Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.064
Filter
1.
Genome Biol ; 25(1): 125, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760657

ABSTRACT

BACKGROUND: Telomeres form repeated DNA sequences at the ends of chromosomes, which shorten with each cell division. Yet, factors modulating telomere attrition and the health consequences thereof are not fully understood. To address this, we leveraged data from 326,363 unrelated UK Biobank participants of European ancestry. RESULTS: Using linear regression and bidirectional univariable and multivariable Mendelian randomization (MR), we elucidate the relationships between leukocyte telomere length (LTL) and 142 complex traits, including diseases, biomarkers, and lifestyle factors. We confirm that telomeres shorten with age and show a stronger decline in males than in females, with these factors contributing to the majority of the 5.4% of LTL variance explained by the phenome. MR reveals 23 traits modulating LTL. Smoking cessation and high educational attainment associate with longer LTL, while weekly alcohol intake, body mass index, urate levels, and female reproductive events, such as childbirth, associate with shorter LTL. We also identify 24 traits affected by LTL, with risk for cardiovascular, pulmonary, and some autoimmune diseases being increased by short LTL, while longer LTL increased risk for other autoimmune conditions and cancers. Through multivariable MR, we show that LTL may partially mediate the impact of educational attainment, body mass index, and female age at childbirth on proxied lifespan. CONCLUSIONS: Our study sheds light on the modulators, consequences, and the mediatory role of telomeres, portraying an intricate relationship between LTL, diseases, lifestyle, and socio-economic factors.


Subject(s)
Mendelian Randomization Analysis , Telomere , Humans , Male , Female , Telomere/metabolism , Telomere/genetics , Telomere Shortening , Middle Aged , Leukocytes/metabolism , Aged , Telomere Homeostasis , Life Style , Adult , Body Mass Index
2.
Clin Epigenetics ; 16(1): 68, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773655

ABSTRACT

BACKGROUND: Large B-cell lymphoma (LBCL) is the most common lymphoma and is known to be a biologically heterogeneous disease regarding genetic, phenotypic, and clinical features. Although the prognosis is good, one-third has a primary refractory or relapsing disease which underscores the importance of developing predictive biological markers capable of identifying high- and low-risk patients. DNA methylation (DNAm) and telomere maintenance alterations are hallmarks of cancer and aging. Both these alterations may contribute to the heterogeneity of the disease, and potentially influence the prognosis of LBCL. RESULTS: We studied the DNAm profiles (Infinium MethylationEPIC BeadChip) and relative telomere lengths (RTL) with qPCR of 93 LBCL cases: Diffuse large B-cell lymphoma not otherwise specified (DLBCL, n = 66), High-grade B-cell lymphoma (n = 7), Primary CNS lymphoma (n = 8), and transformation of indolent B-cell lymphoma (n = 12). There was a substantial methylation heterogeneity in DLBCL and other LBCL entities compared to normal cells and other B-cell neoplasms. LBCL cases had a particularly aberrant semimethylated pattern (0.15 ≤ ß ≤ 0.8) with large intertumor variation and overall low hypermethylation (ß > 0.8). DNAm patterns could not be used to distinguish between germinal center B-cell-like (GC) and non-GC DLBCL cases. In cases treated with R-CHOP-like regimens, a high percentage of global hypomethylation (ß < 0.15) was in multivariable analysis associated with worse disease-specific survival (DSS) (HR 6.920, 95% CI 1.499-31.943) and progression-free survival (PFS) (HR 4.923, 95% CI 1.286-18.849) in DLBCL and with worse DSS (HR 5.147, 95% CI 1.239-21.388) in LBCL. These cases with a high percentage of global hypomethylation also had a higher degree of CpG island methylation, including islands in promoter-associated regions, than the cases with less hypomethylation. Additionally, telomere length was heterogenous in LBCL, with a subset of the DLBCL-GC cases accounting for the longest RTL. Short RTL was independently associated with worse DSS (HR 6.011, 95% CI 1.319-27.397) and PFS (HR 4.689, 95% CI 1.102-19.963) in LBCL treated with R-CHOP-like regimens. CONCLUSION: We hypothesize that subclones with high global hypomethylation and hypermethylated CpG islands could have advantages in tumor progression, e.g. by inactivating tumor suppressor genes or promoting treatment resistance. Our findings suggest that cases with high global hypomethylation and thus poor prognosis could be candidates for alternative treatment regimens including hypomethylating drugs.


Subject(s)
DNA Methylation , Lymphoma, Large B-Cell, Diffuse , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/mortality , DNA Methylation/genetics , Female , Male , Prognosis , Middle Aged , Aged , Adult , Rituximab/therapeutic use , Aged, 80 and over , Cyclophosphamide/therapeutic use , Doxorubicin/therapeutic use , Vincristine/therapeutic use , Prednisone/therapeutic use , Telomere/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Telomere Shortening/genetics , Epigenesis, Genetic/genetics , CpG Islands/genetics
3.
Nat Struct Mol Biol ; 31(5): 791-800, 2024 May.
Article in English | MEDLINE | ID: mdl-38714889

ABSTRACT

The recognition that DNA can be ADP ribosylated provides an unexpected regulatory level of how ADP-ribosylation contributes to genome stability, epigenetics and immunity. Yet, it remains unknown whether DNA ADP-ribosylation (DNA-ADPr) promotes genome stability and how it is regulated. Here, we show that telomeres are subject to DNA-ADPr catalyzed by PARP1 and removed by TARG1. Mechanistically, we show that DNA-ADPr is coupled to lagging telomere DNA strand synthesis, forming at single-stranded DNA present at unligated Okazaki fragments and on the 3' single-stranded telomere overhang. Persistent DNA-linked ADPr, due to TARG1 deficiency, eventually leads to telomere shortening. Furthermore, using the bacterial DNA ADP-ribosyl-transferase toxin to modify DNA at telomeres directly, we demonstrate that unhydrolyzed DNA-linked ADP-ribose compromises telomere replication and telomere integrity. Thus, by identifying telomeres as chromosomal targets of PARP1 and TARG1-regulated DNA-ADPr, whose deregulation compromises telomere replication and integrity, our study highlights and establishes the critical importance of controlling DNA-ADPr turnover for sustained genome stability.


Subject(s)
ADP-Ribosylation , DNA Replication , DNA , Poly (ADP-Ribose) Polymerase-1 , Telomere , Telomere/metabolism , Telomere/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Humans , DNA/metabolism , Animals , Mice , Adenosine Diphosphate Ribose/metabolism , Genomic Instability , Telomere Shortening
4.
Arch Dermatol Res ; 316(5): 195, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775978

ABSTRACT

Chronic arsenic exposure is a global health hazard significantly associated with the development of deleterious cutaneous changes and increased keratinocyte cancer risk. Although arsenic exposure is associated with broad-scale cellular and molecular changes, gaps exist in understanding how these changes impact the skin and facilitate malignant transformation. Recently developed epigenetic "clocks" can accurately predict chronological, biological and mitotic age, as well as telomere length, on the basis of tissue DNA methylation state. Deviations of predicted from expected age (epigenetic age dysregulation) have been associated with numerous complex diseases, increased all-cause mortality and higher cancer risk. We investigated the ability of these algorithms to detect molecular changes associated with chronic arsenic exposure in the context of associated skin lesions. To accomplish this, we utilized a multi-algorithmic approach incorporating seven "clocks" (Horvath, Skin&Blood, PhenoAge, PCPhenoAge, GrimAge, DNAmTL and epiTOC2) to analyze peripheral blood of pediatric and adult cohorts of arsenic-exposed (n = 84) and arsenic-naïve (n = 33) individuals, among whom n = 18 were affected by skin lesions. Arsenic-exposed adults with skin lesions exhibited accelerated epigenetic (Skin&Blood: + 7.0 years [95% CI 3.7; 10.2], q = 6.8 × 10-4), biological (PhenoAge: + 5.8 years [95% CI 0.7; 11.0], q = 7.4 × 10-2, p = 2.8 × 10-2) and mitotic age (epiTOC2: + 19.7 annual cell divisions [95% CI 1.8; 37.7], q = 7.4 × 10-2, p = 3.2 × 10-2) compared to healthy arsenic-naïve individuals; and accelerated epigenetic age (Skin&Blood: + 2.8 years [95% CI 0.2; 5.3], q = 2.4 × 10-1, p = 3.4 × 10-2) compared to lesion-free arsenic-exposed individuals. Moreover, lesion-free exposed adults exhibited accelerated Skin&Blood age (+ 4.2 [95% CI 1.3; 7.1], q = 3.8 × 10-2) compared to their arsenic-naïve counterparts. Compared to the pediatric group, arsenic-exposed adults exhibited accelerated epigenetic (+ 3.1 to 4.4 years (95% CI 1.2; 6.4], q = 2.4 × 10-4-3.1 × 10-3), biological (+ 7.4 to 7.8 years [95% CI 3.0; 12.1] q = 1.6 × 10-3-2.8 × 10-3) and mitotic age (+ 50.0 annual cell divisions [95% CI 15.6; 84.5], q = 7.8 × 10-3), as well as shortened telomere length (- 0.23 kilobases [95% CI - 0.13; - 0.33], q = 2.4 × 10-4), across all seven algorithms. We demonstrate that lifetime arsenic exposure and presence of arsenic-associated skin lesions are associated with accelerated epigenetic, biological and mitotic age, and shortened telomere length, reflecting altered immune signaling and genomic regulation. Our findings highlight the usefulness of DNA methylation-based algorithms in identifying deleterious molecular changes associated with chronic exposure to the heavy metal, serving as potential prognosticators of arsenic-induced cutaneous malignancy.


Subject(s)
Arsenic , DNA Methylation , Epigenesis, Genetic , Telomere Shortening , Humans , Adult , Arsenic/adverse effects , Arsenic/toxicity , Female , DNA Methylation/drug effects , Telomere Shortening/drug effects , Male , Child , Adolescent , Young Adult , Middle Aged , Mitosis/drug effects , Mitosis/genetics , Skin/pathology , Skin/drug effects , Skin Diseases/chemically induced , Skin Diseases/genetics , Skin Diseases/pathology , Skin Neoplasms/genetics , Skin Neoplasms/chemically induced , Skin Neoplasms/pathology
5.
Lipids Health Dis ; 23(1): 103, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615017

ABSTRACT

BACKGROUND: Previous studies have demonstrated the relationship between adipocyte factors, insulin resistance, and other indicators with telomere length. However, these studies did not consider the influence of changes in different indicators on telomere length over time. Therefore, the aim of this study is to elucidate the impact of changes in adipocyte factors, HOMA-IR, and other indicators on the dynamic variation of telomere length. METHODS: The data were from a cohort study conducted in Ningxia, China. A total of 1624 subjects were analyzed. Adipokines and relative leukocyte telomere length (RLTL) were measured, and changes in Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), Homeostatic Model Assessment for ß-Cell Function (HOMA-ß), and Quantitative Insulin Sensitivity Check Index (QUICKI) were calculated. Generalized linear models evaluated associations between changes in adipokines and RLTL changes. Furthermore, univariate analyses examined the effects of changes in adipokines and insulin resistance indicators on ΔRLTL. RESULTS: The research findings indicate that females generally have shorter telomeres compared to males. In comparison to the low-level group of Δleptin (LEP), the high-level group of ΔLEP shows a negative correlation with ΔRLTL (B=-1.32, 95% CI (-2.38, -0.27)). Even after multivariable adjustments, this relationship persists (B=-1.31, 95% CI (-2.24, -0.23)). Further analysis reveals that after adjusting for ΔHOMA-IR, ΔHOMA-ß, and ΔQUICKI, the high-level group of ΔLEP still exhibits a significant negative correlation with ΔRLTL (B=-1.37, 95% CI (-2.43, -0.31)). However, the interaction effects between ΔHOMA-IR, ΔHOMA-ß, ΔQUICKI, and ΔLEP do not affect ΔRLTL. CONCLUSIONS: Elevated levels of leptin were significantly correlated with shortened telomere length. This suggests that increased leptin levels may impact overall individual health by affecting telomere length, underscoring the importance of measures to reduce leptin levels to mitigate the onset and progression of related diseases.


Subject(s)
Insulin Resistance , Leptin , Female , Male , Humans , Leptin/genetics , Cohort Studies , Insulin Resistance/genetics , Rural Population , Telomere Shortening , Telomere/genetics , Adipokines , China , Leukocytes
6.
J Psychiatr Res ; 174: 319-325, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685189

ABSTRACT

The biological mechanisms that explain how adverse early life events influence adult disease risk are poorly understood. One proposed mechanism is via the induction of accelerated biological aging, for which telomere length is considered a biomarker. We aimed to determine if maternal depression pre- and post-partum was associated with telomere length in children at 4 years of age (n = 4299). Mothers completed structured questionnaires assessing depression during pregnancy (Edinburgh Depression Scale), at 9 months (Edinburgh Depression Scale), and at 54 months postpartum (Patient Health Questionnaire 9). Regression methods were used to investigate the relationship between telomere length (DNA from saliva) and maternal depression score recorded at each stage. Significant covariates included in the final model were: maternal age at pregnancy; child sex; child ethnicity; gestational age group, and rurality group. Child telomere length was found to be longer if their mother had a higher depression score at both postpartum time points tested (9 months of age; coefficient 0.003, SE = 0.001, P = 0.01, 54 months of age; coefficient 0.003, SE = 0.002, P = 0.02). Although these findings seem paradoxical, increased telomere length may be an adaptive response to early life stressors. We propose several testable hypotheses for these results and to determine if the positive association between depression and telomere length is a developmental adaptation or an indirect consequence of environmental factors.


Subject(s)
Depression , Humans , Female , Child, Preschool , Male , Adult , Pregnancy , Infant , Mothers/statistics & numerical data , Telomere , Telomere Shortening/physiology , Pregnancy Complications , Depression, Postpartum , Psychiatric Status Rating Scales
7.
BMJ Open ; 14(4): e081881, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38658004

ABSTRACT

INTRODUCTION: Telomeres are a measure of cellular ageing with potential links to diseases such as cardiovascular diseases and cancer. Studies have shown that some infections may be associated with telomere shortening, but whether an association exists across all types and severities of infections and in which populations is unclear. Therefore we aim to collate available evidence to enable comparison and to inform future research in this field. METHODS AND ANALYSIS: We will search for studies involving telomere length and infection in various databases including MEDLINE (Ovid interface), EMBASE (Ovid interface), Web of Science, Scopus, Global Health and the Cochrane Library. For grey literature, the British Library of electronic theses databases (ETHOS) will be explored. We will not limit by study type, geographical location, infection type or method of outcome measurement. Two researchers will independently carry out study selection, data extraction and risk of bias assessment using the ROB2 and ROBINS-E tools. The overall quality of the studies will be determined using the Grading of Recommendations Assessment, Development and Evaluation criteria. We will also evaluate study heterogeneity with respect to study design, exposure and outcome measurement and if there is sufficient homogeneity, a meta-analysis will be conducted. Otherwise, we will provide a narrative synthesis with results grouped by exposure category and study design. ETHICS AND DISSEMINATION: The present study does not require ethical approval. Results will be disseminated via publishing in a peer-reviewed journal and conference presentations. PROSPERO REGISTRATION NUMBER: CRD42023444854.


Subject(s)
Research Design , Systematic Reviews as Topic , Humans , Telomere Shortening , Telomere/genetics , Infections
8.
Cell Mol Life Sci ; 81(1): 196, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658440

ABSTRACT

Telomeres as the protective ends of linear chromosomes, are synthesized by the enzyme telomerase (TERT). Critically short telomeres essentially contribute to aging-related diseases and are associated with a broad spectrum of disorders known as telomeropathies. In cardiomyocytes, telomere length is strongly correlated with cardiomyopathies but it remains ambiguous whether short telomeres are the cause or the result of the disease. In this study, we employed an inducible CRISPRi human induced pluripotent stem cell (hiPSC) line to silence TERT expression enabling the generation of hiPSCs and hiPSC-derived cardiomyocytes with long and short telomeres. Reduced telomerase activity and shorter telomere lengths of hiPSCs induced global transcriptomic changes associated with cardiac developmental pathways. Consequently, the differentiation potential towards cardiomyocytes was strongly impaired and single cell RNA sequencing revealed a shift towards a more smooth muscle cell like identity in the cells with the shortest telomeres. Poor cardiomyocyte function and increased sensitivity to stress directly correlated with the extent of telomere shortening. Collectively our data demonstrates a TERT dependent cardiomyogenic differentiation defect, highlighting the CRISPRi TERT hiPSCs model as a powerful platform to study the mechanisms and consequences of short telomeres in the heart and also in the context of telomeropathies.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Telomerase , Telomere , Telomerase/metabolism , Telomerase/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Telomere/metabolism , Telomere Shortening , Cell Line
9.
Dev Psychobiol ; 66(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38601953

ABSTRACT

Parent-child relationship dynamics have been shown to predict socioemotional and behavioral outcomes for children, but little is known about how they may affect biological development. The aim of this study was to test if observational assessments of parent-child relationship dynamics (cohesion, enmeshment, and disengagement) were associated with three biological indices of early life adversity and downstream health risk: (1) methylation of the glucocorticoid receptor gene (NR3C1), (2) telomere attrition, and (3) mitochondrial biogenesis, indexed by mitochondrial DNA copy number (mtDNAcn), all of which were measured in children's saliva. We tested hypotheses using a sample of 254 preschool-aged children (M age = 51.04 months) with and without child welfare-substantiated maltreatment (52% with documented case of moderate-severe maltreatment) who were racially and ethnically diverse (17% Black, 40% White, 23% biracial, and 20% other races; 45% Hispanic) and from primarily low-income backgrounds (91% qualified for public assistance). Results of path analyses revealed that: (1) higher parent-child cohesion was associated with lower levels of methylation of NR3C1 exon 1D and longer telomeres, and (2) higher parent-child disengagement was associated with higher levels of methylation of NR3C1 exon 1D and shorter telomeres. Results suggest that parent-child relationship dynamics may have distinct biological effects on children.


Subject(s)
Child Abuse , Telomere Shortening , Child, Preschool , Humans , Child Abuse/psychology , DNA Methylation , Parent-Child Relations , Poverty
10.
Mult Scler Relat Disord ; 86: 105607, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631073

ABSTRACT

BACKGROUND: Aging-related processes contribute to neurodegeneration and disability in multiple sclerosis (MS). Biomarkers of biological aging such as leukocyte telomere length (LTL) could help personalise prognosis. Pregnancy has been shown to be protective against disability accumulation in women with MS, though it is unclear if this effect relates to aging mechanisms or LTL. OBJECTIVES: This study aimed to cross-sectionally characterise LTL in a cohort of individuals with MS, and to correlate LTL with disability severity and pregnancy history. METHODS: We extracted DNA from the whole blood of 501 people with MS in Melbourne, Australia. Expanded Disability Status Scale (EDSS) score and demographic data, as well as pregnancy history for 197 females, were obtained at sample collection. Additional data were extracted from the MSBase Registry. LTL was determined in base pairs (bp) using real-time quantitative polymerase chain reaction. RESULTS: A relationship between EDSS score and shorter LTL was robust to multivariable adjustment for demographic and clinical factors including chronological age, with an adjusted LTL reduction per 1.0 increase in EDSS of 97.1 bp (95 % CI = 9.7-184.5 bp, p = 0.030). Adjusted mediation analysis found chronological age accounted for 33.6 % of the relationship between LTL and EDSS score (p = 0.018). In females with pregnancy data, history of pregnancy was associated with older age (median 49.7 vs 33.0 years, p < 0.001). There were no significant relationships between adjusted LTL and any history of pregnancy (LTL increase of 65.3 bp, 95 % CI = -471.0-601.5 bp, p = 0.81) or number of completed pregnancies (LTL increase of 14.6 bp per pregnancy, 95 % CI = -170.3-199.6 bp, p = 0.87). CONCLUSIONS: The correlation between LTL and disability independent of chronological age and other factors points to a link between neurological reserve in MS and biological aging, and a potential research target for pathophysiological and therapeutic mechanisms. Although LTL did not significantly differ by pregnancy history, longitudinal analyses could help identify interactions with prospectively captured pregnancy effects.


Subject(s)
Leukocytes , Multiple Sclerosis , Humans , Female , Adult , Multiple Sclerosis/physiopathology , Multiple Sclerosis/genetics , Multiple Sclerosis/blood , Middle Aged , Pregnancy , Cross-Sectional Studies , Male , Telomere , Severity of Illness Index , Telomere Shortening/physiology , Australia , Reproductive History , Aging/physiology
11.
Science ; 384(6694): 475-480, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38662819

ABSTRACT

Noise pollution is expanding at an unprecedented rate and is increasingly associated with impaired reproduction and development across taxa. However, whether noise sound waves are intrinsically harmful for developing young-or merely disturb parents-and the fitness consequences of early exposure remain unknown. Here, by only manipulating the offspring, we show that sole exposure to noise in early life in zebra finches has fitness consequences and causes embryonic death during exposure. Exposure to pre- and postnatal traffic noise cumulatively impaired nestling growth and physiology and aggravated telomere shortening across life stages until adulthood. Consistent with a long-term somatic impact, early life noise exposure, especially prenatally, decreased individual offspring production throughout adulthood. Our findings suggest that the effects of noise pollution are more pervasive than previously realized.


Subject(s)
Finches , Noise , Animals , Finches/genetics , Finches/growth & development , Genetic Fitness , Noise/adverse effects , Noise, Transportation/adverse effects , Reproduction , Telomere Shortening
12.
Science ; 384(6695): 533-539, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38603523

ABSTRACT

Short telomeres cause age-related disease, and long telomeres contribute to cancer; however, the mechanisms regulating telomere length are unclear. We developed a nanopore-based method, which we call Telomere Profiling, to determine telomere length at nearly single-nucleotide resolution. Mapping telomere reads to chromosome ends showed chromosome end-specific length distributions that could differ by more than six kilobases. Examination of telomere lengths in 147 individuals revealed that certain chromosome ends were consistently longer or shorter. The same rank order was found in newborn cord blood, suggesting that telomere length is determined at birth and that chromosome end-specific telomere length differences are maintained as telomeres shorten with age. Telomere Profiling makes precision investigation of telomere length widely accessible for laboratory, clinical, and drug discovery efforts and will allow deeper insights into telomere biology.


Subject(s)
Fetal Blood , Telomere , Humans , Telomere/genetics , Infant, Newborn , Telomere Homeostasis , Telomere Shortening , Chromosomes, Human/genetics , Nanopore Sequencing/methods , Male , Adult
13.
Aging (Albany NY) ; 16(8): 7387-7404, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38663933

ABSTRACT

Mitochondrial DNA (mtDNA) copy number and telomere length (TL) are dynamic factors that have been linked to the aging process in organisms. However, the causal relationship between these variables remains uncertain. In this research, instrumental variables (IVs) related to mtDNA copy number and TL were obtained from publicly available genome-wide association studies (GWAS). Through bidirectional Mendelian randomization (MR) analysis, we examined the potential causal relationship between these factors. The forward analysis, with mtDNA copy number as the exposure and TL as the outcome, did not reveal a significant effect (B=-0.004, P>0.05). On the contrary, upon conducting a reverse analysis, it was found that there exists a positive causal relationship (B=0.054, P<0.05). Sensitivity analyses further confirmed the reliability of these results. The outcomes of this study indicate a one-way positive causal relationship, indicating that telomere shortening in the aging process may lead to a decrease in mtDNA copy number, providing new perspectives on their biological mechanisms.


Subject(s)
Aging , DNA Copy Number Variations , DNA, Mitochondrial , Genome-Wide Association Study , Mendelian Randomization Analysis , Telomere , Humans , DNA, Mitochondrial/genetics , Aging/genetics , Telomere/genetics , Biomarkers , Telomere Homeostasis/genetics , Telomere Shortening/genetics
14.
Proc Biol Sci ; 291(2020): 20232946, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38565156

ABSTRACT

Telomere length (TL) is a biomarker hypothesized to capture evolutionarily and ecologically important physiological costs of reproduction, infection and immunity. Few studies have estimated the relationships among infection status, immunity, TL and fitness in natural systems. The hypothesis that short telomeres predict reduced survival because they reflect costly consequences of infection and immune investment remains largely untested. Using longitudinal data from a free-living Soay sheep population, we tested whether leucocyte TL was predicted by infection with nematode parasites and antibody levels against those parasites. Helminth parasite burdens were positively associated with leucocyte TL in both lambs and adults, which is not consistent with TL reflecting infection costs. We found no association between TL and helminth-specific IgG levels in either young or old individuals which suggests TL does not reflect costs of an activated immune response or immunosenescence. Furthermore, we found no support for TL acting as a mediator of trade-offs between infection, immunity and subsequent survival in the wild. Our results suggest that while variation in TL could reflect short-term variation in resource investment or environmental conditions, it does not capture costs of infection and immunity, nor does it behave like a marker of an individual's helminth-specific antibody immune response.


Subject(s)
Helminths , Sheep, Domestic , Animals , Sheep , Telomere Shortening , Reproduction , Telomere
15.
Lupus Sci Med ; 11(1)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519061

ABSTRACT

OBJECTIVE: Frailty and objective hand grip strength (one of the components of the frailty phenotype) are both risk factors for worse health outcomes in SLE. Whether telomere length, an established cellular senescence marker, is a biologic correlate of the frailty phenotype and hand grip strength in patients with SLE is not clear. First, we aimed to evaluate differences in telomere length between frail and non-frail women with SLE and then assessed whether frailty or hand grip strength is differentially associated with telomere length after adjusting for relevant confounders. METHODS: Women ≥18 years of age with validated SLE enrolled at a single medical centre. Fried frailty status (which includes hand grip strength), clinical characteristics and telomere length were assessed cross-sectionally. Differences between frail and non-frail participants were evaluated using Fisher's exact or Wilcoxon rank-sum tests. The associations between frailty and hand grip strength and telomere length were determined using linear regression. RESULTS: Of the 150 enrolled participants, 131 had sufficient data for determination of frailty classification; 26% were frail with a median age of 45 years. There was a non-significant trend towards shorter telomere length in frail versus non-frail participants (p=0.07). Hand grip strength was significantly associated with telomere length (beta coefficient 0.02, 95% CI 0.004, 0.04), including after adjustment for age, SLE disease activity and organ damage, and comorbidity (beta coefficient 0.02, 95% CI 0.002, 0.04). CONCLUSIONS: Decreased hand grip strength, but not frailty, was independently associated with shortened telomere length in a cohort of non-elderly women with SLE. Frailty in this middle-aged cohort may be multifactorial rather than strictly a manifestation of accelerated ageing.


Subject(s)
Frailty , Lupus Erythematosus, Systemic , Aged , Middle Aged , Humans , Female , Frail Elderly , Hand Strength , Telomere Shortening , Telomere , Lupus Erythematosus, Systemic/genetics , Phenotype
16.
Aging Cell ; 23(4): e14154, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38553952

ABSTRACT

Cellular senescence is a state of permanent growth arrest. It can be triggered by telomere shortening (replicative senescence) or prematurely induced by stresses such as DNA damage, oncogene overactivation, loss of tumor suppressor genes, oxidative stress, tissue factors, and others. Advances in techniques and experimental designs have provided new evidence about the biology of senescent cells (SnCs) and their importance in human health and disease. This review aims to describe the main aspects of SnCs phenotype focusing on alterations in subcellular compartments like plasma membrane, cytoskeleton, organelles, and nuclei. We also discuss the heterogeneity, dynamics, and plasticity of SnCs' phenotype, including the SASP, and pro-survival mechanisms. We advance on the multiple layers of phenotypic heterogeneity of SnCs, such as the heterogeneity between inducers, tissues and within a population of SnCs, discussing the relevance of these aspects to human health and disease. We also raise the main challenges as well alternatives to overcome them. Ultimately, we present open questions and perspectives in understanding the phenotype of SnCs from the perspective of basic and applied questions.


Subject(s)
Cellular Senescence , Telomere Shortening , Humans , Cellular Senescence/genetics , Phenotype , Cells, Cultured , Oxidative Stress
17.
J Comp Physiol B ; 194(2): 213-219, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38466418

ABSTRACT

Hibernation is a widespread metabolic strategy among mammals for surviving periods of food scarcity. During hibernation, animals naturally alternate between metabolically depressed torpor bouts and energetically expensive arousals without ill effects. As a result, hibernators are promising models for investigating mechanisms that buffer against cellular stress, including telomere protection and restoration. In non-hibernators, telomeres, the protective structural ends of chromosomes, shorten with age and metabolic stress. In temperate hibernators, however, telomere shortening and elongation can occur in response to changing environmental conditions and associated metabolic state. We investigate telomere dynamics in a tropical hibernating primate, the fat-tailed dwarf lemur (Cheirogaleus medius). In captivity, these lemurs can hibernate when maintained under cold temperatures (11-15 °C) with limited food provisioning. We study telomere dynamics in eight fat-tailed dwarf lemurs at the Duke Lemur Center, USA, from samples collected before, during, and after the hibernation season and assayed via qPCR. Contrary to our predictions, we found that telomeres were maintained or even lengthened during hibernation, but shortened immediately thereafter. During hibernation, telomere lengthening was negatively correlated with time in euthermia. Although preliminary in scope, our findings suggest that there may be a preemptive, compensatory mechanism to maintain telomere integrity in dwarf lemurs during hibernation. Nevertheless, telomere shortening immediately afterward may broadly result in similar outcomes across seasons. Future studies could profitably investigate the mechanisms that offset telomere shortening within and outside of the hibernation season and whether those mechanisms are modulated by energy surplus or crises.


Subject(s)
Cheirogaleidae , Hibernation , Telomere , Animals , Hibernation/physiology , Cheirogaleidae/physiology , Cheirogaleidae/genetics , Male , Female , Telomere Homeostasis/physiology , Telomere Shortening/physiology , Seasons
18.
Rev. Asoc. Méd. Argent ; 137(1): 4-10, mar. 2024.
Article in Spanish | LILACS | ID: biblio-1552830

ABSTRACT

Se exponen los hallazgos históricos y la importancia biológica de los telómeros en la vida celular y en los aspectos genéticos del ADN humano. (AU)


The discovery and the biological importance of the telomeres are exposed. (AU)


Subject(s)
Humans , DNA/genetics , Telomere/physiology , Telomere/genetics , Telomerase/physiology , Telomerase/genetics , Aging/physiology , DNA/metabolism , Cellular Senescence , Telomerase/metabolism , DNA Replication/physiology , Telomere Shortening , Neoplasms/physiopathology
19.
Transl Psychiatry ; 14(1): 131, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429270

ABSTRACT

Bipolar disorder (BD) has been associated with premature cellular aging with shortened telomere length (TL) as compared to the general population. We recently identified a subgroup of young individuals with prematurely shortened TL. The aims of the present study were to replicate this observation in a larger sample and analyze the expression levels of genes associated with age or TL in a subsample of these individuals. TL was measured on peripheral blood DNA using quantitative polymerase chain reaction in a sample of 542 individuals with BD and clustering analyses were performed. Gene expression level of 29 genes, associated with aging or with telomere maintenance, was analyzed in RNA samples from a subsample of 129 individuals. Clustering analyses identified a group of young individuals (mean age 29.64 years), with shorter TL. None of the tested clinical variables were significantly associated with this subgroup. Gene expression level analyses showed significant downregulation of MYC, POT1, and CD27 in the prematurely aged young individuals compared to the young individuals with longer TL. After adjustment only POT1 remained significantly differentially expressed between the two groups of young individuals. This study confirms the existence of a subgroup of young individuals with BD with shortened TL. The observed decrease of POT1 expression level suggests a newly described cellular mechanism in individuals with BD, that may contribute to telomere shortening.


Subject(s)
Bipolar Disorder , Shelterin Complex , Adult , Aged , Humans , Aging , Aging, Premature , Bipolar Disorder/genetics , Telomere/genetics , Telomere Shortening/genetics , Telomere-Binding Proteins/genetics
20.
Ecotoxicol Environ Saf ; 275: 116206, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38518608

ABSTRACT

Although the association between changes in human telomere length (TL) and ambient fine particulate matter (PM2.5) has been documented, there remains disagreement among the related literature. Our study conducted a systematic review and meta-analysis of epidemiological studies to investigate the health effects of outdoor PM2.5 exposure on human TL after a thorough database search. To quantify the overall effect estimates of TL changes associated with every 10 µg/m3 increase in PM2.5 exposure, we focused on two main topics, which were outdoor long-term exposure and prenatal exposure of PM2.5. Additionally, we included a summary of short-term PM2.5 exposure and its impact on TL due to limited data availability. Our qualitative analysis included 20 studies with 483,600 participants. The meta-analysis showed a statistically significant association between outdoor PM2.5 exposure and shorter human TL, with pooled impact estimates (ß) of -0.12 (95% CI: -0.20, -0.03, I2= 95.4%) for general long-term exposure and -0.07 (95% CI: -0.15, 0.00, I2= 74.3%) for prenatal exposure. In conclusion, our findings suggest that outdoor PM2.5 exposure may contribute to TL shortening, and noteworthy associations were observed in specific subgroups, suggesting the impact of various research variables. Larger, high-quality studies using standardized methodologies are necessary to strengthen these conclusions further.


Subject(s)
Air Pollutants , Air Pollution , Prenatal Exposure Delayed Effects , Female , Pregnancy , Humans , Particulate Matter/toxicity , Particulate Matter/analysis , Air Pollution/analysis , Telomere Shortening , Telomere , Air Pollutants/toxicity , Air Pollutants/analysis , Environmental Exposure/adverse effects , Environmental Exposure/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...