swap, blood) is collected in the fasted state. Further blood samples are taken during a glucose tolerance test. A stool sample is collected at home prior to Day 2, on which a taste bud biopsy follows dental examination. A subsample undergoes functional magnetic resonance imaging while exposed to eating-related cognitive tasks. Follow-up investigations after conventional weight loss interventions and bariatric surgery will be included. RESULTS: Initial results show that glycated haemoglobin levels and age are negatively associated with TBD, while an unfavourable metabolic profile, current dieting, and vegan diet are related to taste perception. Olfactory function negatively correlates with age and high-density lipoprotein cholesterol. CONCLUSION: Initial findings suggest that metabolic alterations are relevant for taste and smell function and TBD. By combining omics data from collected biomaterial with physiological, metabolic and psychological data related to taste perception and eating behaviour, the OTB study aims to strengthen our understanding of taste perception in obesity.


Subject(s)
Obesity , Taste Buds , Taste Perception , Humans , Obesity/complications , Prospective Studies , Female , Male , Adult , Taste Perception/physiology , Middle Aged , Taste/physiology , Research Design , Feeding Behavior/physiology , Feeding Behavior/psychology , Young Adult
20.
Aging Clin Exp Res ; 36(1): 84, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558357

ABSTRACT

This review critically assessed the existence of presbygeusia, i.e., the impairment in taste perception occurring in the elderly, as a natural part of the aging process and its potential clinical implications. Several factors might contribute to age-related taste alterations (TAs), including structural changes in taste buds, alterations in saliva composition, central nervous system changes, and oral microbiota dysbiosis. A comprehensive literature review was conducted to disentangle the effects of age from those of the several age-related diseases or conditions promoting TAs. Most of the included studies reported TAs in healthy elderly people, suggesting that presbygeusia is a relatively frequent condition associated with age-related changes in the absence of pathological conditions. However, the impact of TAs on dietary preferences and food choices among the elderly seems to be less relevant when compared to other factors, such as cultural, psychological, and social influences. In conclusion, presbygeusia exists even in the absence of comorbidities or drug side effects, but its impact on dietary choices in the elderly is likely modest.


Subject(s)
Taste Buds , Taste , Humans , Aged , Taste/physiology , Taste Perception/physiology , Saliva/chemistry , Saliva/physiology , Taste Buds/physiology , Food Preferences
SELECTION OF CITATIONS
SEARCH DETAIL