Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Publication year range
1.
Microsc Res Tech ; 87(8): 1733-1741, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38501548

ABSTRACT

The peripheral nerve injury (PNI) affects the morphology of the whole locomotor apparatus, which can reach the myotendinous junction (MTJ) interface. In the injury condition, the skeletal muscle satellite cells (SC) are triggered, activated, and proliferated to repair their structure, and in the MTJ, the telocytes (TC) are associated to support the interface with the need for remodeling; in that way, these cells can be associated with SC. The study aimed to describe the SC and TC relationship after PNI at the MTJ. Sixteen adult Wistar rats were divided into Control Group (C, n = 8) and PNI Group (PNI, n = 8), PNI was performed by the constriction of the sciatic nerve. The samples were processed for transmission electron microscopy and immunostaining analysis. In the C group was evidenced the arrangement of sarcoplasmic evaginations and invaginations, the support collagen layer with a TC inside it, and an SC through vesicles internally and externally to then. In the PNI group were observed the disarrangement of invaginations and evaginations and sarcomeres degradation at MTJ, as the disposition of telopodes adjacent and in contact to the SC with extracellular vesicles and exosomes in a characterized paracrine activity. These findings can determine a link between the TCs and the SCs at the MTJ remodeling. RESEARCH HIGHLIGHTS: Peripheral nerve injury promotes the myotendinous junction (MTJ) remodeling. The telocytes (TC) and the satellite cells (SC) are present at the myotendinous interface. TC mediated the SC activity at MTJ.


Subject(s)
Extracellular Vesicles , Microscopy, Electron, Transmission , Rats, Wistar , Satellite Cells, Skeletal Muscle , Telocytes , Animals , Telocytes/physiology , Telocytes/ultrastructure , Satellite Cells, Skeletal Muscle/physiology , Satellite Cells, Skeletal Muscle/cytology , Rats , Extracellular Vesicles/ultrastructure , Extracellular Vesicles/metabolism , Peripheral Nerve Injuries/pathology , Peripheral Nerve Injuries/metabolism , Male , Sciatic Nerve/ultrastructure , Tendons/physiology , Muscle, Skeletal/ultrastructure , Myotendinous Junction
2.
Cell Biol Int ; 45(8): 1613-1623, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33856089

ABSTRACT

The male urogenital system is composed of the reproductive system and the urinary tract; they have an interconnected embryonic development and share one of their anatomical components, the urethra. This system has a highly complex physiology deeply interconnected with the circulatory and nervous systems, as well as being capable of adapting to environmental variations; it also undergoes changes with aging and, in the case of the reproductive system, with seasonality. The stroma is an essential component in this physiological plasticity and its complexity has increased with the description in the last decade of a new cell type, the telocyte. Several studies have demonstrated the presence of telocytes in the organs of the male urogenital system and other systems; however, their exact function is not yet known. The present review addresses current knowledge about telocytes in the urogenital system in terms of their locations, interrelationships, possible functions and pathological implications. It has been found that telocytes in the urogenital system possibly have a leading role in stromal tissue organization/maintenance, in addition to participation in stem cell niches and an association with the immune system, as well as specific functions in the urogenital system, lipid synthesis in the testes, erythropoiesis in the kidneys and the micturition reflex in the bladder. There is also evidence that telocytes are involved in pathologies in the kidneys, urethra, bladder, prostate, and testes.


Subject(s)
Telocytes/pathology , Telocytes/physiology , Urogenital System/pathology , Urogenital System/physiology , Animals , Genital Diseases, Male/pathology , Genital Diseases, Male/physiopathology , Humans , Lipid Metabolism/physiology , Male , Prostate/cytology , Prostate/pathology , Prostate/physiology , Stem Cells/pathology , Stem Cells/physiology , Testis/cytology , Testis/pathology , Testis/physiology , Urinary Bladder/cytology , Urinary Bladder/pathology , Urinary Bladder/physiology , Urogenital System/cytology
5.
Sci Rep ; 10(1): 14124, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32839490

ABSTRACT

The present study shows chronic adjustments in the myotendinous junction (MTJ) in response to different ladder-based resistance training (LRT) protocols. Thirty adult male Wistar rats were divided into groups: sedentary (S), calisthenics (LRT without additional load [C]), and resistance-trained (LRT with extra weight [R]). We demonstrated longer lengths of sarcoplasmatic invaginations in the trained groups; however, evaginations were seen mainly in group R. We showed a greater thickness of sarcoplasmatic invaginations in groups C and R, in addition to greater evaginations in R. We also observed thinner basal lamina in trained groups. The support collagen layer (SCL) adjacent to the MTJ and the diameters of the transverse fibrils were larger in R. We also discovered a niche of telocytes in the MTJ with electron micrographs of the plantar muscle and with immunostaining with CD34+ in the gastrocnemius muscle near the blood vessels and pericytes. We concluded that the continuous adjustments in the MTJ ultrastructure were the result of tissue plasticity induced by LRT, which is causally related to muscle hypertrophy and, consequently, to the remodeling of the contact interface. Also, we reveal the existence of a collagen layer adjacent to MTJ and discover a new micro anatomic location of telocytes.


Subject(s)
Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiology , Physical Conditioning, Animal/physiology , Resistance Training/methods , Sarcoplasmic Reticulum/physiology , Telocytes/physiology , Adaptation, Physiological/physiology , Adherens Junctions/physiology , Animals , Basement Membrane/physiology , Cell Adhesion , Cell Movement/physiology , Cell-Matrix Junctions/physiology , Collagen/metabolism , Male , Rats , Rats, Wistar , Sedentary Behavior
6.
Cell Biol Int ; 44(12): 2512-2523, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32856745

ABSTRACT

The postlactational involution of the mammary gland is a complex process. It involves the collapse of the alveoli and the remodeling of the extracellular matrix, which in turn implies a complex set of interrelations between the epithelial, stromal, and extracellular matrix elements. The telocytes, a new type of CD34-positive stromal cell that differs from fibroblasts in morphological terms and gene expression, were detected in the stroma of several tissues, including the mammary gland; however, their function remains elusive. The present study employed three-dimensional reconstructions and immunohistochemical, ultrastructural, and immunofluorescence techniques in histological sections of the mammary gland of the Mongolian gerbil during lactation and postlactational involution to evaluate the presence of telocytes and to investigate a possible function for these cells. By means of immunofluorescence assays for CD34 and c-kit, major markers of telocytes, and also through morphological and ultrastructural evidences, telocytes were observed to surround the mammary ducts and collapsing alveoli. It was also found that these cells are associated with matrix metalloproteinase 9, which indicates that telocytes can play a role in extracellular matrix digestion, as well as vascular endothelial growth factor, a factor that promotes angiogenesis. Together, these data indicate that telocytes are a distinct cell type in the mammary gland and, for the first time, show that these cells possibly play a role in tissue remodeling and angiogenesis during the postlactional involution of the mammary gland.


Subject(s)
Lactation/metabolism , Mammary Glands, Animal/physiology , Telocytes/metabolism , Animals , Antigens, CD34/metabolism , Extracellular Matrix/metabolism , Female , Gene Expression/genetics , Gerbillinae/metabolism , Mammary Glands, Animal/metabolism , Neovascularization, Pathologic/metabolism , Stromal Cells/metabolism , Telocytes/physiology , Vascular Endothelial Growth Factor A/metabolism
7.
Cell Biol Int ; 44(12): 2395-2408, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32813303

ABSTRACT

Telocytes are cells present in the stroma of various tissues including the prostate. The detection of telocytes is still very much dependent on obtaining ultrastructural data that show the presence of telopodes, which are cytoplasmic projections that alternate between dilated regions, the podoms, and thin segments, the podomers. These structures are the distinctive characteristics of the telocytes. Thus, in vitro assays are important for the study of telocytes, which are more easily identified in culture, which also enables the experimental manipulation of these cells. The isolation of telocytes per se does not allow the analysis of the behavior of these cells in relation to other cell types in a given organ. In this sense, in the prostate, explants could be a useful tool for the study of telocytes. The present study obtained prostatic explants and evaluated the influence of recombinant proteins, scattering factor (SCF) and stromal-derived factor 1 (SDF-1), which could impact on the migration of CD34-positive cells. Telocytes migrate out of explants and SDF-1 stimulates the proliferation and formation of telocyte networks in vitro. Telocytes are not smooth muscle cell progenitors in the prostate; on the contrary, they are CD90- and CD44-negative cells and, hence, have limited progenitor capacity. The present study demonstrated that explants are useful tools to elucidate the nature of telocytes and their functions.


Subject(s)
Chemokine CXCL12/metabolism , Hepatocyte Growth Factor/metabolism , Telocytes/metabolism , Animals , Antigens, CD34/metabolism , Cell Culture Techniques/methods , Gerbillinae , Male , Prostate/metabolism , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Telocytes/physiology
SELECTION OF CITATIONS
SEARCH DETAIL